TABLE 3.
Prediction performance of the Maize data set for each environment and across environments (Global) of each of the six models.
| Model | Metric | E1 | E2 | E3 | E4 | Global | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Mean | SE | Mean | SE | Mean | SE | Mean | SE | Mean | SE | ||
| M1 | MAE | 0.2038 | 0.0024 | 0.4360 | 0.0122 | 0.2708 | 0.0035 | 0.5392 | 0.0088 | 0.3409 | 0.0047 |
| M1 | MSE | 0.0700 | 0.0028 | 0.2991 | 0.0179 | 0.1125 | 0.0034 | 0.4670 | 0.0177 | 0.2059 | 0.0059 |
| M1 | NRMSE | 0.8751 | 0.0259 | 0.9021 | 0.0077 | 0.9159 | 0.0135 | 0.9146 | 0.0196 | 0.8872 | 0.0147 |
| M1 | RMSE | 0.2644 | 0.0051 | 0.5459 | 0.0166 | 0.3352 | 0.0050 | 0.6829 | 0.0129 | 0.4535 | 0.0066 |
| M2 | MAAPE | 0.7672 | 0.0106 | 0.7787 | 0.0120 | 0.7734 | 0.0102 | 0.7580 | 0.0075 | 0.7565 | 0.0064 |
| M2 | MAE | 0.2040 | 0.0067 | 0.4687 | 0.0144 | 0.2700 | 0.0060 | 0.5751 | 0.0166 | 0.3592 | 0.0072 |
| M2 | MSE | 0.0713 | 0.0045 | 0.3460 | 0.0157 | 0.1131 | 0.0064 | 0.5281 | 0.0319 | 0.2336 | 0.0126 |
| M2 | NRMSE | 0.9174 | 0.0119 | 0.9687 | 0.0057 | 0.9353 | 0.0163 | 0.9517 | 0.0070 | 0.9498 | 0.0040 |
| M2 | RMSE | 0.2664 | 0.0083 | 0.5876 | 0.0134 | 0.3358 | 0.0095 | 0.7253 | 0.0225 | 0.4826 | 0.0127 |
| M3 | MAAPE | 0.7861 | 0.0059 | 0.7829 | 0.0010 | 0.7871 | 0.0031 | 0.7870 | 0.0023 | 0.7852 | 0.0015 |
| M3 | MAE | 0.2187 | 0.0054 | 0.4814 | 0.0130 | 0.2855 | 0.0049 | 0.6109 | 0.0151 | 0.3817 | 0.0069 |
| M3 | MSE | 0.0847 | 0.0034 | 0.3701 | 0.0144 | 0.1287 | 0.0051 | 0.5861 | 0.0325 | 0.2603 | 0.0131 |
| M3 | NRMSE | 1.0023 | 0.0027 | 1.0024 | 0.0031 | 0.9985 | 0.0010 | 1.0032 | 0.0013 | 1.0029 | 0.0014 |
| M3 | RMSE | 0.2908 | 0.0059 | 0.6079 | 0.0119 | 0.3584 | 0.0070 | 0.7643 | 0.0215 | 0.5095 | 0.0126 |
| M4 | MAAPE | 0.7450 | 0.0146 | 0.7615 | 0.0114 | 0.7432 | 0.0150 | 0.7418 | 0.0077 | 0.7444 | 0.0063 |
| M4 | MAE | 0.2006 | 0.0053 | 0.4430 | 0.0100 | 0.2615 | 0.0069 | 0.5586 | 0.0119 | 0.3498 | 0.0034 |
| M4 | MSE | 0.0678 | 0.0048 | 0.3073 | 0.0136 | 0.1070 | 0.0062 | 0.5041 | 0.0223 | 0.2215 | 0.0054 |
| M4 | NRMSE | 0.8882 | 0.0082 | 0.9320 | 0.0076 | 0.9032 | 0.0173 | 0.9052 | 0.0076 | 0.8997 | 0.0042 |
| M4 | RMSE | 0.2598 | 0.0091 | 0.5538 | 0.0122 | 0.3265 | 0.0096 | 0.7093 | 0.0157 | 0.4705 | 0.0058 |
| M5 | MAAPE | 0.7853 | 0.0067 | 0.7601 | 0.0125 | 0.7600 | 0.0064 | 0.7275 | 0.0067 | 0.7483 | 0.0058 |
| M5 | MAE | 0.2199 | 0.0033 | 0.4507 | 0.0074 | 0.2747 | 0.0086 | 0.5259 | 0.0089 | 0.3426 | 0.0060 |
| M5 | MSE | 0.0796 | 0.0037 | 0.3269 | 0.0104 | 0.1166 | 0.0067 | 0.4500 | 0.0153 | 0.2099 | 0.0081 |
| M5 | NRMSE | 0.9858 | 0.0087 | 0.9364 | 0.0111 | 0.9533 | 0.0223 | 0.8808 | 0.0063 | 0.9116 | 0.0065 |
| M5 | RMSE | 0.2819 | 0.0065 | 0.5714 | 0.0091 | 0.3408 | 0.0100 | 0.6705 | 0.0113 | 0.4578 | 0.0089 |
| M6 | MAAPE | 0.7980 | 0.0126 | 0.7792 | 0.0101 | 0.7819 | 0.0189 | 0.7681 | 0.0113 | 0.7747 | 0.0110 |
| M6 | MAE | 0.2177 | 0.0075 | 0.4843 | 0.0157 | 0.2907 | 0.0094 | 0.5653 | 0.0200 | 0.3655 | 0.0112 |
| M6 | MSE | 0.0798 | 0.0048 | 0.3775 | 0.0220 | 0.1398 | 0.0071 | 0.4992 | 0.0290 | 0.2396 | 0.0148 |
| M6 | NRMSE | 0.9720 | 0.0214 | 1.0107 | 0.0114 | 1.0406 | 0.0199 | 0.9267 | 0.0249 | 0.9616 | 0.0215 |
| M6 | RMSE | 0.2820 | 0.0084 | 0.6134 | 0.0180 | 0.3735 | 0.0096 | 0.7053 | 0.0212 | 0.4885 | 0.0155 |
Generalized boosted machines (M1), generalized linear models (M2), support vector machines (M3), random forest (M4), Bayesian regression models (M5) and deep neural networks (M6). The tuning process was done under the grid search framework. Mean is the average of the five partitions for each metric, SE denotes the standard error for each metric.