Skip to main content
. 2022 Jun 2;16:861480. doi: 10.3389/fnins.2022.861480

TABLE 3.

Classification results of the SNN in iEEG, ECoG and scalp EEG.

Classification task and EEG modality Seizure outcome prediction in patients implanted with iEEG. (HFO area resected →seizure freedom; HFO area not resected → seizure recurrence) Seizure outcome prediction in patients implanted with ECoG. (max HFO rate ≥ 1 HFO/min → seizure recurrence; max HFO rate < 1 HFO/min → seizure freedom) Active epilepsy prediction (seizures/month > 0) using scalp EEG recordings from pediatric patients (mean HFO rate > 0.25 HFO/min → active epilepsy; HFO rate < 0.25 HFO/min → seizure freedom)

SNN architecture used for HFO detection Morphology detector Core SNN in Brian 2 DYNAP-SE hardware Spectrum detector Core SNN + in-band artifact rejection SNN in Brian 2 Spectrum detector Core SNN + in-band artifact rejection SNN + artifact detection SNN in Brian 2
Specificity = TN/(TN + FP) 100 (54 100%) 100 (54 100%) 100 (54 100%) 100 (63 100%) 100 (63 100%) 67 (57 98%) 100 (69 100%)
Sensitivity = TP/(TP + FN) 0 (0 71%) 33 (1 91%) 33 (1 91%) 100 (63 100%) 100 (63 100%) 86 (57 98%) 71 (42 92%)
Negative Predictive Value = TN/(TN + FN) 67 (30 93%) 75 (35 97%) 75 (35 97%) 100 (63 100%) 100 (63 100%) 67 (22 96%) 71 (42 92%)
Positive Predictive Value = TP/(TP + FP) 100 (3 100%) 100 (3 100%) 100 (63 100%) 100 (63 100%) 86 (57 98%) 100 (69 100%)
Accuracy = (TP + TN)/N (%) 67 (30 93%) 78 (40 97%) 78 (40 97%) 100 (63 100%) 100 (63 100%) 85 (62 97%) 80 (56 94%)

TP True Positive; TN True Negative; FP False Positive; FN False Negative; N = TP + TN + FP + FN = number of patients.

To find HFO in the iEEG dataset, we first used the SNN simulator Brian 2 and the toolbox Teili (Milde, 2018), to simulate our SNN and then we mapped the SNN in hardware using the neuromorphic processor DYNAP-SE (Moradi et al., 2018).

The numbers in brackets are the 95% confidence intervals (CI).