Skip to main content
. 2022 Jun 3;13:887643. doi: 10.3389/fgene.2022.887643

TABLE 3.

Prediction performance of the Maize data set for each environment and across environments (Global) of each of the six models.

Model Metric E1 E2 E3 E4 Global
Mean SE Mean SE Mean SE Mean SE Mean SE
M1 MAE 0.2038 0.0024 0.4360 0.0122 0.2708 0.0035 0.5392 0.0088 0.3409 0.0047
M1 MSE 0.0700 0.0028 0.2991 0.0179 0.1125 0.0034 0.4670 0.0177 0.2059 0.0059
M1 NRMSE 0.8751 0.0259 0.9021 0.0077 0.9159 0.0135 0.9146 0.0196 0.8872 0.0147
M1 RMSE 0.2644 0.0051 0.5459 0.0166 0.3352 0.0050 0.6829 0.0129 0.4535 0.0066
M2 MAAPE 0.7672 0.0106 0.7787 0.0120 0.7734 0.0102 0.7580 0.0075 0.7565 0.0064
M2 MAE 0.2040 0.0067 0.4687 0.0144 0.2700 0.0060 0.5751 0.0166 0.3592 0.0072
M2 MSE 0.0713 0.0045 0.3460 0.0157 0.1131 0.0064 0.5281 0.0319 0.2336 0.0126
M2 NRMSE 0.9174 0.0119 0.9687 0.0057 0.9353 0.0163 0.9517 0.0070 0.9498 0.0040
M2 RMSE 0.2664 0.0083 0.5876 0.0134 0.3358 0.0095 0.7253 0.0225 0.4826 0.0127
M3 MAAPE 0.7861 0.0059 0.7829 0.0010 0.7871 0.0031 0.7870 0.0023 0.7852 0.0015
M3 MAE 0.2187 0.0054 0.4814 0.0130 0.2855 0.0049 0.6109 0.0151 0.3817 0.0069
M3 MSE 0.0847 0.0034 0.3701 0.0144 0.1287 0.0051 0.5861 0.0325 0.2603 0.0131
M3 NRMSE 1.0023 0.0027 1.0024 0.0031 0.9985 0.0010 1.0032 0.0013 1.0029 0.0014
M3 RMSE 0.2908 0.0059 0.6079 0.0119 0.3584 0.0070 0.7643 0.0215 0.5095 0.0126
M4 MAAPE 0.7450 0.0146 0.7615 0.0114 0.7432 0.0150 0.7418 0.0077 0.7444 0.0063
M4 MAE 0.2006 0.0053 0.4430 0.0100 0.2615 0.0069 0.5586 0.0119 0.3498 0.0034
M4 MSE 0.0678 0.0048 0.3073 0.0136 0.1070 0.0062 0.5041 0.0223 0.2215 0.0054
M4 NRMSE 0.8882 0.0082 0.9320 0.0076 0.9032 0.0173 0.9052 0.0076 0.8997 0.0042
M4 RMSE 0.2598 0.0091 0.5538 0.0122 0.3265 0.0096 0.7093 0.0157 0.4705 0.0058
M5 MAAPE 0.7853 0.0067 0.7601 0.0125 0.7600 0.0064 0.7275 0.0067 0.7483 0.0058
M5 MAE 0.2199 0.0033 0.4507 0.0074 0.2747 0.0086 0.5259 0.0089 0.3426 0.0060
M5 MSE 0.0796 0.0037 0.3269 0.0104 0.1166 0.0067 0.4500 0.0153 0.2099 0.0081
M5 NRMSE 0.9858 0.0087 0.9364 0.0111 0.9533 0.0223 0.8808 0.0063 0.9116 0.0065
M5 RMSE 0.2819 0.0065 0.5714 0.0091 0.3408 0.0100 0.6705 0.0113 0.4578 0.0089
M6 MAAPE 0.7980 0.0126 0.7792 0.0101 0.7819 0.0189 0.7681 0.0113 0.7747 0.0110
M6 MAE 0.2177 0.0075 0.4843 0.0157 0.2907 0.0094 0.5653 0.0200 0.3655 0.0112
M6 MSE 0.0798 0.0048 0.3775 0.0220 0.1398 0.0071 0.4992 0.0290 0.2396 0.0148
M6 NRMSE 0.9720 0.0214 1.0107 0.0114 1.0406 0.0199 0.9267 0.0249 0.9616 0.0215
M6 RMSE 0.2820 0.0084 0.6134 0.0180 0.3735 0.0096 0.7053 0.0212 0.4885 0.0155

Generalized boosted machines (M1), generalized linear models (M2), support vector machines (M3), random forest (M4), Bayesian regression models (M5) and deep neural networks (M6). The tuning process was done under the grid search framework. Mean is the average of the five partitions for each metric, SE denotes the standard error for each metric.