Skip to main content
. 2022 Jun 14;10:e13581. doi: 10.7717/peerj.13581

Table 2. Performance of the predictions under the combinations of RF with six feature scoring methods.

Machine learning method Feature scoring method Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) MCC F1 AUCROC
Random forest Fscore 74.79 76.27 73.31 74.07 0.4960 0.7516 0.8202
Kmeans 72.88 73.31 72.46 72.69 0.4576 0.7300 0.7933
Lasso 73.09 76.69 69.49 71.54 0.4631 0.7403 0.8087
Pearson 77.12 80.51 73.73 75.40 0.5436 0.7787 0.8193
Spearman 76.27 79.66 72.88 74.60 0.5266 0.7705 0.8163
Ttest 74.15 78.39 69.92 72.27 0.4848 0.7520 0.8046

Note:

The highest metric is highlighted in bold.