Table 2. Performance of the predictions under the combinations of RF with six feature scoring methods.
Machine learning method | Feature scoring method | Accuracy (%) | Sensitivity (%) | Specificity (%) | Precision (%) | MCC | F1 | AUCROC |
---|---|---|---|---|---|---|---|---|
Random forest | Fscore | 74.79 | 76.27 | 73.31 | 74.07 | 0.4960 | 0.7516 | 0.8202 |
Kmeans | 72.88 | 73.31 | 72.46 | 72.69 | 0.4576 | 0.7300 | 0.7933 | |
Lasso | 73.09 | 76.69 | 69.49 | 71.54 | 0.4631 | 0.7403 | 0.8087 | |
Pearson | 77.12 | 80.51 | 73.73 | 75.40 | 0.5436 | 0.7787 | 0.8193 | |
Spearman | 76.27 | 79.66 | 72.88 | 74.60 | 0.5266 | 0.7705 | 0.8163 | |
Ttest | 74.15 | 78.39 | 69.92 | 72.27 | 0.4848 | 0.7520 | 0.8046 |
Note:
The highest metric is highlighted in bold.