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A curated, ontology-based, large-
scale knowledge graph of artificial 
intelligence tasks and benchmarks
Kathrin Blagec, Adriano Barbosa-Silva, Simon Ott & Matthias Samwald   ✉

Research in artificial intelligence (AI) is addressing a growing number of tasks through a rapidly growing 
number of models and methodologies. This makes it difficult to keep track of where novel AI methods 
are successfully – or still unsuccessfully – applied, how progress is measured, how different advances 
might synergize with each other, and how future research should be prioritized. To help address these 
issues, we created the Intelligence Task Ontology and Knowledge Graph (ITO), a comprehensive, 
richly structured and manually curated resource on artificial intelligence tasks, benchmark results and 
performance metrics. The current version of ITO contains 685,560 edges, 1,100 classes representing 
AI processes and 1,995 properties representing performance metrics. The primary goal of ITO is to 
enable analyses of the global landscape of AI tasks and capabilities. ITO is based on technologies that 
allow for easy integration and enrichment with external data, automated inference and continuous, 
collaborative expert curation of underlying ontological models. We make the ITO dataset and a 
collection of Jupyter notebooks utilizing ITO openly available.

Background & Summary
The past decade led to substantial advances in Artificial intelligence (AI). Increases in computational capac-
ity and the development of versatile machine learning models such as deep convolutional neural networks or 
the transformer architecture made it possible to tackle a wide variety of tasks that were previously deemed 
intractable1,2.

According to the 2021 AI Index Report published by the AI Index Steering Committee of the 
Human-Centered AI Institute (Stanford University), the number of AI conference publications increased four-
fold between the years 2000 and 2019, while the number of AI journal publications grew from roughly 10,000 in 
the year 2000 to more than 120,000 in the year 20193. Similarly, AI-related publications on the pre-print server 
arXiv increased more than sixfold within only five years from 2015 to 20203.

This ever-growing amount of research on AI methods, models, datasets and benchmarks makes it difficult 
to keep track of where novel AI methods are successfully (or still unsuccessfully) applied, how quickly progress 
happens, and how different AI capabilities interrelate and synergize. This complexity is amplified by the great 
variety of AI data modalities (e.g., natural language, images, audio, structured data) and application domains 
(e.g., web search, biology, medicine, robotics, security, advertising). Furthermore, real-world AI systems and the 
tasks they address are tightly embedded in complex systems of data creation/consumption, non-AI algorithms 
and social processes. Understanding AI and its global impact requires the creation of rich models that integrate 
data from these adjacent knowledge domains.

To help address these issues, we introduce the Intelligence Task Ontology and Knowledge Graph (ITO), a 
comprehensive, richly structured and manually curated data resource on artificial intelligence tasks, benchmark 
results and performance metrics. ITO is realized as an ontology-backed knowledge graph4 based on standards 
minted by the World Wide Web Consortium (W3C). Data are represented through the Resource Description 
Framework (RDF)5 and Web Ontology Language (OWL)6 standards and can be queried through the SPARQL 
graph query language7. These standards have a long history of application in other domains requiring complex 
knowledge representation and integration, such as biomedical research8–10.

The following desiderata guided the creation of ITO:
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•	 Manual curation of AI task classification hierarchies and performance metrics, enabling more precise 
analyses.

•	 Representing data as a graph, facilitating network-based query and analysis.
•	 Allowing for easy integration and enrichment with external data, as well as simple extensibility for modeling 

related knowledge domains from other domains.
•	 Allowing for automated deductive inference and automated knowledge base consistency checking.
•	 Allowing for ongoing, collaborative expert curation of underlying ontological models.

ITO allows for capturing rich relationships between AI processes, models, datasets, input and output data 
types (e.g., text, video, audio) metrics, performance results and bioinformatics processes. This enables a more 
in-depth tracking of progress over time, such as analysing how progress trajectories on various classes of tasks 
compare to each other across different dimensions.

In its current version (v1.01), ITO encompasses more than 50,000 data entities and 9,000 classes.

Exemplary use cases.  The primary aim of ITO is to enable ‘meta-research’ concerned with studying sci-
entific research itself in terms of its methods, reporting, evaluation and other aspects to increase the quality of 
scientific research11. The value of ITO for meta-research can be exemplified based on two recent studies utilizing 
the resource.

As a first step in creating insights from ITO, our group analysed the prevalence of performance metrics 
currently used to measure progress in AI using data on more than 30,000 performance results across more than 
2,000 distinct benchmark datasets. To increase data quality and enable a thorough analysis, we conducted exten-
sive manual curation and annotation of the raw data as part of integrating it into the ontology12.

In another recent study, we explored and mapped AI capability gains over time across 16 main research areas 
(e.g., computer vision, natural language processing, graph processing), further breaking down capability gain by 
sub-processes described in the curated AI process hierarchy (Barbosa-Silva et al., manuscript in preparation). 
This analysis made use of both the curated AI process class structure, as well as the cleaned and normalized 
performance metrics data.

Besides providing a knowledge graph for meta-research, the ontology of ITO can be utilized as a taxo-
nomic resource for annotating and organizing information in the AI domain. For example, in recent work, our 
group conducted a systematic review of literature and online resources to create a catalogue of AI datasets and 
benchmarks for medical decision making13,14. Identified datasets and benchmarks were manually annotated for 
meta-information, such as targeted tasks, data types and evaluation metrics. This manual curation process was 
greatly simplified by using the taxonomic structures provided by ITO together with the OntoMaton ontology 
annotation widget15.

Finally, the ITO knowledge network can serve as a practice-focused resource that allows developers to find, 
compare and select AI models to address complex use-cases for certain defined tasks, data types and applica-
tion domains.

Methods
Benchmark result and initial task description data was drawn from the ‘Papers with code’ (PWC, https://paper-
swithcode.com) repository. PWC is the largest repository of AI benchmark data currently available. It is a 
web-based open platform that contains information on more than 5,000 benchmarks and 50,000 publications. 
PWC data was collected by combining automatic extraction from arXiv submissions and manual crowd-sourced 
annotation of benchmark results.

To create the initial version of ITO, PWC data was imported and converted to RDF/OWL with a Python 
script. After initial data import from PWC, ITO underwent extensive further manual curation. Collaborative 
manual curation was done using WebProtégé16. The top-level class hierarchy of AI processes was derived from 
the top-level classification of benchmarks on the Papers With Code platform. As an established community 
of practice, we considered this source to be a good starting point. We were unable to identify other existing 
resources with a more well-grounded top-level classification of AI tasks. Curation was conducted by two experts 
in the AI/machine learning domain (KB, MS) over the course of several months. In this process, tasks and 
benchmarks were systematised and mapped to AI processes. Where appropriate, classes and properties from 
the following established ontologies were re-used: the EMBRACE Data And Methods (EDAM) ontology17, the 
Open Biomedical Ontologies (OBO) in OWL ontology18, the Dublin Core schema19 and the Friend of a Friend 
(FOAF) ontology20.

The scripts and overall workflow created allow for repeated updating and incremental curation of data over 
time, so that ITO can be kept up-to-date as benchmark result data in Papers With Code (and potentially other 
data repositories) keeps evolving. Novel classes and properties identified and imported through our automated 
scripts were put under the “Meta: Class requiring curation” class or the “Meta: Data property requiring curation” 
property to flag them for further manual curation by our curators. This way, novel data could be reflected by ITO 
quickly, while allowing for ongoing manual curation and improvement of the model.

Process-centric modeling of AI tasks, benchmarks and data.  Table 1 provides an overview of the 
main classes and properties used to capture knowledge in ITO.

In ITO, an ‘AI process’ is defined as a process that can be carried out (or can partially be carried out) by 
an AI system. We chose to focus the ontological representation on processes rather than potential alternative 
notions like ‘tasks’, since existing foundational and domain ontologies provide clear definitions for processes, 
while possible alternatives are less well-represented or researched. Individual benchmark results are represented 
as instances of the subclasses of ‘AI process’, i.e., they are conceptualized as concrete AI processes that resulted 
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in certain outcomes and measurements. This conceptualization also allows for potential future extensions of the 
ontology and knowledge graph to interlink AI processes with other processes, such as the processes that consti-
tute scientific research, bioinformatics operations or human cognition.

AI processes are organised into 16 major parent classes, e.g, ‘Natural Language Processing’, ‘Vision process’ or 
‘Audio process’, and further into a hierarchy of subclasses informed by the common terminology of the respec-
tive research field. For example, the branch of the class ‘Natural language processing’ was informed both by 
terminology and taxonomies used in the fields of linguistics and machine learning.

In the current version of ITO, AI processes are represented through a simple, asserted polyhierarchy. Since 
some AI tasks are cross-modal, child classes can have more than one parent class (multiple inheritance). For 
example, the process ‘Image question answering’, which is concerned with answering questions based on the 
semantic content of an image, has both ‘Natural language processing’ and ‘Vision process’ as its superclasses. 
This application-centric modelling approach was deemed appropriate for currently targeted use cases of ITO, 
but we plan to utilize more elaborate ontological modeling in future work (e.g., breaking up the process class 
hierarchy into several complementary axes and making greater use of logical class definitions).

Instances of AI models, e.g. ‘BERT’ or convolutional neural networks, and benchmark datasets, e.g., 
‘ImageNet’, are modelled via the ‘Data’ and ‘Software’ branches of ITO.

Individual benchmark results were captured as instances of the respective benchmark class and connected 
to the respective dataset via a ‘has_input’ annotation. Performance measures (e.g., F1 score) were modelled 
through a hierarchy of data properties.

Similar to the AI process classes, performance measure properties underwent extensive manual curation. 
The original data obtained from PWC contained more than 800 different strings representing metric names that 
were used by human annotators on the PWC platform to add model performance results. Based on this raw list 
containing more than 60 naming variations of the same metric in some cases, we created a canonical hierarchy 
of performance measures, and mapped the strings accordingly. To select the canonical names for the metrics, 
a preference was given to Wikipedia article titles whenever sensible. Additional details and complexities of this 
process are described in previous work12.

Figure 1 shows an example of a benchmark result achieved by a specific model on a specific dataset for a 
specific AI process embedded in ITO.

Main classes

AI process Subclasses of AI process represent a wide variety of AI processes and tasks, such as natural language processing, 
image classification or link prediction.

Data Subclasses of the Data are primarily used to represent different kinds of data that AI processes deal with, such as 
text, graphs or visual data.

- Benchmark dataset Benchmark dataset is an indirect subclass of Data. Instances of the Benchmark dataset class are used to represent 
individual benchmark datasets.

- Article Article is an indirect subclass of Data. Instances of the Article class are used to represent research articles 
associated with benchmark results.

edam:Data format Subclasses of Data format are used to represent different data that different kinds of data can be represented in, 
such as XML or PNG.

Software Instances of Software represent AI models used in benchmark experiments.

Topic Subclasses of the Topic class are used to further describe the topics that certain datasets or AI processes deal with, 
such as different knowledge domains, scientific disciplines or languages.

Main properties

involves data The involves data object property relates AI processes to the data that are used or generated by the process.

- edam:has input The has input object property is a subproperty of involves data, it relates AI processes to the data that are used as 
input for the process.

- edam:has output The has input object property is a subproperty of involves data, it relates AI processes to the data that are the 
output of the process.

Performance measure
The rich hierarchy of subproperties of the Performance measure datatype property represent quantitative measures 
of AI model performance on benchmarks, such as accuracy, F1 score or Recall-Oriented Understudy for Gisting 
Evaluation (ROUGE) score.

edam:has topic The has topic object property relates Topic to AI process or Data subclasses.

edam:is format of The is format of object property Data format to Data subclasses.

rdfs:seeAlso The seeAlso annotation property is used to relate benchmark results to the research articles in which results were 
reported, the model utilized for generating the benchmark result and other, secondary information.

foaf:page The page annotation property is primarily used to link research articles to the URLs where they can be retrieved 
from.

obo:date The date annotation property is used to provide the dates of publication of specific benchmark results or research 
articles.

obo:creation date The creation date annotation property is used to represent the time of the creation of ontology/knowledge graph 
resources (e.g., when an entity was generated through the automated import procedure).

Table 1.  Overview of the main classes and properties. Prefixes denote classes or entities derived from 
established vocabularies, i.e., EDAM ontology (edam), Resource Description Format Schema (rdfs), Open 
Biomedical Ontologies (obo) and Friend of a Friend (foaf).
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Data Records
The ITO dataset is made available as a single OWL (Web Ontology Language) file. The ITO model is availa-
ble as an OWL (Web Ontology Language) file. The latest version of ITO is available on Zenodo (https://doi.
org/10.5281/zenodo.5561989)21, GitHub (https://github.com/OpenBioLink/ITO) and BioPortal (https://biopor-
tal.bioontology.org/ontologies/ITO). The ontology file is distributed under a CC-BY-SA license.

The current version of ITO (v1.01) encompasses more than 50,000 individuals across more than 9,000 
classes. Additional basic metrics are shown in Table 2.

In total, ITO captures more than 26,000 benchmark results across more than 3,633 benchmark datasets cov-
ering the years 2000 to 2021 (see Table 3 and Fig. 2).

Figure 3 shows the 16 parent process classes, e.g, ‘Natural Language Processing’, ‘Computer vision’ or ‘Audio 
process’ that are used to map AI processes in ITO together with the number of distinct benchmarks and bench-
mark results per process. An excerpt of the curated performance measure hierarchy is displayed in Fig. 4.

Technical Validation
Validation and evaluation of a knowledge graph and/or ontology aims to assess whether the resource adequately 
and accurately covers the domain it intends to model, and whether it enables an efficient execution of the tasks 
it was designed for.

Commonly used criteria to evaluate ontologies based on these aspects include accuracy, clarity, completeness, 
conciseness, adaptability, computational efficiency and consistency22.

Fig. 1  Example of a benchmark result for a specific model (‘DeBERTa-1.5B’) on a specific dataset (‘Words in 
Context’, Word sense disambiguation) embedded in ITO. Solid orange lines represent subclass relations, dashed 
orange lines represent instance relations.
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Accuracy indicates whether the definitions and descriptions of elements in an ontology are correct. Clarity 
measures whether the ontology’s elements are clearly defined and labeled, and understandable for the user. 
Achieving high accuracy and clarity was ensured in ITO through an extensive manual curation period lasting 
several months.

The criterion of completeness is concerned with whether the domain to be modeled is adequately covered 
by the ontology, while conciseness indicates to which extent the ontology covers only elements relevant to the 
domain. Both criteria are ensured in ITO through the bottom-up development approach that makes use of 
existing data (i.e., benchmarks extracted from preprint servers) and concepts relevant to the domain of AI pro-
cesses instead of a top-down approach that starts with a blank slate. Relying on existing data sources, such as 
the PWC database that combines automated extraction of benchmarks from papers on preprint servers and 
crowd-sourced annotation by several thousands of contributors enables high domain coverage. Completeness 
was further tested by using ITO to annotate a collection of over 450 datasets and AI benchmarks in the biomed-
ical domain, with ITO being found to cover all required concepts to annotate all datasets13.

Adaptability is concerned with whether the ontology meets the requirements defined by the range of use 
cases for which it was built. The practical usability of ITO for its intended applications has been validated within 
two recently conducted studies (Barbosa-Silva et al., manuscript in preparation)12.

Computational efficiency indicates whether the ontology’s anticipated tasks can be fulfilled within reasonable 
time and performance frames using the available tools. Even complex queries related to the use cases described 

Entities Count

Total triples (i.e. edges in the RDF graph) 685,560

Logical axioms count 116 828

Classes (total) 9,037

Classes (AI process classes) 1,100

Individuals 50,826

Object properties 16

Data properties (i.e. AI performance measures) 1,995

Annotation properties 32

Maximum depth 11

DL expressivity ALCHOI(D)

Table 2.  Basic ontology metrics of ITO (v1.01).

Count

Total number of papers covered 7,649

Time span of publications covered 2000–8/2021

Total number of benchmark results 26,495

Total number of benchmark datasets 3,633

Table 3.  Content metrics (v1.1).

Fig. 2  Number of papers covered by ITO per year. The y-axis is scaled logarithmically. Publications of the year 
2021 are covered until the latest import in August 2021.
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Fig. 3  Number of distinct benchmarks and benchmark results per ‘AI process’ class. The x-axis is scaled 
logarithmically.

Fig. 4  Performance measures property hierarchy. The left side of the image shows an excerpt of the list of 
performance metric properties; the right side shows an excerpt of the list of subclasses for the parent class 
‘accuracy’.
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above can be executed within a few seconds on standard hardware when using the high-performance Blazegraph 
graph database.

Finally, consistency requires the ontology to be free from any contradictions. Internal consistency was 
checked using Protégé v5.5.0 and the elk 0.4.3 reasoner23,24.

Furthermore, common pitfalls in ontology design and creation have been described, which, for example, 
include the creation of unconnected ontology elements, missing human readable annotations or cycles in class 
hierarchies25–28. ITO was checked for these with the ontology quality checking tool ‘OOPS!’27, and identified 
issues were resolved.

Ontology evaluation metrics were calculated with the Ontometrics tool29 and were used for ontology quality 
evaluation following the example of Carriero et al.30. Ontology metrics are reported in Table 4.

The inheritance number of 1.73 is low, suggesting that ITO is a deep ontology, i.e. the class hierarchy is well 
grouped and covers the domain in a detailed manner. The relationship richness as calculated by the Ontometrics 
algorithm of 0.002 is low, which, however is due to the fact that the vast majority of relationships in ITO are 
captured at the level of OWL individuals rather than classes. The axiom/class ratio is high, indicating a richly 
axiomatized ontology. The average population number of 5.62 indicates a good balance between the count of 
individuals (i.e., mostly benchmark results) and the number of classes in the class hierarchy used to structure 
those results. The class richness of 0.49 suggests that roughly half of the classes in the ontology are not instanti-
ated by individuals; this is due to Data, Data format and Topic branches of the ontology that are primarily used 
for defining attributes of other classes, rather than being instantiated themselves. The average depth depth value 
of 5.36 is within the normal ranges for an ontology of the given size. The maximal breadth and absolute sibling 
cardinality of 4590 and 9037 are very high. This is caused by the modeling decision of creating a process class 
called Benchmarking, which is the direct superclass of the large number of classes representing benchmarks in 
the ontology. This design choice also led to a high tangledness metric, i.e. a large number of classes with multiple 
superclasses, since benchmark classes have both a specific AI task and the Benchmarking class as direct super-
classes. While this particular design choice deviates from best practices of ontology design, it proved favorable 
for ease of querying the ontology, which was an important design goal.

Other data sources and related work.  Besides PWC, we also investigated some other projects aiming to 
track global AI tasks, benchmarks and state-of-the-art results have been initiated in recent years as potential data 
sources. Among these, the Aicollaboratory31 and State of the art AI (https://www.stateoftheart.ai/) stood out as the 
most comprehensive and advanced resources.

‘AIcollaboratory’ is a data-driven framework enabling the exploration of progress in AI. It is based on data 
from annotated AI papers and open data from, e.g., PWC, AI metrics and OpenML. Similar to the projects 
described above, benchmark results are organized hierarchically and can be compared per task. In addition, the 
platform provides summary diagrams that combine all benchmark results per top-level task class, e.g., ‘Natural 
language processing’ and display progress over time. We found that relevant data in AIcollaboratory were 
already covered by PWC, and that the project did not seem to be actively maintained at the moment.

Schema metrics

Attribute richness – Average number of attributes per class; the more attributes, the more 
knowledge the ontology conveys 0.22

Inheritance number – Average number of subclasses per class; an indication of how well 
knowledge is grouped 1.73

Relationship richness – Number of non-inheritance relationships (e.g. not subClassOf) divided 
by total number of relationships 0.002

Axiom/class ratio – Ratio between axioms and classes 75.62

Knowledge base metrics

Average population – Number of instances of the knowledge base divided by number of classes 
defined in the ontology schema 5.62

Class richness – Number of non-empty classes (classes with instances) divided by the total 
number of classes. 0.49

Graph/class hierarchy metrics

Number of leaf classes (NoL) – classes with no subclasses 7328

Average depth 5.36

Maximal depth 11

Absolute breadth 18 849

Average breadth 7.37

Maximal breadth 4590

Absolute sibling cardinality – the number of sibling classes in the hierarchy 9037

Ratio of leaf fanoutness – Number of leaf classes divided by total number of classes 0.81

Tangledness – Degree of multihierarchical nodes (i.e., nodes with multiple super classes) in the 
class hierarchy 0.68

Table 4.  Ontology evaluation metrics.
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‘State of the art AI’ collects AI tasks and datasets, models and papers building on data from PWC, arXiv, 
DistillPub and others. Similar to PWC, it organises AI tasks, allows for a comparison of results per task, and 
makes them available on a web-based platform. However, data are not available for download at the time of this 
writing, and relevant data were already covered by PWC.

There are some ontologies and taxonomies that are related to ITO. The Computer Science Ontology (CSO)32 
is a large-scale ontology created through literature mining that captures research areas and their relations in 
computer science. WikiCSSH provides a large-scale, hierarchically organized vocabulary of subjects in computer 
science that was derived from Wikipedia33. Compared to ITO, CSO and WikiCSSH have lower coverage of the 
domain of AI tasks. Outside of the domain of computer science, the Cognitive Atlas Ontology provides concepts 
of human cognition that partially overlap with concepts from AI34.

There are several related projects that aim to capture scientific results through knowledge graphs. The 
Artificial Intelligence Knowledge Graph (AI-KG) contains a large collection of research statements mined from 
AI manuscripts35. The Open Research Knowledge Graph (ORKG)36 captures research statements across multiple 
scientific domains. The Academia/Industry DynAmics (AIDA) Knowledge Graph describes 21 million publica-
tions and 8 million patents and utilizes CSO for annotations.

There are also multiple partially related initiatives towards creating large, integrated knowledge graphs in the 
life sciences. The decentralized nanopublications infrastructure that captures and integrates research statements 
and their provenance, particularly in the domain of life sciences37. More centralized ontology-based knowledge 
graphs that were recently published include OpenBioLink38, Hetionet39 and PheKnowLator40.

Maintenance and future development.  To ensure content validity and keeping up with the fast-paced 
developments in the field of AI, newly available data will be periodically imported. Furthermore, the underlying 
ontological model will be subject to continuous refinement, and future developments will also focus on creating 
mappings between ITO and other thematically relevant ontologies and knowledge graphs, particularly AI-KG, 
ORKG and CSO.

Usage Notes
A wide variety of frameworks for OWL, RDF and the SPARQL graph query language can be used to access 
and query the ontology. Our recommendations for efficient processing include the graph database Blazegraph 
(https://blazegraph.com) for both simple and complex queries requiring high performance, and the Owlready2 
Python library (https://pypi.org/project/Owlready2/) for simple queries and OWL reasoning.

Example Jupyter notebooks for querying the ontology using the libraries mentioned above can be found 
in the associated Github repository (https://github.com/OpenBioLink/ITO) in the folder ‘notebooks’ (e.g., 
‘descriptive_statistics_v1.0’ and ‘trajectories_notebooks’).

To view and edit the ontology, the Protégé ontology editor (https://protege.stanford.edu/) can be used23. 
Furthermore, the class structure of ITO can be browsed online via BioPortal (https://bioportal.bioontology.org/
ontologies/ITO).

Code availability
Code to generate the summary statistics are available from the Github repository in the folder ‘notebooks’: https://
github.com/OpenBioLink/ITO. The entire Github repository for the v1.01 release is archived on Zenodo41: 
https://doi.org/10.5281/zenodo.6566103.
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