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Abstract

Background

One common way to share health data for secondary analysis while meeting increasingly

strict privacy regulations is to de-identify it. To demonstrate that the risk of re-identification is

acceptably low, re-identification risk metrics are used. There is a dearth of good risk estima-

tors modeling the attack scenario where an adversary selects a record from the microdata

sample and attempts to match it with individuals in the population.

Objectives

Develop an accurate risk estimator for the sample-to-population attack.

Methods

A type of estimator based on creating a synthetic variant of a population dataset was devel-

oped to estimate the re-identification risk for an adversary performing a sample-to-popula-

tion attack. The accuracy of the estimator was evaluated through a simulation on four

different datasets in terms of estimation error. Two estimators were considered, a Gaussian

copula and a d-vine copula. They were compared against three other estimators proposed

in the literature.

Results

Taking the average of the two copula estimates consistently had a median error below 0.05

across all sampling fractions and true risk values. This was significantly more accurate than

existing methods. A sensitivity analysis of the estimator accuracy based on variation in input

parameter accuracy provides further application guidance. The estimator was then used to

assess re-identification risk and de-identify a large Ontario COVID-19 behavioral survey

dataset.
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Conclusions

The average of two copula estimators consistently provides the most accurate re-identifica-

tion risk estimate and can serve as a good basis for managing privacy risks when data are

de-identified and shared.

1. Introduction

It has been argued that access to data is key to fight the COVID-19 pandemic [1–4], especially

since AI methods that are being applied to analyze COVID-19 data require larger volumes of

data [5,6]. However, privacy concerns are growing [7–10], and some governments have begun

to reduce the amount of information being shared about COVID-19 cases [7,11–16].

More broadly, access to health data for secondary research remains a challenge [17–20].

Assessments of procuring individual-level data for research projects from authors have had

success rates vary significantly and were generally low at 58% [21], 46% [22], 14% [23], and 0%

[24]. Some researchers note that getting access to datasets from authors can take from 4

months to 4 years [24].

To be able to manage privacy risks when sharing health data, in the context of the COVID-

19 pandemic and more broadly to share such data with the research community, it is necessary

to be able to measure the re-identification risk of the dataset being shared and ensure that it is

small. For example, under the US HIPAA Privacy Rule Expert Determination method, the risk

needs to be “very small” that the information could be used, alone or in combination with

other reasonably available information, by an anticipated recipient, to identify an individual

[25]. Recent guidance from the Ontario Information and Privacy Commissioner’s Office indi-

cates that the risk of re-identification of individuals in data should be determined to be “very

low” or “very small” prior to the data being released [26].

In Canada and the European Union, the reasonableness standard is widely used to judge

whether or not information is identifiable [27–30]. For instance, in the Federal Court of Can-

ada case of Gordon v. Canada (Health) [31], the judge adopted the “serious possibility” test

proposed by the Federal Privacy Commissioner to determine if information constitutes per-

sonal information as defined in the Privacy Act (i.e., whether it is information about an identi-

fiable individual).

Recital 26 of the European General Data Protection Regulation states, “To determine

whether a natural person is identifiable, account should be taken of all the means reasonably

likely to be used, such as singling out, either by the controller or by another person to identify

the natural person directly or indirectly.” [29] The EU Article 29 Working Party Opinion on

Anonymization Techniques indicates that anonymized data must meet three specific criteria

(must not allow for singling out, linkability or inference) or a re-identification risk analysis

must be performed to demonstrate that the risk is “acceptably small” [32].

To enable the precise and repeatable assessment of terms such as “reasonable”, “reasonably

likely”, “serious possibility”, “very low”, “very small”, or “acceptably small”, quantitative mea-

sures of risk are necessary. By measuring re-identification risk, a data custodian can apply vari-

ous algorithms to reduce that risk to an acceptable value. Absent reliable measurement, it will

be difficult to know whether the re-identification risk meets any of these standards, and

whether methods for the de-identification of health data are adequate or not.

Re-identification risk is defined as the probability of an adversary correctly matching a

record in the dataset with a real person. A large body of work has been developed in the
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disclosure control literature to estimate this parameter [33–39]. Our main focus is the estima-

tion of identity disclosure risk for datasets rather than for individual records in a dataset. If a

dataset is deemed to have a low risk, then it can be treated as non-personal information and

can be used and disclosed without additional patient consent.

Many existing estimators in the literature do not model actual adversarial attacks, and

therefore provide only a proxy for risk. One of the more common ways to assess re-identifica-

tion risk is to measure population uniqueness [40]. For example, an accurate estimator of

uniqueness uses a log-linear model [41]. However, managing population uniqueness in a data-

set does not provide sufficient assurances. Population uniqueness does not model a specific

adversary attack scenario, plus it is quite easy to have data with low population uniqueness but

still have a quite high probability of re-identification. For example, a dataset with zero popula-

tion uniqueness value could have a mean or maximum probability of re-identifying a record as

high as 0.5, which is much higher than the 0.09 commonly recommended threshold by data

custodians [42–46], and used by the European Medicines Agency [47,48] and Health Canada

[49] (also see the literature review of thresholds in [50]). Therefore, it is important to move

beyond uniqueness as a risk measure and employ models that are more aligned with attack

scenarios: managing re-identification risk based on uniqueness will not ensure that the overall

data risk is acceptably small.

In this paper we present a new estimator of re-identification probability that is based on

synthetic data generation methods, and that models a specific adversarial attack scenario. The

method is an average of estimates from a Gaussian copula and a d-vine copula. Our average

estimator gives the probability that a random record selected from a microdata sample can be

correctly matched to a record (or individual) in the population from which the sample comes

from.

We empirically evaluate the copula methods on four datasets and compare their overall

accuracy to three other estimators that have already appeared in the literature. Our results

demonstrate very high re-identification risk estimation accuracy for the average of the two

copula methods, and that it is better than alternative estimators in the literature. A post-hoc

sensitivity analysis was also performed to evaluate its performance when there are errors in its

input parameters, and this provides additional specific application heuristics. We then applied

this estimator to assess and de-identify a behavioral COVID-19 survey dataset of Ontario resi-

dents, which is now available through Physionet.

Our contribution is that this new average copula method provides a very accurate estimate

of the risk of re-identification by matching a microdata sample record with the population,

and its performance is better than other methods described in the literature. It can be used to

enable sharing of COVID-19 and other datasets while providing reasonable privacy

assurances.

2. Methods

Our ultimate objective is to be able to estimate re-identification risk for a dataset that is being

shared. We will refer to this dataset as the microdata sample. The general assumption we make

is that the data to be shared is a sample from some population, which is going to be the case in

the majority of situations in practice.

In this section we first describe our estimation method. We then describe the empirical

evaluation where we perform a simulation to compare six methods for the estimation of re-

identification risk. Three of these are the ones we propose and three are the baseline methods

proposed in the literature.

PLOS ONE Measuring re-identification risk using a synthetic estimator to enable data sharing

PLOS ONE | https://doi.org/10.1371/journal.pone.0269097 June 17, 2022 3 / 19

https://doi.org/10.1371/journal.pone.0269097


2.1 Context

Having an accurate estimator of re-identification risk will ensure that data is not excessively

perturbed during de-identification, and that when a data controller claims that the risk of re-

identification is low then it is indeed low. The former affects the ability of organizations to use

health data for secondary purposes and the latter affects the ability of organizations to meet

their regulatory obligations and avoid potentially large penalties for inappropriately processing

personal health information.

For example, consider the situation where the actual re-identification risk of a dataset is 0.2

(i.e., the probability of a microdata sample record being correctly matched to a real person in

the population is 0.2). And let the acceptable risk threshold be 0.05. If an estimator estimated

that the risk is 0.02 (an underestimation of the true risk) then the data controller would incor-

rectly treat the data as de-identified. The obligations of the data controller when processing

de-identified data are quite limited under, for example, the GDPR [51]. This means that the

data controller would be in breach of the regulation and potentially subject to significant fines.

On the other hand, if the true risk was 0.02 and the estimated risk was 0.2 (an overestima-

tion of the true risk), then the data controller would unnecessarily perturb the dataset to

reduce its risk to a value below the threshold. This would result in lower utility data that would

reduce the ability to derive meaningful results from the data. If the utility is too low due to

excessive perturbation the data controller may not be able to use the data at all for secondary

analysis.

Therefore, accurate risk estimation is important to ensure the responsible use of health data

for secondary purposes using de-identification.

2.2 Assumptions and notation

When an adversary is attempting to match records in a dataset to individuals in the popula-

tion, she does so using a subset of the variables in the dataset that are knowable. This subset if

called the quasi-identifiers [33]. Examples of quasi-identifiers are date of birth, gender, race,

main language spoken, and level of education. These are knowable because they are likely to

be known by an acquaintance of someone in the dataset or they exist in public registries, such

as voter registration lists [52].

All the records that have the same values on the quasi-identifiers are called an equivalence

class. If an equivalence class size is equal to one, then it is a unique record. Equivalence classes

sizes can be computed from the microdata sample or from the population.

In defining our risk measure and its estimators, we will use the notation below:

Notation Interpretation

Dr Microdata sample dataset

Dp Synthetic population dataset

Ds Synthetic microdata dataset, sampled from the synthetic population dataset Dp

k Index for records in the microdata sample

n Number of records in the microdata sample

N Number of records in the population

fk Size of the equivalence class (in the microdata sample) that record k belongs to

Fk Size of the equivalence class (in the population) that record k belongs to

A Match rate for population-to-sample attacks

B Match rate for sample-to-population attacks

https://doi.org/10.1371/journal.pone.0269097.t001
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2.3 Measuring re-identification risk

We consider two risk metrics that are modeled after specific attacks [33]. We will refer to these

as population-to-sample attacks and sample-to-population attacks.

In the first, the attacker selects an individual from the population and tries to match that

individual on the quasi-identifiers with records in the dataset. The match rate for such popula-

tion-to-sample attacks is given by [33] (the derivation of formula (1) is provided in the appen-

dix):

A ¼
1

N

Xn

k¼1

1

fk
ð1Þ

This gives the probability that a random individual selected from the population can be cor-

rectly matched with their record in the microdata sample. A selected individual from the pop-

ulation may not be in the microdata sample, and therefore the fact that the microdata is a

sample does have a protective effect.

With the second method of attack, the sample-to-population attack, the adversary ran-

domly selects a record from the sample and matches it to individuals in the population. The

match rate is given by [33] (the derivation of formula (2) is provided in the appendix):

B ¼
1

n

Xn

k¼1

1

Fk
ð2Þ

This gives the probability that a random individual selected from the microdata sample can

be correctly matched with their record (or person) in the population.

These risk values are not conditional on whether an equivalence class is unique in the real

dataset or not.

The parameters in Eq (1) can be easily computed from the microdata sample directly and

using knowledge of the population size (i.e., the value of N, which we assume is known). How-

ever, the parameters in Eq (2) must be estimated because Fk is unknown. Our objective in this

study is to estimate B̂ in Eq (2) using microdata sample information only.

2.4 Previous estimators

A number of approaches have been proposed to estimate the population equivalence group

size value, F̂ k or 1
F̂ k

.
.

One approach that can be used to approximate B̂ uses microdata sample entropy [53]. This

method assumes that the quasi-identifiers are independent, and computes the probability that

a specific set of quasi-identifier values appear in the population.

The Benedetti-Franconi estimator assesses the risk following a Bayesian approach [37]. The

method provides an estimate of risk for individual records and can be aggregated across all

records to obtain an expected dataset risk value.

An earlier estimator of sample dataset risk was proposed by El Emam and Dankar [54].

This method uses a hypothesis testing approach assuming that equivalence group sizes in the

population follow a truncated-at-zero Poisson distribution.

These three estimators are used as a baseline to compare our proposed methods against.

2.5 Proposed estimator

Our proposed estimator is an average of two copula methods: each of them is used to make a

separate estimate and then we take the average.
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Let the microdata sample be Dr. We use this microdata sample to create a synthetic variant

which is the same size as the population (i.e., with N records). The synthesis is only performed

on the quasi-identifiers. The synthetic population dataset is denoted by Dp. We then sample

from the synthetic population Dp a dataset of size n using simple random sampling, which we

denote as Ds. This is a synthetic sample from the synthetic population. We then compute the B̂
value in Eq (2) using Dp and Ds.

In this process we are simulating the population using data synthesis, and then drawing a

synthetic microdata sample from that synthetic population to get a simulated microdata sam-

ple. These two synthetic datasets are then used to compute our estimator.

2.6 Synthesis using copulas

We use copulas to synthesize the population [55]. Copulas are flexible models that link univari-

ate marginal distributions to form a multivariate distribution. This multivariate distribution

captures the dependence structure among variables [56]. These models can be used to simplify

the modelling and sampling of multivariate data. Copula models have been used to model

financial time series [57–59], survival data [60,61], as well as for synthetic data generation [62–

65]. We examine two different copulas, a Gaussian copula and a vine copula. The step-by-step

procedure for fitting each of the two copulas is described in detail in the appendices.

A Gaussian copula models a series of variables as an m-dimensional multivariate Gaussian

distribution. One benefit of using a Gaussian copula rather than a traditional multivariate nor-

mal distribution is that each variable does not need to be normally distributed initially. In our

work, each variable has an empirical cumulative density function fit using the sample data

which is then transformed to the standard normal using the inverse quantile function for the

standard normal distribution. This means that this model does not make a strong distribu-

tional assumption about the data it models. Synthetic population samples are generated from

sampling from the m-dimensional multivariate Gaussian distribution, then applying the stan-

dard normal quantile function and the inverse of the empirical cumulative density function to

each dimension, yielding a synthetic sample in the original data space. The dependence

between two variables i and j is estimated by the correlation coefficient ρij where the optimal

value for ρij is the value which minimizes the difference between the mutual information in the

real data sample and the mutual information in a synthetic data sample.

The d-vine copula models m variables using a series of pairwise bivariate Gaussian copulas

where the pattern of bivariate copulas is described by a vine structure. A vine structure is a

hierarchy of trees that describe conditional dependence between variables. This modelling

strategy is particularly effective at modelling more complicated dependence relationships than

the Gaussian copula.

2.7 Datasets used

The four datasets that we used in our simulations are summarized in Table 1. These datasets

were selected to represent common contemporary health data and a common benchmark

dataset. The specific quasi-identifiers that were used are summarized in the appendix, as well

as links to the sources of these datasets.

In total we evaluated six estimators as noted below as well as the names given to them in the

results: the entropy estimator [53] (entropy), the hypothesis testing estimator [54] (hypothesis

test), the Benedetti-Franconi estimator [37] (Italian), the Gaussian copula estimator (gaussian

copula), the d-vine copula (d-vine copula), and the average of these two latter copula estima-

tors (average).
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2.8 Simulation

The simulation varied the selected quasi-identifiers and the sampling fraction. The number of

quasi-identifiers was varied and a subset of variables of that number was selected as the quasi-

identifiers. For example, if there were m quasi-identifiers, then a random number of quasi-

identifiers from 1 to m was selected for each simulation run. The variation in the number of

quasi-identifiers allows us to model datasets of different complexity.

Within the same simulation run a sampling fraction between 0.01 and 0.99 was selected

(drawn from a uniform distribution). The variation in sampling fraction captures different sit-

uations where datasets may cover most of the population (e.g., datasets under single payor sys-

tems), and cases where datasets are for a subset of patients from a specific clinic where the

population sampling fraction can be small. That way a more complete assessment of the behav-

ior of the estimators will be possible.

For each subset of quasi-identifiers randomly selected we create a new sub-sample and gen-

erate a new synthetic dataset to compute the risk from. The synthetic datasets were generated

using each of the two copula methods. A total of 1000 study points were generated for each

data synthesis method.

The full dataset size (as noted in Table 1) that was sampled from was used as the population

size (the N value). The estimate error was computed as B̂ � B. This allowed us to evaluate the

extent of over and under estimation. We then plotted the error against the true risk value B.

Given that there were multiple simulations per true risk value B, a box-and-whisker plot was

used to represent the error median and variation at each true risk value. Deviation from zero

indicates the extent of estimate error.

The descriptive visualization for presenting the results was not accompanied by formal sta-

tistical tests to compare the error at different true risk values B because in a simulation context

such testing is not informative. One can just increase the number of simulation study points to

get statistically significant differences across the board. Therefore, the useful information is the

median error and the variation of the error (in the form of the inter-quartile range).

It is noted that the Texas, Washington, and Nexoid datasets are larger than what we used in

our analysis. We therefore evaluated the impact of using a population larger than 50,000 in our

simulations. We found that increasing the size of the population did not have a material

impact on our results and conclusions across all the estimation methods. Therefore, we only

present the results with the 50,000 population.

2.9 Ethics

This project was approved by the CHEO Research Institute Research Ethics Board, protocol

number CHEOREB# 20/96X.

Table 1. A summary of the datasets that were used in our simulation. These datasets represent the population that

were used in our simulation.

Name Description Number of Records

Adult dataset UCI Machine Learning Repository Adults dataset; this

dataset is included as a reference point since it is often

used in the machine learning and disclosure control

community

48,842

Texas hospitals 2007

dataset

The Texas hospital discharge dataset (public dataset from

the Texas Department of Health and Social Services)

50,000 records selected from

the original 2,244,997 records

Washington 2007

hospitals dataset

The Washington state hospital discharge dataset 50,000 records selected from

the original 644,902 records

Nexoid dataset An on-line survey on COVID-19 exposure 50,000 records selected from

the original 968,408 records

https://doi.org/10.1371/journal.pone.0269097.t002
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3. Results

In the main body of the paper, we present the results for the Texas dataset and the Nexoid

dataset for a low (0.05), medium (0.3), and high (0.7) sampling fraction. These are two quite

different datasets and illustrate the range of results we obtained. All of the remaining results

for the other sampling fractions and datasets are included in the supplementary appendices.

These show the same patterns as the results included in the main body of the paper.

We plot the error against the true risk in 0.1 true risk increments. Some of the datasets do

not have a high true risk because of the nature of the quasi-identifiers that are considered (i.e.,

the true risk does not necessarily go all the way up to 1), and therefore we present their values

to the highest true risk achievable.

The error results for the 0.05 sampling fraction are shown in Fig 1. These are represented as

box-and-whisker plots at each category of the true risk (on the x-axis). Similarly, the results are

shown for the 0.3 and 0.7 sampling fractions in Figs 2 and 3 respectively. Equivalent results for

the Nexoid dataset are shown in Figs 4–6 for the three sampling fractions respectively.

The main patterns are consistent across all of plots. We can make the following observations.

The entropy method consistently and significantly overestimates the true risk. This means

that applications of that estimator in a de-identification context will be conservative resulting in

more data transformations than necessary. Conservatism has a negative impact on data utility.

The Italian method consistently and significantly underestimates the true risk. This means

that applications of that estimator in a de-identification context will be permissive resulting in

datasets that have a higher re-identification risk than is assumed.

Fig 1. The estimation error for the Texas hospitals 2007 dataset at the 0.05 sampling fraction.

https://doi.org/10.1371/journal.pone.0269097.g001
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The hypothesis testing method underestimates the true risk for low sampling fractions and

overestimates the risk for high sampling fractions. Even though its error is generally better

than the previous two estimators, it is still quite high in practice when the full range of true

risk is considered.

The Gaussian and d-vine copula estimators tend to perform well with quite small errors

across the range of true risk values and sampling fractions. The average is better than either of

the copula estimators in terms of maintaining an error less than 5% across the different data-

sets and sampling fractions. It is by far the best performing estimator out of the six that we

have evaluated.

The average copula estimator provides an accurate estimate of re-identification risk that it

would be practically useful for managing re-identification risk and being used as a reliable

optimization criterion for de-identification algorithms. This estimator also performs better

than the other methods in the literature. In particular, the average copula estimator provides

the most accurate results around the commonly used 0.09 threshold, which is where such accu-

racy can make an important difference between whether a dataset is considered personal infor-

mation or not.

4. Discussion and conclusions

The objective of this study was to develop and evaluate an estimator of re-identification risk

that can be used to capture the match rate or the probability of re-identification success that is

aligned with an actual attack (rather than a proxy). The specific attack we were modeling is the

Fig 2. The estimation error for the Texas hospitals 2007 dataset at the 0.3 sampling fraction.

https://doi.org/10.1371/journal.pone.0269097.g002
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adversary selecting a record from the microdata sample and attempting to match that with a

person in the real world using the quasi-identifiers.

4.1 Summary

Our general approach was to create a synthetic population from the microdata and then sam-

ple from the synthetic population to create a synthetic sample. Using the synthetic population

and synthetic sample, we were able to compute the probability of a correct match under the

sample-to-population attack. While the overall scheme we have proposed is relatively simple,

it has not been applied before for re-identification risk estimation and the results demonstrate

very good estimation accuracy. Therefore, there is incremental value from this result in terms

of improving our ability to manage re-identification risk and enabling responsible sharing of

health data for research and broader secondary analysis.

To synthesize the population, we evaluated two copula methods, a Gaussian copula and a d-

vine copula, and an average of these two copula estimates. These were compared to three esti-

mators in the literature: an entropy-based estimator, a Bayesian estimator, and a hypothesis

testing estimator.

Our results show that the average of two copula methods produced the best results, with

high accuracy of the estimated re-identification probability under the considered attack. This

estimator performed better than all of the other methods in the literature that we considered.

Furthermore, it had a consistently low error rate below 5% and small variation in the error on

Fig 3. The estimation error for the Texas hospitals 2007 dataset at the 0.7 sampling fraction.

https://doi.org/10.1371/journal.pone.0269097.g003
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the datasets we included in our evaluation. This is a low error rate in an absolute sense and

ensures reliable behavior across sampling fraction and true risk conditions.

Therefore, we propose the use of this average copula risk estimator as the basis for comput-

ing the re-identification risk for a sample-to-population attack.

4.2 Sensitivity analysis

The main parameter for the copula estimators is the population size, N. We performed a post-

hoc sensitivity analysis to determine the extent to which the accuracy of the average copula

method risk estimate is affected by errors in that value. This allows us to provide practical

guidance on the application of the average copula estimator.

We only performed this sensitivity analysis on the average copula estimator because results

on the other estimation methods would not affect our conclusions. If the other methods had a

high sensitivity to the population size parameter, then there would be no reason to use them

for that reason. Even if they had low sensitivity, their accuracy was still poor that we would not

recommend using them. And further evaluation of these other estimators would not contrib-

ute to developing practical guidance for using the average copula estimator.

In practice, the exact population value may not be known with precision. We therefore

computed the risk estimation error as the N value used in the synthesis is increased and

decreased by up to 30%. This will tell us how much errors as large as 30% in the value of N
influence accuracy. While the direction of the impact of changes in N can be anticipated in

Fig 4. The estimation error for the Nexoid dataset at the 0.05 sampling fraction.

https://doi.org/10.1371/journal.pone.0269097.g004
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advance, the magnitude of that change is not known, and the objective was to empirically eval-

uate the magnitude of change.

The result plots of the sensitivity analysis for the average of two copulas are presented in

Figs 7 and 8 for the 0.3 sampling fraction on the Texas and Nexoid datasets. The remaining

plots are in the appendix. Having a value of N that is larger than the real value tends to result

in underestimation of the risk and having a value of N that is smaller than the real value tends

to result in overestimation of the risk. The over-/ under-estimation is within the 10% range. In

general, when there is uncertainty around the true value of N, it is better to err on the side of

using a value of N that may be smaller than the true value. This will result in a more conserva-

tive risk estimate and will reduce the likelihood of treating a dataset as a having a lower re-

identification risk than the true risk, and therefore gives a little more privacy protection than

what is necessary.

4.3 Application: Risk estimation for a COVID-19 dataset

The average copula estimator described in this paper was used to de-identify the flatten.ca

dataset, which is currently available on Physionet [66]. Access to the data requires agreeing to

certain terms-of-use.

This was data collected online from Ontario residents pertaining to their experiences with

COVID-19. The Ontario dataset contained 18,903 observations, and the simulated population

consisted of 13,448,494 individuals (the population of Ontario at the time). The quasi-

Fig 5. The estimation error for the Nexoid dataset at the 0.3 sampling fraction.

https://doi.org/10.1371/journal.pone.0269097.g005
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identifiers are listed in Table 2. The sample-to-population risk was measured and the quasi-

identifiers were generalized until the estimated risk was below the commonly used 0.09 thresh-

old as noted in the introduction. The estimated sample-to-population risk after the adjust-

ments described in Table 2 was 0.0723. The population-to-sample risk (see Eq (1)) was 0.0009

for the dataset generalized as described in Table 2.

Beyond ensuring that the population-to-sample risk estimates were small, the dataset was

mapped to Statistics Canada census data on the Forward Sortation Area [67]. Individuals in

FSAs with small populations on the demographic quasi-identifiers (age, sex, and ethnicity)

below a threshold of 11 were removed from the dataset. This provides additional conservative

assurance for matches against population registries.

4.4 Future work

Other types of generative models can be used to improve on the average copula estimator in

future work, or more complex copula designs can be used. The basic scheme of synthesizing a

population and deriving a sample from it, to create both a synthetic population and synthetic

sample, is a general recipe that has produced good results.

4.5 Limitations

In this analysis we made the assumption that the adversary would use exact matching to attack

a microdata sample. This is a common assumption in the disclosure control literature when

Fig 6. The estimation error for the Nexoid dataset at the 0.7 sampling fraction.

https://doi.org/10.1371/journal.pone.0269097.g006
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evaluating re-identification risk estimators and when modeling re-identification risk. Other

forms of matching, such as approximate or probabilistic, may yield different results, and

should be investigated further in future studies.

Fig 7. The sensitivity of the estimation error for the Texas dataset at the 0.3 sampling fraction.

https://doi.org/10.1371/journal.pone.0269097.g007

Fig 8. The sensitivity of the estimation error for the Nexoid dataset at the 0.3 sampling fraction.

https://doi.org/10.1371/journal.pone.0269097.g008
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