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Abstract

There is increasing evidence regarding the prevalence of genetic cardiomyopathies, for which 

arrhythmias may be the first presentation. Ventricular and atrial arrhythmias presenting in the 

absence of known myocardial disease are often labelled as “idiopathic”, or “lone”. While 

ventricular arrhythmias are well-recognized as presentation for arrhythmogenic cardiomyopathy 

in the right ventricle, the scope of arrhythmogenic cardiomyopathy has broadened to include those 

with dominant left ventricular involvement, usually with a phenotype of dilated cardiomyopathy. 

In addition, careful evaluation for genetic cardiomyopathy is also warranted for patients presenting 

with frequent PVC’s, conduction system disease, and early onset atrial fibrillation, in which most 

detected genes are in the cardiomyopathy panels. Sudden death can occur early in the course 

of these genetic cardiomyopathies, for which risk is not adequately tracked by left ventricular 

ejection fraction. Only a few of the cardiomyopathy genotypes implicated in early sudden 

death are recognized in current indications for implantable cardioverter defibrillators which 

otherwise rely upon a left ventricular ejection fraction ≤ 0.35 in dilated cardiomyopathy. The 

genetic diagnoses impact other aspects of clinical management such as exercise prescription and 

pharmacologic therapy of arrhythmias, and new therapies are coming into clinical investigation 

for specific genetic cardiomyopathies. The expansion of available genetic information and 

implications raises new challenges for genetic counseling, particularly with the family member 
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who has no evidence of a cardiomyopathy phenotype and may face a potentially negative impact 

of a genetic diagnosis. Discussions of risk for both probands and relatives need to be tailored to 

their numeric literacy during shared decision-making. For patients presenting with arrhythmias or 

cardiomyopathy, extension of genetic testing and its implications will enable cascade screening, 

intervention to change the trajectory for specific genotype-phenotype profiles, and enable further 

development and evaluation of emerging targeted therapies.

Introduction

There is increasing recognition of the prevalence of genetic cardiomyopathies. Genetic 

cardiomyopathies often present with cardiac arrhythmias, which, in the absence of 

clinical heart failure, may too readily be labelled as “idiopathic,” “isolated,” or “lone.” 

Many of these disorders are now considered arrhythmogenic cardiomyopathies (ACM). 

This term reflects evolution from the initial recognition of families with sudden death, 

ventricular arrhythmias, and morphologic disease of the right ventricle (RV), defined first as 

arrhythmogenic RV dysplasia and then arrhythmogenic RV cardiomyopathy (ARVC), linked 

to genetic desmosomal disease.1 As described in the 2019 Heart Rhythm Society Expert 

Consensus Statement,2 the scope of ACM has expanded to include those predominantly 

expressed in the left ventricle (LV), most commonly with a dilated cardiomyopathy 

phenotype. In this review, the broad term ACM will encompass both the desmosomal 

and other genetic diseases primarily affecting the right ventricle (ACM-RV) and those 

primarily affecting the left ventricle (ACM-LV), with recognition that both ventricles are 

often involved together. The distinct phenotype of hypertrophic cardiomyopathy, which is 

notorious for its presentation as sudden death in athletes, receives separate consideration. 

Consideration of genetic cardiomyopathy is increasingly relevant, however, also for patients 

presenting with early onset atrial fibrillation, conduction system disease, or frequent PVCs, 

any of which can be the presenting symptoms in the absence of HF.

When evaluating a patient with new arrhythmias and possible CM, it is useful to consider 

three contexts according to the relative timing and severity of arrhythmias and myocardial 

dysfunction:

1. Arrhythmias dominate the clinical picture with mild or no apparent impairment 

of left ventricular function.

2. Arrhythmias appear in parallel with other evidence of CM not previously 

recognized.

3. Arrhythmias have developed only after CM and HF are advanced.

This review will focus on evaluation and recognition of patients in the first two settings 

with atrial fibrillation, conduction system disease, or ventricular arrhythmias (VA) as the 

presentation of genetic cardiomyopathy. The major morphologic phenotypes of genetic CM 

will then be reviewed, including examples of genetic variants associated with arrhythmias, 

recognizing that the reported prevalence and prognosis of pathogenic variants vary among 

different regions, and continue to evolve with new information.
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Initial Evaluation in Patients Presenting with Arrhythmias

Historical features to be elicited should focus on evidence of other cardiac disease. 

Abnormal ECGs may have been reported in the past. Prior cardiac evaluation may 

have been triggered by atypical chest pain, which can occur for multiple reasons with 

cardiomyopathies. Comparison of current to past activity level, such as during previous 

family holidays, can reveal unrecognized decline in exercise tolerance. Some pathogenic 

myocardial variants also affect skeletal muscle, so patterns of muscle weakness can 

suggest genetic heart disease. The history should note other features specific to some 

cardiomyopathies, such as familial partial lipodystrophy with LMNA disease.

A 3-generation family history should be obtained,2,3 to include not only heart failure, 

CM, and “enlarged heart”, but also skeletal muscle disease, early onset atrial fibrillation 

(AF), pacemaker implantation, or sudden cardiac death (SCD), sometimes hidden within a 

diagnosis of “massive heart attack”, drowning, single motor vehicle accident, or occurring in 

infants. CM can also be part of recognized genetic syndromes with prominent non-cardiac 

features (which will not be reviewed here).

Electrocardiography

ECG documentation of the arrhythmia can suggest the nature of underlying cardiomyopathy. 

Baseline abnormalities of repolarization, hypertrophy, or conduction favor the presence of 

underlying disease.4 The morphology of PVCs and other VA can be helpful as discussed 

below. High voltage of left ventricular hypertrophy suggests hypertrophic cardiomyopathy 

(HCM), often with prominent septal forces, while voltage can decrease progressively with 

some genetic CM, such as with LMNA or desmoplakin diseases. Ambulatory cardiac 

monitoring is useful for identifying arrhythmias and quantifying whether frequency of AF or 

PVCs is sufficiently high to contribute to ventricular dysfunction.

Echocardiography

Transthoracic echocardiography is widely available, inexpensive, and remains the standard 

first-line imaging for evaluation of patients presenting with ventricular arrhythmia. It 

can help to exclude underlying coronary artery or valvular disease, and may identify 

features such as ventricular dilation, global and/or regional ventricular systolic dysfunction, 

atrial enlargement or abnormal myocardial wall thickness that indicate CM phenotypes. 

Assessment of global longitudinal strain enhances recognition of early disease and of serial 

changes in systolic function during the course of genetic cardiomyopathies.5

Cardiac Magnetic Resonance Imaging

Cardiac magnetic resonance imaging (CMR) is the recognized gold standard for 

quantitative measurement of ventricular size, function, morphology, and myocardial tissue 

characteristics. It allows visualization of myocardial edema, inflammation, and fibrosis. 

Gadolinium contrast accumulates in areas of expanded extracellular matrix, allowing 

recognition of myocardial fibrosis as regions of late gadolinium enhancement (LGE). When 

trying to determine whether VA are “benign”, the presence of LGE is a relatively reliable 

indicator of myocardial disease and a potential substrate for scar-related arrhythmias (Figure 
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1).6 The morphology and location of LGE allows for the discrimination of non-ischemic 

fibrosis from scarring related to myocardial infarction. The extent of LGE has been linked to 

risk of VA/SCD in dilated cardiomyopathy (DCM)7–9 and some signature LGE patterns have 

been associated with specific genotypes.10

Diffuse interstitial fibrosis may not result in visible LGE but can be appreciated by novel 

imaging techniques.11 Parametric mapping (T1, T2, and extra-cellular volume, ECV) allows 

for further discrimination of myocardial edema, inflammation, infiltration, and fibrosis. 

Global elevation of the native myocardial T1 and the ECV are indicators of diffuse fibrosis 

and associated with increased arrhythmia risk, even when focal LGE is not apparent.12,13

Imaging of the right ventricle (RV) presents challenges, as CMR may not detect thin areas 

of fibrosis that can nonetheless cause ventricular tachycardia (VT).14 Discrimination of LGE 

in the thin RV free wall is further complicated by bordering epicardial fat, which can be 

distinguished using pre-contrast T1 mapping. Co-registration of the native T1 map with LGE 

images may increase diagnostic sensitivity for detection of fibro-fatty infiltration that is a 

hallmark of desmosomal disease.

Overlap Between Inflammatory and Genetic Cardiomyopathies

Inflammatory cardiomyopathies, most commonly sarcoidosis and Chagas disease in 

endemic areas, need to be distinguished from genetic cardiomyopathies. Cardiac sarcoid 

with predominant RV involvement can be hard to distinguish from ACM-RV.15 In the 

absence of confirmed extracardiac sarcoid, the diagnosis of active cardiac sarcoidosis 

may depend upon focal cardiac areas of increased fluoro-deoxy-glucose uptake on 

positron emission tomography after myocardial glucose uptake is suppressed during 

a no-carbohydrate diet. However, this distinction is complex because some genetic 

cardiomyopathies, notably those due to DSP and other desmosomal mutations, can also 

cause areas of inflammation.16

The distinction between inflammatory and genetic CM is further blurred by evidence 

that they can occur together. An early pathologic series of ARVC showed lymphocytic 

myocarditis in 2/3 of hearts.17 Case series document patients who presented with acute 

chest pain, troponin elevations, and imaging typical of myocarditis, but who were 

later found to have desmoplakin CM.18,19 Some genes implicated in familial CM may 

increase susceptibility to viral myocarditis.20 In vitro and murine models of desmosomal 

variants have shown activation of nuclear factor kappaB signaling with increased levels of 

inflammatory cytokines.21 In recent small studies, auto-antibodies to components of the 

intercalated disks have been described in families with ACM-RV and proposed for diagnosis 

of desmosomal disease.22,23

Current Selection of Patients for Genetic Testing

Beyond recommendations for the 3-generation family history, formal indications are 

evolving for genetic testing in the evaluation of arrhythmias and cardiomyopathies. The 

family history should not be considered a reliable proxy for the presence of genetic disease, 

which can occur with a negative family history. A suggestive family history may increase the 

likelihood of finding a pathogenic variant by up to 2-fold, but its absence does not signify 
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absence of genetic CM. Clinical penetrance is highly variable and many family histories are 

incomplete. In a recent study of genetic CM with recurrent VA, family history was negative 

for sudden cardiac death (SCD) in 65% patients and for CM in 73%.24 In a large Maastricht 

registry, the presence of an arrhythmia phenotype of AF, conduction disease, or VA at the 

time of CM diagnosis doubled the rate of positive genetic tests for CM.25

Underlying genetic CM should remain a consideration even in the presence of an acquired 

cause of CM. Compared to a control population without CM, patients with CM in the 

settings of excess alcohol consumption, cardiotoxicity from anthracycline chemotherapy, 

or peri-partum cardiomyopathy all had higher prevalence of genetic CM variants, often 

truncating TTN variants.26–28

The AHA Scientific Statement on Inherited Cardiac Disease indicated, based on a moderate 

level of consensus, that genetic testing can be useful in patients with familial or “idiopathic” 

cardiomyopathy.29 Genetic testing was also recommended by the AHA/ACC guidelines 

for HCM and by the Heart Failure Society of America for HCM, DCM, and ACM, with 

lower strength of recommendation for RCM.30,31 The Heart Rhythm Society emphasizes 

the importance of genetic testing for possible ACM,2 which has major implications for 

consideration of ICDs (Table 1). All these recommendations emphasize the importance of 

genetic counseling and a multidisciplinary team experienced in the care of genetic CM.

Arrhythmia Mechanisms and Phenotypes in Genetic CM

Atrial Fibrillation

The association between atrial fibrillation and atrial flutter (here abbreviated together 

as AF) and CM is well-recognized, occurring in up to 30% of patients with inherited 

cardiomyopathies, increasing to 40–50% in severe HF.36,37 AF can also lead to the 

tachycardia-induced CM phenotype, which does not preclude an underlying genetic CM, 

as described below. This has been attributed to rapid ventricular response, but also to the 

irregularity of AF, which may cause impairment in cardiomyocyte excitation-contraction 

coupling.38

AF may often be the first presentation of genetic CM with other clinical evidence of disease 

developing years later.39,40 Familial AF has also been reported in families with pathogenic 

variants in genes associated with inherited CM.40–42 Such cases appeared to be rare until 

data from population-based studies began to emerge, in which loss-of-function variants in 

TTN were associated with AF,43 raising questions of when patients with unexplained AF 

should be screened for disease-associated variants in both CM and arrhythmia genes.44,45 

A recent study sequenced 1,293 patients with early-onset AF (diagnosed before age 

66) for genes included on commercial cardiomyopathy and arrhythmia panels (Figure 

2A). A disease-associated variant was found in 10.1% patients overall, and in 16.7% 

with AF onset before 30 years (Figure 2B).40 Most implicated variants were in genes 

associated with DCM, followed by HCM and ACM-RV, with fewer in genes associated 

with channelopathies. In early onset AF without clinical CM, the CM genes most often 

implicated were TTN, MYH7, MYH6, and LMNA. In these patients presenting with AF 

before age 66, presence of a pathogenic or likely pathogenic variant conferred a 1.5-fold 
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higher risk of death during median 10-year follow-up, an effect that was most marked in 

younger patients.46

Multiple mechanisms for AF have been described. Both automaticity and reentry may 

play roles. Paroxysmal AF often appears to be initiated by rapid activity originating in 

the posterior left atrium in musculature that includes sleeves of myocardium along the 

pulmonary veins, and this rapid focal activity may perpetuate AF or initiate reentrant waves. 

Atrial fibrosis and oxidative stress have been proposed as key mediators of AF initiation 

and maintenance. Atrial fibrosis can facilitate both automaticity and reentry by creating 

areas of slow conduction and intra-atrial reentry paths and diminishing coupling between 

myocyte bundles.47 Fibrosis is common in HF as progressively elevated filling pressures 

cause left atrial distention, myocyte stretch, and fibrosis, creating areas of slow conduction 

and intra-atrial re-entry.48 The extent to which underlying genetic disease contributes to 

the initiating electrophysiologic perturbations and the fibrosis that sustains AF is not well 

defined.

When AF and a pathogenic CM gene are identified, a next step is to evaluate for other 

evidence of the CM phenotype (Table 2). Finding a decreased LVEF in the setting of 

a new AF diagnosis could reflect limitations to imaging during an irregular and/or fast 

heart rhythm, reversible LV dysfunction secondary to AF, and/or an underlying DCM 

phenotype, so re-assessment is indicated after AF therapy. The frequency of AF is increased 

in association with any CM genotype, with truncating TTN variants and LMNA variants 

being commonly implicated for DCM (Figure 3).25 When evaluation of new AF instead 

reveals a hypercontractile LV with LVH meeting criteria for HCM, the most likely genetic 

variants are in sarcomeric proteins, particularly MYH7.49

AF also occurs in restrictive cardiomyopathy, which is less common than HCM and 

DCM (Table 2). Most RCM results from acquired or systemic disease, but can be due 

to amyloidosis, for which the common genetic cause is mutant transthyretin (TTR). AF may 

be the initial presentation of ATTR-CM (transthyretin amyloid cardiomyopathy) when other 

signs have been overlooked.50 In an international ATTR-CM registry, AF occurred in half 

of the subjects with the VAL122Ile mutation.51 Pathogenic variants in DES and FLNC have 

been associated with an increased incidence of AF in either DCM or RCM phenotype.

Anticoagulation and Pacing for AF with Genetic CM—Regardless of the CHADS2-

VASC score, anticoagulation for AF is generally recommended for all patients with a 

clinical diagnosis of HCM, all women and most men with DCM, and more recently for 

ACM-RV as well.2,52,53 Anticoagulation is indicated for all patients with AF and cardiac 

amyloidosis regardless of LVEF or HF severity. Therapy for AF in ATTR-CM is most 

effective early after diagnosis, as only 17% of patients with advanced disease can maintain 

sinus rhythm.55 ATTR-CM amyloidosis has been associated with frequent development of a 

left atrial thrombus despite anticoagulation.56

While CM variants are well-described in early onset AF, it is not clear how identification 

of a CM variant should influence care for a patient with early-onset AF as the first 

presentation.44,45 For instance, it is not known whether the stronger recommendations for 
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anticoagulation with CM should extend to patients with AF and positive genotype in the 

absence of CM phenotype. Should patients with AF as their only manifestation of an ACM 

phenotype restrict activity or be evaluated for risk of VA/SCD? Although these questions 

remain unanswered, for a patient with AF and an arrhythmogenic genotype who then 

develops a need for permanent pacing, implantation of a defibrillator device should be 

considered.

Conduction Disease

Right bundle branch block (RBBB) is the most common conduction delay encountered in 

the absence of known heart disease. The incidence of complete RBBB without known heart 

disease varies from < 1% in young airmen57 to 1.3% in the Women’s Health Initiative,58 

and increases with age. There is no consistent association with mortality after adjustment 

for known cardiovascular risk factors.59 During cardiac evaluation, however, RBBB can be 

an early clue to RV desmosomal disease and is also common with cardiac sarcoidosis and 

Chagas’ disease.54

Left bundle branch block (LBBB) is seen in 0.1 – 1% of the population without known 

cardiac disease. In the Framingham Heart Study, 28% of patients developing LBBB without 

prior cardiac history had a new diagnosis of HF within a mean 3 years,60 a rate 7-fold higher 

than without LBBB. The association of new LBBB with future heart failure may reflect 

subclinical CM or ischemic heart disease, and/or impaired LV function from dyssynchrony 

that can improve with biventricular pacing.61 LBBB occurs in approximately 25–30% of all 

DCM but was present in over 50% of patients with LMNA variants in one series.25

LMNA variants are associated with progressive conduction system disease as well as with 

AF and VA (Figure 3). This may relate in part to its predilection to cause fibrosis in the 

septum. Some degree of atrioventricular block is present at diagnosis in 38% to 78% of 

LMNA CM.62,63 By the time VA appear, most patients have PR prolongation and up to 

1/3 have complete heart block. Complete heart block requiring a pacemaker may occur 

several years before evidence of DCM, which develops in almost all patients who reach their 

seventh decade with cardiac LMNA disease.62

Primary cardiac conduction defects also occur due to genetic variants that may not cause 

CM. Loss of function mutations in SCN5A, encoding the cardiac sodium channel, are 

a well-recognized cause of progressive conduction system disease (Lenègre disease) in 

humans and in mice, but DCM is not a common feature of these mutations.64,65 Other 

SCN5A mutations have been associated with atrioventricular block and DCM,66 and with 

PVC’s and related CM with subsequent VA as discussed below.

Conduction disease is also common in ATTR-CM. Prolonged PR interval and prolonged 

QRS are present in almost half of patients at the time of presentation with cardiac 

transthyretin deposits.56 About one in 10 patients with ATTR-CM presents with high degree 

AV block and one of the remaining 9 will progress to complete heart block.

In addition to LMNA, SCN5A, and transthyretin, other genes associated with both 

conduction disease and CM include FLNC and DES. Conduction disease also commonly 
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accompanies the muscular dystrophies (see below). Atrial standstill can occur with Emery-

Dreifuss dystrophy and Friedreich’s ataxia. An important implication of conduction disease 

in a patient with a CM is for consideration of an ICD, especially if pacing is contemplated. It 

is now increasingly well-recognized that sudden cardiac death (SCD) may occur early in the 

course of the disease as well as after progression to HF with LVEF ≤ 0.35, for which ICDs 

are generally recommended regardless of the need for pacing or etiology of HF (Table 1).

The mechanisms underlying conduction disease in CM are not well-defined. Lenègre disease 

(which does not usually progress to CM) can be caused by SCN5A mutations that have been 

shown to cause ventricular fibrosis in mice.64 Amyloid infiltration is similarly thought to 

cause conduction block.67 Multiple mechanisms, including altered transcriptional regulation 

of multiple downstream genes, have been proposed in LMNA cardiomyopathy.68

Ventricular Arrhythmias

PVC’s, non-sustained VT (NSVT), sustained monomorphic VT, and polymorphic VT/

ventricular fibrillation can all occur in any CM later in the course of disease, associated 

with myocardial fibrosis, electrical remodeling, neurohormonal activation, depletion of 

energy stores and relative ischemia, as well as from proarrhythmic effects of drugs and 

electrolyte abnormalities.69 In arrhythmogenic cardiomyopathies, VA may emerge early, 

sometimes as the first presentation of CM.70 Initial evaluation seeks to distinguish ACM 

from idiopathic VA that occur in the absence of structural heart disease and are usually 

benign.71 Fibrosis, seen with LGE on CMR imaging, strongly favors myocardial disease 

rather than an idiopathic arrhythmia, and often corresponds to the site of origin of VA 

(Figure 1).

VA can be due to automaticity, triggered activity, or reentry. Fibrosis is commonly associated 

with VA and sudden death risk in CM. Fibrosis can diminish cellular coupling which 

can slow conduction and facilitate automaticity or propagation of wavefronts initiated by 

automatic foci. LMNA, DSP, and FLNC mutations are associated with prominent fibrosis 

(often in specific locations such as the septum in LMNA-associated CM) and it is possible 

that the extent and distribution of fibrosis contributes to their arrhythmic propensity. The 

extent to which mutations also disrupt cellular electrophysiology varies and is not well 

defined for most genes.

One exception is SCN5A mutations which cause multiple arrhythmia syndromes. Some 

SCN5A mutations are clearly associated with CM, while others (type 3 Long QT 

syndrome, Lenègre disease, Brugada syndrome) generally are not.72,73 However, there is 

growing recognition that Brugada syndrome can be associated with abnormal contractile 

function74, and DCM related to bundle-branch block has been described with other 

SCN5A mutations.75 Mutant sodium channels may alter intracellular sodium and calcium 

homeostasis, leading to frequent ectopy and DCM.76,77 Sodium channel mis-localization 

and dysfunction are also seen with mutations in other DCM-associated genes,78 consistent 

with an emerging appreciation of a role of the sodium channel in interacting with 

macromolecular complexes to regulate cell structure, distinct from its role in ion conduction, 

as discussed below.79 The unusual syndrome of Multifocal ectopic Purkinje-related 
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premature contractions (MEPPC) is discussed below. In addition, HF itself, regardless of 

cause, has been associated with sodium channel dysfunction in animal models.80,81

There is also increasing appreciation that CM due to genes that do not code for ion 

channels may nevertheless lead to impaired ion channel function. Patients with ACM-RV 

due to PKP2 mutations can develop arrhythmias when there is little structural abnormality. 

These mutations reduce expression or localization of multiple genes whose protein products 

are involved in intracellular calcium homeostasis (type 2 ryanodine receptors, ankyrin 

2, L-type calcium channels, triadin, and calsequestrin-2), disrupting intracellular calcium 

handling and increasing susceptibility to ventricular arrhythmias caused by triggered 

activity, consistent with the exercise induced arrhythmias and sudden death observed in 

ACM-RV.73,82 Similarly, ACM-RV mutations have also been shown to directly affect cardiac 

sodium channel abundance and intracellular localization, effects that likely perturb normal 

conduction and increase susceptibility to VA. Re-entrant VT in ACM-RV, however, is often 

associated with areas of fibro-fatty replacement that develop during the disease.

Sites of VA Origin: ECG Correlations—The QRS morphology of PVCs or VT can 

point to their sites of origin and provides clues to the presence and type of CM (Figure 4). 

VA with a dominant S wave in V1 are designated as having LBBB morphology and usually 

originate from the RV or interventricular septum. An LBBB pattern with an inferior axis 

(tall R waves in the inferior leads) is typical of RV outflow or periaortic LV outflow tract 

origin, both common locations for idiopathic arrhythmias as well as VA in ACM. VA of RV 

origin are usually present in ACM-RV (Figure 4A). VA with a dominant R wave in V1 are 

designated as having an RBBB morphology, usually originating from the LV (Figure 4B) 

and associated with myocardial disease.

Premature Ventricular Contractions and Non-sustained VT—PVCs are common 

in CM, sometimes as the initial presentation (Figure 4C), but can also be idiopathic or from 

structural heart disease. PVCs are noted on routine 12-lead ECG in 1.5 to 6% of adults 

and are associated with a greater than 2 fold increased risk of sudden death, heart failure, 

and cardiac death.83–85 NSVT in DCM is associated with a greater likelihood of identifying 

a pathogenic variant and consistently linked to risk of adverse outcomes that include HF 

events as well as VA/SCD.25

The likelihood of underlying CM increases with multifocal PVCs and PVCs with RBBB 

pattern (LV origin). Fibrosis detected as LGE on CMR imaging generally indicates the 

presence of CM and increased risk of sustained VA.10 In a multicenter registry of 686 

patients who had ≥1000 PVCs/24 hours considered to be idiopathic with LVEF > 0.50, MRI 

showed LGE in 15% of patients, of whom 27% experienced VT/VF, cardiac arrest or death 

during median follow up of 5 years.86 A ring-like pattern of 3 contiguous segments of LGE 

in the same short axis slice was associated with the greatest risk (Figure 1C), with 50% of 

these patients experiencing a VA event, compared to 19% of those with other LGE patterns, 

and 0.3% of patients with no LGE.13

A high density of PVCs over prolonged time can itself depress LVEF, which may normalize 

when they are suppressed. This PVC-induced CM is reported in 7 to 26% of patients 
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referred for ablation of PVCs and LVEF improves in about two-thirds of them following 

successful PVC suppression.87,88 Most patients with PVC-CM have a PVC burden of more 

than 15%, but daily frequency can vary substantially, and depressed LVEF has also been 

seen with fewer PVCs. Of note, interstitial fibrosis occurs in some animal models of PVC 

induced myopathy89 and LV function can recover after successful suppression of PVCs 

despite the presence of LGE.90

Notably, the majority of patients with very frequent PVCs do not have LV dysfunction, 

suggesting heterogeneity in susceptibility, for which genetic factors could play a role. 

Thus, a patient who has PVCs with reduced LVEF may have idiopathic PVCs depressing 

LV function, an underlying cardiomyopathic process, or a combination of primary CM 

with ectopy contributing to depressed ventricular function. Assessment may be further 

complicated by difficulty measuring ventricular function in the presence of frequent PVCs.

Multifocal ectopic Purkinje-related premature contractions (MEPPC): Multifocal 
ectopic Purkinje-related premature contractions (MEPPC) is an example of a genetic 

syndrome with specific therapeutic implications. It was described near-simultaneously by 

four groups in 2012.76,91,92 MEPPC is characterized by multifocal PVCs that have a 

relatively narrow QRS, consistent with an origin from the Purkinje system, and can produce 

ventricular dysfunction. It is due to specific variants in SCN5A that confer an unusual “gain 

of function” in the cardiac sodium channel. It has high penetrance in affected families. 

Recognition is important because pharmacologic therapy with sodium-channel blockers can 

suppress the PVCs with recovery of ventricular function if initiated sufficiently early in the 

disease.93

Sustained Ventricular Arrhythmias

Sustained monomorphic ventricular tachycardia (SMVT): Sustained monomorphic 
ventricular tachycardia (SMVT) is relatively uncommon among the general population of 

DCM, occurring in fewer than 1–3% of patients annually.94,95 Much of our understanding 

of SMVT derives from the small number of patients with recurrent episodes referred for VT 

ablation. More than 90% of these VTs are due to scar-related reentry and fewer than 10% are 

due to bundle branch reentry involving the Purkinje system or a focal mechanism.96 Ebert 

et al performed genetic testing on 98 consecutive patients with DCM, referred for catheter 

ablation of sustained monomorphic VT in the LV, finding pathogenic mutations in 38%, 

dominated by variants in LMNA and TTN, but also including PLN, SCN5A, RBM20, and 

DSP.24 Genotype-positive patients had worse outcomes, with 81% having recurrent VT and 

51% dying or requiring heart transplant during median follow-up of 28 months.

VA have been a major component of the traditional ARVC criteria, with SMVT occurring 

in more than 40% of patients.97 SMVT typically originates from areas of RV subepicardial 

fibro-fatty myocardial replacement giving rise to VA with a LBBB-like QRS (Figure 4A). 

LBBB-like VT with a superior frontal plane axis favors ACM over idiopathic VT, as it 

indicates an origin outside the outflow tract.98

Polymorphic VT/Ventricular Fibrillation: Polymorphic VT/Ventricular Fibrillation occurs 

in ACM regardless of which ventricle is most affected, and in HCM. A variety of 
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mechanisms associated with electrophysiologic remodeling in hypertrophy and heart failure 

may be involved. Genetic cardiomyopathies are associated with arrhythmogenic mechanisms 

linked to calcium handling and other electrophysiologic perturbations.99 Some appear to 

be due to scar-related reentry100 or associated with rapid activity in the Purkinje system 

driving the ventricle into fibrillation.101 The polymorphic VT torsade de pointes associated 

with QT prolongation also occurs, typically in association with other factors prolonging 

the QT interval such as hypokalemia from diuresis, bradycardia, and QT-prolonging 

drugs. Polymorphic VT or VF with HCM cardiomyopathy may result not only from the 

myofibrillar disarray but also from ischemia, particularly with exercise, related to the 

excess myocardial oxygen demand and the abnormal coronary vasculature that commonly 

accompanies HCM.

Phenotypes of Genetic CM

The diagnosis and treatment of cardiomyopathies have traditionally focused on their 

classification as hypertrophic (HCM), dilated (DCM), and restrictive (RCM), based 

on left ventricular morphology and function (Table 2). In contrast, arrhythmogenic 

cardiomyopathies (ACM) are instead defined by the prominence of VA in the clinical 

presentation and further classified by the ventricle most affected.102 (Figure 3). 

Arrhythmogenic cardiomyopathy with dominant LV involvement (ACM-LV) is usually 

associated with the phenotype of DCM (Table 2) and occasionally with RCM, while 

structural RV abnormalities of ACM with dominant RV involvement are more variable. 

Some degree of involvement of both ventricles is common, particularly with desmosomal 

disease.102

The rapid acceleration of genetic testing has outpaced our techniques to identify and track 

the associated phenotypes to inform prognosis and management. The layering of phenotype 

and genotype is further complicated by overlaps between the major types of CM (Table 2).

Hypertrophic CM Phenotype

Hypertrophic cardiomyopathy (HCM) can present with AF, syncope, or resuscitated SCD. 

The morphologic phenotype, as described in Table 2, hinges on LV wall thicknesses 

and patterns of hypertrophy.103 The prevalence of genetic HCM, typically an autosomal 

dominant disease, is currently estimated at 1/200–250 adults, about twice as high as 

phenotypic prevalence.104 Multi-center data in almost 6000 patients confirms the impression 

of higher clinical penetrance in men.105 However, once diagnosed, women appear to have 

similar age-adjusted rates of VA and higher rates of progressive HF and mortality than 

men.106

HCM Genotypes—HCM was the one of the first cardiomyopathies to be linked to 

a specific mutation, the missense variant R403G in MYH7 in a large French-Canadian 

family.107 Pathogenic variants are identified in about 60% of HCM, with about 1500 

mutations in at least 11 genes.108 MYH7 and MYBPC3 account for about 80% of those 

identified, with another 10% in other proteins of the sarcomeric complex. A second 

causal gene is present in about 5% of patients, who typically have more severe disease. 

However, more data is needed in non-white populations, where variant frequencies and 
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interpretation differ. For example, benign variants were misclassified among Americans of 

African ancestry,109 and variants of unknown significance predicted to be deleterious were 

enriched among Singaporeans of Chinese ancestry with HCM.110

Implications of HCM Genotype: Genetic testing can help to distinguish HCM from the 

athletic heart, long-standing hypertensive heart disease, and the look-alike phenocopies 

(Table 2). In a meta-analysis and in a large prospective registry, the presence of sarcomeric 

variants in HCM was associated with earlier onset of disease and up to 2-fold higher rates of 

AF and VA/SCD than sarcomere-negative HCM.108,111 Risks were intermediate for patients 

with variants of unknown significance (VUS).111 Higher event rates were seen with MYH7 
variants than MYBPC3 variants. A study of 80 patients with thin filament mutations showed 

less LV hypertrophy and a lower prevalence of outflow tract obstruction, but similar rates of 

VA and SCD, and higher progression to late- stage heart failure compared to 150 patients 

with thick-filament mutations.112 It is increasingly apparent, however, that the implications 

will often depend more on the specific variants than on the genes affected. Recent work with 

mouse models of two different cTNNT mutations causing HCM revealed opposite responses 

to reducing CAMKII activation, with potential variant-specific implications for prevention 

of both disease progression and SCD in human HCM.113

Particularly in young athletes. syncope or cardiac arrest can be the presentation of 

HCM in asymptomatic patients, which can result from primary polymorphic VT/VF, 

ischemic arrhythmias, or from hemodynamic consequences of dynamic outflow obstruction. 

Recommendations for ICDs are guided by risk factors for sudden death as noted in Table 1, 

and also by a multi-component risk score that yields an estimated annual risk for discussion 

with patients.114

A new therapy targeted to decrease hypercontractility in HCM, mavacamten inhibits myosin 

ATPase activity and will soon be available to treat symptoms of outflow tract obstruction 

and improve exercise capacity in obstructive HCM.115 It is not yet known how the specific 

genetic variants will influence clinical responses to mavacamten, but studies with human 

induced pluripotent stem cells demonstrated more response to mavacamten with an ACTC1 
variant than with a variant of the more commonly implicated MYH7.116

Sarcomeric variants causing the HCM phenotype generally share effects leading to 

hypercontractility, impaired relaxation, and high energy expenditure, typically with 

hypersensitivity to calcium. Some of the same variants can cause a restrictive CM (see 

below) with features overlapping with HCM. Sarcomeric variants associated with DCM 

generally affect different sections of the sarcomeric genes, causing decreased calcium 

sensitivity, decreased contractility, and eventually the dilated LV with low LVEF.117

Dilated Cardiomyopathy Phenotype

Dilated cardiomyopathy (DCM) can present with AF or VA, less commonly conduction 

disease. The phenotype is generally defined by decrease in LVEF and/or increase in LV 

volume or dimension (Table 2),104,118 and usually excludes structural causes such as 

myocardial infarction and primary valve disease. Historical estimates of 1/2500–10,000 

prevalence have been revised, currently up to 1/250–1/400 adults.104 The U.S. DCM 
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Consortium of 25 U.S. HF programs studied 1220 patients meeting criteria of both LVEF 

< 0.50 and LV end-diastolic dimension of ≥ 95th percentile, and their first-degree relatives 

available for study,119 revealing absolute rates of 11% incidence of familial DCM (defined 

as LV with both criteria in a first-degree relative), and a higher rate of 24.1% using an 

expanded definition including either criterion.) Models extrapolating to complete families 

yielded estimates of 29.7% with familial DCM meeting both criteria and 56.9% by either 

criterion. Prevalence of genetic cause of DCM by the narrow definition was higher in 

Black probands, 39.4% versus 28%, without difference between Hispanic and non-Hispanic 

ethnicity.

DCM Genotypes—Pathogenic variants have been found in 20–50% of genotyped 

populations with DCM, usually with rates 1.5 to 2-fold higher in subgroups with a positive 

family history.120,121 Positive genotypes are also more common in patients who have 

arrhythmias at presentation (Figure 5). Unrecognized viral myocarditis has likely been 

over-implicated as a cause of DCM, as the path of post-viral DCM has been difficult to 

follow in human studies, although extensively investigated in animal models. LGE on CMR 

that was at one time considered evidence of myocarditis is now increasingly recognized as 

typical of genetic CM, as discussed above.

DCM is associated with the largest sets of implicated genes, often 40–50, among which 

the prevalence of specific variants varies across regions.122 Many variants are now being 

re-scrutinized as too common in the unaffected population or insufficiently linked to CM 

by accumulating data. Two recent large series suggest that fewer than 20 genes are clearly 

implicated.25,123 Variants in TTN and the sarcomeric proteins together account for up to 

half of positive testing in patients with DCM. Examples of other variants commonly cited as 

causing DCM are shown in Table 3.

Implications of Genotype for DCM—In contrast to variants causing HCM, some of the 

specific genes identified for DCM are consistently linked to higher likelihood of VA, disease 

progression, and death. In the large series from Maastricht assessing arrhythmias at the 

time of first CM evaluation, the adverse impact of genetic etiology on DCM outcomes was 

mediated primarily through increased risk associated with arrhythmia phenotypes, defined 

as AF, conduction disease, or VA at initial evaluation.25 In another recent series of 487 

patients with DCM, pathogenic variants in LMNA and desmosomal proteins were associated 

with increased risk of ventricular arrhythmias and sudden death, while other variants were 

associated with outcomes similar to DCM without an identified pathogenic variant.121

Many Titin Variants—Although they are not among the most frequent causes of ACM, 

attention is focused on TTN variants due to their frequency in DCM. TTN, the largest 

gene in the body, encodes titin, the largest protein in the body and an integral part of 

the sarcomeric complex. Extending from the Z disc to the M band, titin is involved in 

force transmission, cell organization, and signaling. While variants in titin are much more 

common than for other CM genes, the variant frequency is similar when normalized for 

size.122 Because the gene is so large, and therefore missense variants so common, genetic 

studies to date have focused on truncating variants. Truncating TTN variants account for 
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12–25% of pathogenic variants implicated in DCM, up to 25% in familial CM and 18% of 

patients without family history.

Truncating TTN variants considered pathogenic have also been described in 2–3% of normal 

subjects without known cardiac disease, raising the likelihood that CM attributed to some 

variants may in fact be coincidental to another cause or a different pathogenic variant.104 

In a multi-national study of 639 patients with DCM, 44% of patients with TTN variants 

implicated as causal also had pathogenic variants in another DCM gene.122

TTN is commonly implicated in a “two-hit” cardiomyopathy, developing in the setting of 

an acquired insult (or another CM pathogenic variant); common clinical settings in which 

TTN variants appear to increase CM risk include postpartum, heavy alcohol use, and cancer 

chemotherapy. Favorable reverse remodeling with major LVEF improvement after initiation 

of recommended HF medications occurred in 69% of patients in the large study above, a 

higher rate than the 30–40% expected in general DCM.

The TTN variants exemplify a DCM phenotype in which systolic dysfunction usually 

dominates the clinical picture, with mean LVEF already reduced to 0.30 at diagnosis.125 

The most common presenting symptom in 537 patients was dyspnea, 21% presenting with 

palpitations and about 10% of patients with AF.126 By the end of almost 10 years, 30% with 

TTN variants had developed AF, 45% had NSVT, and 9% had experienced sustained VT.127 

VA occurs rarely in the absence of marked left ventricular dysfunction, but LVEF, LGE, 

and NSVT all predict both HF and arrhythmic events, as does family history. Although not 

common, there are TTN variants with a high VA/SCD rate consistent with ACM.

Arrhythmogenic Cardiomyopathy With Dominant LV Involvement

VA occur commonly during progression of any dilated LV cardiomyopathy. However, 

pathogenic variants causing VA early in the course of CM are increasingly recognized. 

Current estimates are that about 30% of genetic DCM is associated with high risk for 

VA that can occur before prominent LV dilation or dysfunction,121 but estimating the 

prevalence of ACM with dominant LV involvement has been hindered by lack of a 

consistent definition.102 Most commonly implicated are LMNA and desmosomal proteins 

(Table 2), which together account for about 10% of all DCM patients; RBM20 and SCN5A 
occur in about 2% each, and FLNC and DES occur in about 1% each.128

Lamin A/C—Pathogenic LMNA variants are identified in 4–8% of DCM, with 

“laminopathies” considered among the most malignant and highly penetrant ACM.24,129 

Differential splicing of the single lamin gene produces lamin A and lamin C, which are 

nuclear envelope proteins involved in regulation of DNA replication, gene expression, 

replication, mechanosignaling, and cytoplasmic transport. LMNA mutations causing 

cardiomyopathies can also involve skeletal muscle, such as with Emory-Dreifuss or limb-

girdle dystrophy, amd are also associated with familial partial lipodystrophy.

Arrhythmias are frequently the first presentation of LMNA cardiomyopathy (Figure 3), often 

preceding the diagnosis of DCM. The most common initial rhythms are AV block or AF, but 

life-threatening VA can be the presentation. At first VA, mean LVEF was 0.42±0.15, while 
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25% of patients still had LVEF greater than 0.50. By 7 years after diagnosis, over half of 

patients had AV block, over half had AF, and a third had sustained VA.63

The risk of developing sustained VA was 3-fold higher for male sex or LVEF < 0.50 at 

presentation, 2.5-fold higher with non-missense mutations. Due to the high incidence of VA, 

the recommended indication for primary prevention ICD in the presence of LMNA mutation 

is the presence of at least 2 risk factors: male sex, non-missense variant, NSVT or LVEF 

< 0.45 (Table 1).32 LVEF < 0.50 at presentation was associated with almost 5-fold risk of 

end-stage HF and many patients undergo heart transplantation.63 Mitogen-activated protein 

kinase signaling has been implicated in the pathogenesis of LMNA disease (and perhaps 

other DCM), and a clinical trial of p38 MAPK inhibition is currently ongoing in patients 

with LVEF < 0.50.130

Desmoplakin And LV Desmosomal CM—DSP accounts for about 4% of variants 

causing ACM-LV and is traditionally grouped with other proteins of the desmosomal 

complex, which connects the myocytes with each other and also contributes to structure and 

function within the cell, discussed below. However, unlike the other desmosomal proteins, 

the VA, fibrosis, and depressed ventricular function with DSP variants are often dominated 

by LV involvement.102

A recent multi-center series reported 107 subjects with pathogenic desmoplakin variants.131 

Of those with decreased ventricular function, 79% had predominant LV involvement, among 

whom 31% also had decreased RVEF. The Arrhythmogenic Task Force criteria from 2010 

for ARVC33 were met in only 42% of desmoplakin patients with LV dominance and 57% 

of those with RV dominance of DSP disease. LGE was seen in 74% of patients with 

LV involvement (Figure 1B), usually sub-epicardial in the inferior wall and occasionally 

associated with intramural fat. Cutaneous findings of palmoplantar hyperkeratosis and curly 

hair seen in the autosomal recessive Naxos disease, as described below, are also prominent 

with the autosomal dominant desmoplakin disease of the LV and may be overlooked in 

patients who use hair-straighteners.131

As discussed above, presentations consistent with acute myocarditis, which can include 

VA, chest pain and troponin elevations, are described with other desmosomal disease18,19 

but may be particularly common with desmoplakin.19,131 These patients often have sub-

epicardial LGE initially, but may not return with VA or the DCM phenotype until years later.

Patients with LV dominant disease often present in their thirties. Half of VA/SCD events 

occur in patients with LVEF > 0.35 and 15% with LVEF > 0.55.131 Current indications 

for primary prevention ICD with desmosomal disease have focused on traditional ARVC 

criteria, and exclude many patients with ACM-LV with DSP variants, who nonetheless merit 

special consideration to prevent sudden death before the LVEF is less than 0.35 (Table 1). 

Although exercise restriction is recommended for desmosomal disease with predominantly 

RV involvement, as described below, the association of strenuous exercise with earlier and 

more severe disease has not been established for desmoplakin disease in the LV, perhaps 

because the LV is less distended than the RV during exercise.132
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Filamin C—FLNC is a recent addition to genetic CM panels, so the 1% prevalence 

described is likely to increase. Considered a cytoskeletal protein, filamin-C stabilizes 

polymerized actin and anchors membrane proteins to the cytoskeleton in both skeletal and 

cardiac muscle. Strong evidence associates variants in FLNC with DCM and the skeletal 

myofibrillar myopathies, but CM often occurs without recognized skeletal myopathy.133 

This ACM usually has an LV dominant phenotype but occasional biventricular and RV 

dominant phenotypes can occur.134 Missense variants in FLNC have also been associated 

with both HCM and RCM phenotypes, suggesting a wide spectrum of cardiac disease.135

FLNC may present with AF, conduction disease, or VA prior to a diagnosis of CM.134 Both 

the arrhythmogenic phenotype and the potential for bi-ventricular involvement are shared 

by FLNC and desmosomal cardiomyopathies (Figure 3), although the pathogenesis appears 

distinct. Both are also characterized by a sub-epicardial location of LGE, sometimes in a 

ring-like pattern.

Patients with truncating variants in FLNC have a cumulative 15–27% incidence of major 

VA or SCD events over 5-year follow-up,121,136 which is similar to rates for LMNA and 

DSP for both probands and carriers. The risk of VA correlated with frequent PVCs and 

NSVT on ambulatory monitoring, and with the degree of LGE but not with LVEF.137,138 

ICD recommendations in the HRS Expert Consensus Statement2 include FLNC with LVEF 

≤ 0.45 (Table 1). Although LVEF remained stable during 5-year follow-up in most patients, 

22% progressed to end-stage HF, most of whom had lower LVEF at presentation.

RNA binding-motif 20—Variants in this RNA-splicing factor gene RBM20 are implicated 

in 2–3% of familial DCM.139 This protein modulates RNA splicing for over 30 genes,140 

including those coding for titin, sarcomeric proteins, and proteins involved in calcium 

handling. The resulting variants of these gene products have been implicated in systolic 

dysfunction but other pathways are likely involved also, particularly with regard to calcium 

handling and VA.

RMB20 variants have shown high penetrance rates of 66%−96% and earlier age at 

presentation than for general DCM populations or for titin CM. Among index cases in 

a multicenter series of 74 patients, family histories of CM were present in 72% and of 

SCD in 51%.141 VA/SCD events have been reported in 20%−44% of patients with RBM20 
variants99,141,142 compared to 2.2% in an unselected CM registry.138,141 VA event rates with 

RBM20 are similar to those with LMNA disease63 and also often occur with EF > 0.45, 

as in 1/3 of an international series of 74 RBM20 patients reported by Parikh et al. Special 

consideration for ICD implantation may thus be warranted for RBM20, as it is for LMNA 
(Table 1).

Data emerging from studies in pluripotent stem cells and from RBM20 knock-out mice 

suggests that abnormal calcium handling may contribute to intracellular calcium overload 

and the VA phenotype. This might eventually provide a target for therapy of ACM 

with RBM20 variants, and potentially for other CM, through modulation of calcium 

homeostasis.143
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Phospholamban—Phospholamban (PLN) is a transmembrane protein of the sarcoplasmic 

reticulum (SR) membrane. Until phosphorylated, PLN inhibits the SR ATPase (SERCA2) 

from transporting calcium back into the SR, with greater inhibition by the DCM-associated 

variants.144 The R14del PLN founder mutation accounted for 13% of 240 Dutch patients 

with DCM and also 12% of Dutch patients with arrhythmogenic RV cardiomyopathy145, but 

occurs in less than 1% of DCM in other regions. PLN cardiomyopathy is associated with 

marked fibrosis in the LV posterolateral wall and occasionally with fibro-fatty infiltration 

of the RV that qualifies as ACM-RV.146 Malignant VA can occur before LVEF is severely 

reduced and progression to heart transplantation is frequent. A pathogenic PLN variant is a 

current indication to consider early ICD placement.

The complex role of SCN5A variants in multiple arrhythmias and CM is discussed above 

with the specific arrhythmias.

Arrhythmogenic Cardiomyopathy With Dominant RV Involvement

The major hallmark of arrhythmogenic CM with dominant RV involvement is the 

predominance of VA events rather than the variable abnormalities in RV morphology or 

function. ARVC was initially described as a cause of sudden death in athletes in Italy.147 

The first gene was identified in families on the Greek island of Naxos, in whom SCD 

was frequent and associated with “woolly hair” and hyperkeratosis of the hands and feet. 

The RV was dilated with areas of thinning and replacement by fat. The Naxos syndrome, 

which is autosomal recessive, is caused by mutations in JUP, encoding for plakoglobin, a 

protein of the desmosomal complex. Variants in genes encoding other components (PKP2, 

DSP, DSG2, DSC2) are also well-recognized causes of desmosomal disease affecting 

predominantly the RV. Variants in other genes such as RYR2 have occasionally been 

associated with similar phenotypes.148

The prevalence of CM by ARVC criteria is currently estimated at 1/2000–5000 adults.149 

In a transatlantic study of 439 probands meeting this criteria, pathogenic variants were 

identified in 63%, up to 89% with positive family history. Plakophilin (encoded by 

PKP2) was the most common desmosomal protein implicated, accounting for 74% of 

identified variants; others were desmoplakin (DSP) 4%, desmoglein (DSG2) 6%, and 

desmocollin (DSC2) 2%, and only 2 patients had variants in plakoglobin (JUP), which 

are rare outside Mediterranean countries. Coexistence of multiple variants, identified in 4–

16% of desmosomal cardiomyopathies, have been associated with earlier and more severe 

disease.150

Desmosomal Disease of the Right Ventricle—The desmosome is a structure that 

bridges the cell membrane and connects the myocytes with each other. It also contributes to 

the structure and integration of functions within the cell. Disruption of the desmosomal 

structure can lead to cell separation and death. Because desmosomes are also central 

to integrity of connective tissue, some pathogenic variants are associated also with the 

distinctive findings of the hair and skin, as discussed above. The progressive fibro-fatty 

deposits within the myocardium may be replacement for lost myocardial cells but have also 

been proposed to result from effects of displaced plakoglobin to alter nuclear signaling for 
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stem cells,151 resulting in differentiation into adipocytes and fibroblasts in areas that may 

represent substrate for frequent PVCs and reentrant VT.

RV dilation and dysfunction are often present but visualization can be difficult. 

Abnormalities of the RV on the ECG and echo imaging are a prominent part of the original 

criteria for ARVC, later revised to also include genotype.33 Although myocyte disconnection 

and damage are seen on pathologic examination, myocyte loss may be limited, and 

few patients progress to end-stage HF of either ventricle. The reason for predominant 

RV involvement with desmosomal disease is uncertain, but greater vulnerability of the 

thin RV myocardium to mechanical and hemodynamic stress, particularly during the 

ventricular dilation that occurs with exercise, has been postulated.132 Models of desmosomal 

disease show early and more severe RV dysfunction and fibro-fatty replacement when the 

animals perform frequent exercise.152 Clinical presentation in affected families with the 

RV phenotype occurs earlier with greater severity for relatives who engage in high-level 

exercise.153

Patients with desmosomal ACM affecting the RV often present in their 30s. In a series of 

1001 patients and family members, 61% of probands presented with sustained VA.149 Some 

patients present first with very frequent PVCs. Sustained VA occurred in 72% of patients 

during mean 7-year follow-up; sudden death occurred in 16% of patients without ICDs 

compared to < 1% in those with ICDs. Indications for ICD are based on the ARVC disease 

criteria105 and specific risk factors for VA4 (Table 1).154 The course is usually dominated by 

VA, as symptomatic HF developed in only 13% of index cases in this large series, with only 

4% going to heart transplantation.

Although most patients with arrhythmogenic CM have a phenotype dominated by one 

ventricle, disease is often present in both ventricles, particularly with the desmosomal 

variants. Early pathologic studies demonstrated some fibro-fatty involvement of the LV in 

76% of patients with dominant RV disease whose hearts were examined after death or 

transplant.155 Using CMR, a more recent study in 89 patients meeting criteria for ARVC 

showed LV LGE in 67% of patients, of whom most have detectable decrease in LVEF.4 

Conversely, evidence of RV involvement was found in 31% of patients with predominant LV 

involvement with DSP mutations.156 Bi-ventricular involvement has also been found with 

variants in other ACM genes such as PLN and FLNC.

Restrictive Cardiomyopathy Phenotype

Unlike HCM and DCM, the phenotype of restrictive cardiomyopathy (RCM) has variable 

morphology and is defined instead primarily by diastolic dysfunction on echocardiography 

and elevated filling pressures during hemodynamic evaluation. RCM typically presents with 

mildly reduced LVEF, which is encompassed within the newly categorized “Mid-range 

LVEF” from 0.40–0.50, but this EF range should not be considered a specific phenotype. 

The LVEF of 0.40–0.50 is instead the intersection of many conditions including DCM which 

is deteriorating or improving into remission, and HCM with “burn out”, as well as RCM and 

mildly decreased LVEF from structural heart disease (Table 2).

Laws et al. Page 18

Circ Res. Author manuscript; available in PMC 2023 May 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Aside from systemic metabolic diseases and hemochromatosis, the major genetic cause of 

RCM arises from variants in transthyretin (TTR) causing amyloid cardiomyopathy (ATTR-

CM). Three ATTR-CM variants, Val122Ile associated with African descent, Thr60Ala 

often with concomitant neuropathy, and Val30Met with early neuropathy have been best 

characterized.51 Both AF and conduction disease may present prior to recognition of 

amyloidosis as previously discussed. VA are relatively uncommon and small series have 

not demonstrated benefit of ICDs. Tafamadis, a stabilizer of the TTR tetramer, has slowed 

progression of both cardiac disease and neuropathy, and decreased mortality by 30%.157 

Patisiran, an siRNA agent and inotersen, an antisense oligonucleotide, target hepatic 

production and reduce circulating TTR by over 85%.158 Early diagnosis directly impacts 

treatment benefit, as benefits of these therapies have been limited to those with few cardiac 

symptoms at presentation.

Although most RCM is due to acquired causes or to amyloidosis, genetic disease is 

increasingly recognized in the remaining cases. Sarcomeric genes are most commonly 

implicated, particularly those of the thin filaments and associated proteins.159 HCM and 

RCM can exist with the same sarcomeric variant in different members of the same 

family.160 The RCM phenotype is seen with DES mutations and associated skeletal muscle 

involvement, and has occasionally been reported with FLN-C variants.

Skeletal Myopathies

Heritable myopathies are a heterogeneous group of disorders that can be accompanied by 

CM, arrhythmias, and conduction disease. Cardiac involvement varies in onset and severity, 

but is occasionally the early or dominant presentation when neuromuscular manifestations 

are mild. Multiple genes causing CM are associated with variable degrees of skeletal 

myopathy (Table 3).

The most common myopathy is myotonic dystrophy type I (MD1), due to expansion of an 

unstable trinucleotide repeat in the DMPK gene, in which the number of repeats and clinical 

severity increases from generation to generation.161,162 Severe conduction defects, VA, and 

SCD may appear early in disease, but late sudden deaths are usually attributed to respiratory 

events163,164 and only 10% of patients with adult-onset disease progress to reduced LVEF.

Emery-Dreifuss muscular dystrophy is due to mutations in one of several genes encoding 

nuclear envelope proteins. X-linked disease due to mutations in EDMD1, is associated 

with atrioventricular conduction defects, AF, and atrial standstill that can precede overt 

CM and neuromuscular symptoms.165–167 Autosomal dominant Emery-Dreifuss disease and 

limb-girdle muscular dystrophy can both occur with LMNA variants, conferring high risk 

of arrhythmias as for other laminopathies (Figure 3).168 Desmin (DES)-associated myopathy 

is an autosomal dominant myofibrillar myopathy that may present with prominent CM or 

arrhythmias, with AF and conduction disease common and SCD also described.169

In the Duchenne’s and Becker’s dystrophinopathies, the prevalence of arrhythmias generally 

parallels later progression of HF, which is commonly the mode of death.120 Arrhythmias 

and conduction abnormalities are common with congenital syndromic myopathies and those 

associated with mitochondrial genetic syndromes, but rarely present early in disease.170
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The Trait of Left Ventricular Non-Compaction

LV non-compaction (LVNC) is a morphologic description of prominent trabeculation of the 

LV above a thin compacted layer of myocardium, creating crypts that communicate with 

the LV cavity but not with the epicardial coronary arteries.171,172 (Table 3) Areas of non-

compaction can occur with abnormal embryologic development, but can appear later in life 

with CM and neuromuscular disorders, as well as in athletes, normal pregnant women, and 

up to 8% of normal subjects.171 The trabeculation could represent a dynamic response to the 

intensity and regionality of wall stress, such as in HCM, where it is may function to prevent 

apical aneurysms.173 Recent work has implicated variants in a member of the PR domain-

containing family of transcriptional regulators (PRDM16) in development of both LVNC 

and DCM.174 It has been suggested that this protein may direct myocardial adaptation to 

improve oxygenation in settings of chronic wall stress in athletes and pregnant women.175 

While LVNC is often listed as a separate CM phenotype, it may instead be considered a 

dynamic morphologic trait. The presence of LVNC in a patient with arrhythmias or CM may 

increase suspicion for underlying genetic CM, particularly with a positive family history. 

Current management of patients meeting LVNC criteria, however, is largely guided by the 

presence or absence of accompanying CM or arrhythmia phenotypes.

Implications of Identifying a Genetic Cardiomyopathy

The implications of identifying a pathogenic variant for CM after presentation with an 

arrhythmia depend upon the nature of the arrhythmia, the variant, and the current phenotypic 

expression of CM. With the goal of improving prognosis, the most common current 

consideration is the level of risk for SCD and whether to recommend implantation of a 

defibrillator. However, earlier identification of CM may also help to decrease CM disease 

progression. While the most effective therapies to stabilize CM are currently guided only by 

phenotype, gene-specific treatments targeting molecular etiologies are becoming available or 

in development.

Decisions Regarding Primary Prevention ICD

Patients presenting with life-threatening VA/SCD should be evaluated for an ICD as 

secondary prevention of SCD, regardless of genotype. For patients presenting with 

unexplained syncope, genetic variants associated with VA will lower the threshold for 

EP study or ICD implantation. For patients requiring pacemakers, adding defibrillation 

capability should be strongly influenced by genotype and phenotype.

For primary prevention of SCD with a DCM phenotype, an LVEF ≤ 0.35 is often the 

indication regardless of CM etiology (Table 1). However, genetic diagnosis and/or family 

history may trigger consideration before CM has progressed to an LVEF ≤ 0.35, and/or 

before waiting 3–6 months to determine the effect of HF medications on LVEF. Special 

consideration for early placement of a primary prevention ICD is currently an important 

consideration for pathogenic variants in LMNA, FLNC or PLN, and should be extended to 

other types of ACM, as discussed above. There are no randomized trials establishing ICD 

benefit in these subgroups; recommendations derive from scientific statements and expert 

consensus.2,32 The presence and extent of LGE on CMR are increasingly linked with the 

Laws et al. Page 20

Circ Res. Author manuscript; available in PMC 2023 May 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



risk of VA/SCD in DCM and HCM. However, CMR may be less sensitive for assessing risk 

in those genetic diseases in which VA may arise from other mechanisms independent of the 

extent of myocardial fibrosis. ICD indications will continue to evolve both for implicated 

genetic variants and for other indicators of increased risk.

Although the family history cannot be relied upon to identify the presence of a known 

pathogenic variant, the risk of SCD with either DCM or HCM is higher in patients with a 

strong family history, even when the genetic variant has not been identified.114,128 This is 

reflected in the guideline risk factors for HCM and as a Class IIb indication for a primary 

prevention ICD in patients with other CM phenotypes and family history of SCD associated 

with CM.34 This reflects the likelihood that sudden death risk is influenced by as yet 

unspecified genetic background beyond the implicated causative variant.

All consideration of ICD implantation requires discussion of risk/benefit discussion as part 

of shared decision-making. Decisions regarding risk of sudden death are strongly influenced 

by age and trajectory of both cardiac disease and general health. Women with CM have 

lower rates of sudden death, and patients reaching older age without arrhythmic events 

are generally at lower risk of life-threatening VA, particularly with genetic CM. Patients 

with advanced left ventricular dysfunction, a heavy HF symptom burden, and frequent HF 

hospitalizations are increasingly likely to die from end-stage HF rather than from untimely 

VA. Indications for ICD are predicated on the anticipation that patients otherwise will live at 

least one year with good quality of life.32,34

Current Treatments to Modify Genetic CM Progression

Fibrosis and ventricular remodeling herald disease progression and worsening outcome, 

including arrhythmia burden, with all HF. For genetic variants associated with DCM, there 

is thus good rationale, without specific confirmatory data, to support early initiation of 

HF therapies before the LVEF falls to <0.40. A current trial in Netherlands is testing 

whether the mineralocorticoid receptor antagonist eplerenone will decrease progression of 

phospholamban CM.176 Specific implications for therapy determined by genetic causes of 

DCM are currently limited, but include sodium channel blockers for the SCN5A variants 

associated with MEPPC.

For patients with HCM, a goal is to prevent progression of hypertrophy. A recent trial 

in asymptomatic carriers of sarcomeric mutations in HCM families showed that early 

initiation of valsartan diminished a composite score of disease progression.177 As discussed 

above, mavacamtem is an allosteric modulator developed to inhibit cardiac myosin and 

diminish hypercontractility, shown to improve symptoms and cause reverse remodeling with 

decreases in LVH and left atrial size.115,178,179 Intravenous enzyme replacement is routine 

for the HCM look-alike phenocopy, Anderson-Fabry’s disease, with genetic defect in alpha-

galactosidase A, which is now also treated with an oral chaperone protein, migalastat.180 

Genetic information can also help distinguish the HCM look-alike ATTR-CM, that has 

multiple targeted treatments as described above.
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Counseling About Genetic Testing for Genetic Cardiomyopathy

The expansion of genetic testing further increases the need for qualified genetic counseling 

for probands and family members. Large gaps remain in the diagnostic yield for most 

genetic CM. Particularly with positive family history, a negative genetic test cannot rule 

out a genetic cause and serial screening remains important for first-degree relatives.2,31,181 

While a variant of uncertain significance (VUS) should usually not be used for clinical 

decision-making,182 its identification challenges patient understanding of the risk, as it 

might later be re-classified. The American College of Medical Genetics and Genomics 

(ACMG) has promulgated criteria under which a VUS can be reclassified as pathogenic.182. 

Importantly, the identification of a rare variant in a CM-associated gene in a patient with a 

CM does not establish pathogenicity of that variant.

The impact of a positive test will vary according to the genetic results and implications 

for therapy, lifestyle, and future expectations. Discussion of potential risks will often be 

influenced by sex, as the penetrance and severity of genetic CM are generally lower for 

women than for men, as shown in a recent meta-analysis of genotype-phenotype association 

in DCM for most implicated genes.183

Genetic testing is recommended for first-degree relatives of a proband with a pathogenic 

variant for CM. A positive test can potentially have negative implications for asymptomatic 

individuals who do not yet carry a cardiac diagnosis. The Genetic Information 

Nondiscrimination Act of 2008 and the Patient Protection and Affordable Care Act of 2010 

provide some protection from genetic discrimination for employment and health insurance 

in the United States, but in most states there are gaps in protection and the laws do not offer 

protection from discrimination regarding life, disability, or long-term care insurance.184 A 

phenotype-negative patient may elect not to be tested, but should recognize that he/she may 

still carry a mutation and may still transmit a pathogenic variant to children.

Patient understanding of disease risk and the need for intervention reflects their risk 

perceptions, which are influenced by health literacy and numeracy. Words describing 

possible events as “common” and “rare” are interpreted differently by providers than by 

patients.185 Numeracy may be low even in highly educated populations.186 People have 

greater difficulty comprehending relative risk, so absolute risk should be used.187 Fractions 

are confusing, so rates using rounded denominators such as X in 100 or X in 1000 may 

be understood better than proportions centered on a numerator of one, such as 1 in 384.185 

Strategies such as teach-back can encourage patients to share their perceptions of risks and 

benefits, identifying misconceptions that can be addressed.188

Expanding Implications of Genetic Testing to Guide Therapy

As new therapies emerge for genetic CM, potential benefits of genetic testing for patients 

and families will increase. The definition of mutation-associated disease mechanisms 

at the molecular level is increasingly enabling the development of mechanism-based 

therapies. One approach is to “repurpose” existing drugs for the new indication of 

DCM: examples include an in vitro study suggesting efficacy of lovastatin in LMNA 

cardiomyopathy.189 Another is to develop novel “first in class” agents that target specific 
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molecular mechanisms in CM subtypes. Examples of new agents that were developed using 

this strategy and are now becoming available include the myosin inhibitor mavacamtem 

for patients with hypertrophic cardiomyopathy,178 the myosin activator omecamtiv for 

advanced systolic dysfunction,190 and tafamidis to stabilize mutant transthyretin in amyloid 

cardiomyopathy.157 Inhibition of multiple kinases (JNK, ERK1/2, p38α MAP kinase) 

has been used to correct the DCM phenotype in mice with LMNA DCM191 and a 

clinical trial is underway in humans using a p38 MAP kinase inhibitor for LMNA 
DCM.192 In vivo gene editing using adenoviral delivery of CRISPR/cas9 constructs 

corrected the molecular defect in mice with dystrophin-related DCM.193 In DCM caused 

by titin truncating mutations, correction of the truncation by CRISPR/cas9, or proteasome 

inhibition that reduced the amount of mutant protein, corrected the contractile defect in 

cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs).194 An intron-

mediated TTN enhancer that promoted cardiac-specific TTN expression in similarly-

derived cardiomyocytes promoted normal TTN expression in mice.195 Similarly, adenoviral 

mediated modulation of RNA splicing in iPSC-CMs with an HCM-associated MYBPC3 
mutation corrected the hypertrophic phenotype.196 The first-in-human gene transfection 

with the LAMP2 gene has been reported for 3 patients with Danon disease, a HCM 

phenocopy.197

Tools are now becoming available to better understand and address arrhythmias in genetic 

CM, such as better animal and cellular models coupled to gene editing, that raise the 

prospect that therapies specific to mechanism, gene, and mutation are on the horizon. 

Development of these therapies will be enabled by increased identification of mutation 

carriers and their phenotypic journeys, and further advances beyond the one gene - one 

disease paradigm.73 The rationale to expand genetic testing thus extends from current 

management of patients and families to acceleration of an exciting future that holds promise 

for correction of their underlying molecular defects.
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Abbreviations

ACM Arrhythmogenic cardiomyopathy

ACM-LV Arrhythmogenic cardiomyopathy dominant in LV

ACM-RV Arrhythmogenic cardiomyopathy dominant in RV

ARVC traditional term for arrhythmogenic cardiomyopathy as originally 

linked to desmosomal disease

AF atrial fibrillation/flutter
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ATTR-CM transthyretin amyloid cardiomyopathy

CM cardiomyopathy

CMR cardiac magnetic resonance imaging

DCM dilated cardiomyopathy

HCM hypertrophic cardiomyopathy

HF heart failure

LGE late gadolinium enhancement

LVEF left ventricular ejection fraction

NSVT non-sustained ventricular tachycardia

PVC Premature ventricular contraction

RCM restrictive cardiomyopathy

SCD sudden cardiac death

SMVT sustained monomorphic ventricular tachycardia

VA ventricular arrhythmias

VT ventricular tachycardia

VUS variant of unknown significance
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KEY POINTS

1. Genetic cardiomyopathy should be considered in patients who present with 

“idiopathic” arrhythmias, including atrial fibrillation, conduction disease, 

frequent PVCs and ventricular tachycardia.

2. The presence of an apparently acquired cause of cardiomyopathy or the 

absence of family history does not rule out genetic cardiomyopathy.

3. The 12-lead electrocardiogram, echocardiogram, enhanced cardiac magnetic 

resonance imaging, and sequencing can help to layer the clinical phenotype 

with the genotype for arrhythmogenic cardiomyopathies.

4. Sudden death can occur early in arrhythmogenic cardiomyopathy, before the 

ejection fraction is low.

5. The increase in genetic information and implications raises new challenges 

for genetic counseling and shared decision-making.

6. Genetic testing enables cascade screening, specific treatments for some 

subtypes, and evaluation of emerging targeted therapies.
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Figure 1. 
Cardiac magnetic resonance (CMR) images of genetic CM showing typical patterns of 

late gadolinium enhancement (LGE). A. 39M with family history of arrhythmogenic right 

ventricular cardiomyopathy with pathogenic PKP2 variant. CMR showed normal function 

of the left ventricle (LV) and right ventricle (RV), with LGE of the anterior RV free wall 

(arrows) but no LGE in the LV. B. 21F pathogenic DSP mutation and family history of 

dilated cardiomyopathy, ventricular arrhythmias, and sudden death. CMR showed normal 

LVEF 0.58 with sub-epicardial LGE of the inferior LV wall, extending into the septum 

without separate RV involvement. C. 45M with atrial fibrillation and family history of 

dilated cardiomyopathy, CMR showed a ring-like pattern of intramural LGE in the LV. 

Genetic testing revealed a pathogenic LMNA variant.
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Figure 2. 
Panel A presents the genes often included on comprehensive commercial panels for 

cardiomyopathy and arrhythmia genes, showing the overlap of genes most commonly 

implicated in both. Panel B presents the results from sequencing 1,293 participants with 

early-onset AF defined as AF diagnosed before age 65.40 According to the genes listed 

in Panel A, 43% of disease-associated variants occurred in genes commonly included on 

cardiomyopathy panels, 14% in genes on arrhythmia panels, and 43% in genes included on 

both panels.

CM = cardiomyopathy, Arr = arrythmia, AR = autosomal recessive

Laws et al. Page 41

Circ Res. Author manuscript; available in PMC 2023 May 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Examples of selected cardiomyopathy genes commonly associated with atrial or ventricular 

arrhythmias or conduction disease. The common genes coding for titin and the sarcomeric 

proteins are associated with a large number of variants, many of which are implicated 

in atrial fibrillation, but a minority of which are associated with ventricular arrhythmias, 

and conduction disease is rare. Variants recognized in less common genes such as 

LMNA and FLNC are more consistently associated with ventricular arrhythmias and 

sudden cardiac death. Variants in genes for desmosomal proteins, phospholamban, and 

filamin-C can be associated with both RV and LV involvement. ACM= general term 

for arrhythmogenic cardiomyopathy, ACM-RV = arrhythmogenic cardiomyopathy with 

dominant RV involvement; ACM-LV= arrhythmogenic cardiomyopathy with dominant 

LV involvement, DCM = dilated cardiomyopathy, HCM = hypertrophic cardiomyopathy. 

(Illustration credit: Ben Smith).
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Figure 4. 
Examples of 12-lead electrocardiograms (ECG) from 2 patients with arrhythmogenic 

cardiomyopathies Panels A and B are from a 53-year-old man with ACM-RV. Panel A 

shows SMVT with atrio-ventricular dissociation. V1 has a left bundle branch block-type 

configuration and the frontal plane is directed superiorly, consistent with a VT origin in 

the inferior RV. Panel B shows sinus rhythm ECG findings typical for RV disease with 

T-wave inversion in leads V1–V6 and inferiorly, and a slurred and prolonged terminal 

s-wave in V2. Panel C is from a 77-year old man with a long history of PVCs that had been 

considered benign in the absence of either known disease or concerning family history. The 

most frequent PVC (PVC1) has a right bundle branch configuration in V1 with dominant 

R waves across the precordium and inferiorly directed frontal plan axis, consistent with an 

origin in the periaortic LV. Panel D in the same patient shows the tracing during ventricular 

tachycardia, taken by paramedics after he presented with syncope. Genetic testing revealed a 

pathogenic TTN mutation.

ACM-RV=arrhythmogenic right ventricular dysplasia, LV= left ventricle, RV=right 

ventricle, SMVT = sustained monomorphic ventricular tachycardia
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Figure 5. 
Arrhythmias at the time of presentation for 689 patients with dilated cardiomyopathy in 

relation to the presence or absence of family history and identified pathogenic variants on 

genetic testing. At Arr = atrial arrhythmias, AV = atrioventricular, LBBB = left bundle 

branch block, NSVT = non-sustained ventricular tachycardia. Figure drawn from published 

data from the Maastricht Cardiomyopathy Registry, with permission from Verdonschot and 

Hunner.25
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Table 1.

Recommendations for ICDs as Primary Prevention in Familial Cardiomyopathy

Phenotype Recommended consideration for ICD Level Comments

Hypertrophic 
Cardiomyopathy

Single risk factor: Family history of 
sudden death Massive LVH (≥ 30 mm) 
Unexplained syncope LVEF < 0.50 LV 

apical aneurysm

IIa
From 2020 AHA/ACC Guideline for HCM31

NSVT or LGE ≥ 15% IIb

Dilated Cardiomyopathy

Non-ischemic CM with EF ≤ 0.35, 

despite GDMT**, and NYHA II-III 
symptoms of HF

I

From 2017 AHA/ACC/HRS Guideline for 
Management of Patients with Ventricular Arrhythmias 

and Prevention of Sudden Cardiac Death32
LVEF≤ 0.30 despite GDMT**, NYHA 

Class I
IIb

Specific genetic DCM when 
LVEF ≥ 0.35

Lamin A/C mutation with ≥ 2 risk 
factors: Male, LVEF<0.45, NSVT, Non 

missense variant
IIa

Lamin A/C ≥ 2 risk factors Male sex, 
LVEF < 0.45, NSVT IIa

From 2019 HRS Expert Consensus Statement on 
Evaluation, Risk stratification, and Management of 

Arrhythmogenic Cardiomyopathy2

Lamin A/C and pacing indication IIa

Phospholamban LVEF < 0.45 or NSVT IIa

Filamin C LVEF < 0.45 IIa

Arrhythmogenic RV CM 
(ARVC)

(Resuscitated SCA, sustained VT*) or 
significant ventricular dysfunction with 

RVEF or LVEF ≤ 0.35
I From 2017 AHA/ACC/HRS Guideline32

3 major criteria, 2 major+ 2 minor, 1 
major+ 4 minor criteria IIa From 2019 HRS Expert Consensus Statement2 Major 

criteria: NSVT, inducible VT, LVEF ≤ 0.49 Minor 
criteria: Male sex, > 1000 PVCs/24 hours, RV 

dysfunction by 2010 criteria33, proband status, ≥ 2 
variants (cannot count both NSVT and PVCs.)

2 major, 1 major+2 minor criteria, or 4 
minor criteria IIb

LV Non- Compaction NSVT associated with reduced LVEF IIa From 2019 HRS Expert Consensus Statement2

Neuromuscular disorders
Emery-Dreifuss and limb-girdle type 

IB dystrophies with progressive cardiac 
involvement

IIa From 2017 AHA/ACC/HRS Guideline32

Examples of variants that can cause ACM for which there is no recommendation when LVEF ≥ 0.35
RNA-binding motif 20 (RBM20)

Type V voltage-gated cardiac sodium channel (SCN5A)
Desmoplakin (DSP) ACM not meeting criteria for ACM-RV

Familial CM unspecified
Familial cardiomyopathy associated with 

sudden death

IIb From ACC/AHA/HRS 2008 Guidelines for Device-
Based Therapy of Cardiac Rhythm Abnormalities34, 

and
2013 Appropriate Use Criteria for ICDs and CRTs35

*
Syncope and sustained ventricular tachycardia are considered to be secondary prevention

**
GDMT = guideline-directed medical therapy for at least 3 months
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Table 3:

Genes Commonly Implicated in Genetic Dilated Cardiomyopathy

Pathogenic Variant with Moderate-
Strong Association with DCM Gene Approximate prevalence in 

DCM Other phenotypes Association with ACM

Titin TTN 12–25%

HCM (

)

In small proportion of 
truncating variants

Lamin A/C LMNA 4–8% High

Myosin heavy chain 7 MYH7 3–4%

HCM (

)

Present

Troponin T2 TNNT2 2–4% HCM Present

Filamin C FLNC 2–4% **
HCM, RCM, ACM-RV,

High

RNA binding motif 20 RBM20 2% High

Type V voltage-gated cardiac sodium 
channel SCN5A 2–3% Brugada syndrome High for some variants

Desmoplakin DSP 2%
ACM-RV,

High

Phospholamban PLN < 1% * ACM-RV High

Bcl-associated athanogene 3 BAG-3 0.1–3%** Present**

Desmin DES < 1%
More often RCM

High

Other Sarcomeric Proteins, e.g.:
Myosin heavy chain 6

Tropomyosin
Troponin C1

Myosin binding protein C3

MYH6
TPM1

TNNC1
MYBPC3

Variable representation in 
DCM populations

HCM, Occasional variants 
implicated

ACM = arrhythmogenic cardiomyopathy, characterized by early and severe ventricular arrhythmias

ACM-RV = arrhythmogenic cardiomyopathy with dominant RV involvement

DCM = dilated cardiomyopathy phenotype, HCM = hypertrophic cardiomyopathy, RCM = restrictive cardiomyopathy

= associated with skeletal myopathy

Associations between genotype and arrhythmia phenotypes vary due to relatively small series, referral center bias, and geographic heterogeneity.

*
Higher prevalence of a founder mutation in Netherlands/Germany

**
These genes were not routinely included in test panels until recently, so the prevalence and penetrance in DCM is not well-

established.25,120,124
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