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Abstract Measuring eye movement is a fundamental

approach in cognitive science as it provides a variety of

insightful parameters that reflect brain states such as visual

attention and emotions. Combining eye-tracking with

multimodal neural recordings or manipulation techniques

is beneficial for understanding the neural substrates of

cognitive function. Many commercially-available and

custom-built systems have been widely applied to awake,

head-fixed small animals. However, the existing eye-

tracking systems used in freely-moving animals are still

limited in terms of their compatibility with other devices

and of the algorithm used to detect eye movements. Here,

we report a novel system that integrates a general-purpose,

easily compatible eye-tracking hardware with a robust eye

feature-detection algorithm. With ultra-light hardware and

a detachable design, the system allows for more implants to

be added to the animal’s exposed head and has a precise

synchronization module to coordinate with other neural

implants. Moreover, we systematically compared the

performance of existing commonly-used pupil-detection

approaches, and demonstrated that the proposed adaptive

pupil feature-detection algorithm allows the analysis of

more complex and dynamic eye-tracking data in free-

moving animals. Synchronized eye-tracking and electroen-

cephalogram recordings, as well as algorithm validation

under five noise conditions, suggested that our system is

flexibly adaptable and can be combined with a wide range

of neural manipulation and recording technologies.

Keywords Eye-tracking � Freely-moving � Head-mounted

device � Pupil detection � Adaptive Kalman filter

Introduction

In modern neuroscience, monitoring techniques are becom-

ing increasingly crucial for gaining insight into the

mechanisms governing the cognitive functions of the brain

[1–3]. One of these technologies, eye-tracking, is used to

obtain information about the eye in humans and animals

[4–11], including fine and rich eye-movement features,

such as saccades, nystagmus, and pupil dilation [12, 13].

These features are reliable and provide stable cognitive

readouts as they are usually modulated by specific neural

circuits [6]. Thus, eye-tracking has largely promoted

various areas of research including the neural mechanisms

of attention [14], social interaction [15], learning and

memory [16, 17], emotions [18, 19], and arousal states

[20, 21], as well as having applications in neuropsychiatric
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disorders [22–24], childhood development [25], human-

computer interactions [26], advertising [27], and driveabil-

ity assessment [28]. Although commercial eye-tracking

software and hardware systems are currently available for

data acquisition and subsequent analysis in humans and

non-human primates, for small animals, most custom-built

systems can only be applied to awake, head-fixed animals

[29]. Many behavioral experiments require small animals

to freely move in specific arenas (e.g., the Y-maze-based

working memory paradigm allows mice to explore differ-

ent channels; the preference for open/closed arms on the

elevated plus maze demonstrates anxiety levels). Besides,

the rapid development and the diversity of neuroscience

technologies require that researchers flexibly combine

various techniques according to different experimental

purposes. Therefore, there is still no flexible and easily-

compatible system that incorporates and synchronizes

other neural techniques for eye-tracking in freely-moving

small animals.

Previous studies have used magnetic sensors to track eye

movements to investigate the visual system of freely-

behaving chickens and the sleep-wake cycle of mice by

implanting a magnet beneath the conjunctiva [9, 30, 31].

However, magnetic sensors alone cannot record pupil

dynamics. Mounting miniature cameras and optical com-

ponents on an animal’s head is the optimal strategy for

freely-moving eye-tracking. To study the visual attention

of great-tailed grackles in flight, Yorzinski [32] mounted a

pair of cameras to record eye blinks. But the major

limitation is that a device weighing 50 g cannot be used in

mice. Wallace et al. [33] developed a head-mounted eye-

tracking system, but it can only be used in rats due to

limitations in size and weight. Meyer et al. [34] and

Michaiel et al. [35] proposed a multi-functional system that

combines behavioral monitoring, electrophysiological

recording, and eye-tracking in freely-moving mice.

Although the combination of these highly customized

modules can play a powerful role in specific experiments,

these modules that add extra weight to the system may not

be needed in most other eye-tracking experiments. Neuro-

science experiments commonly use electrodes, optical

fibers, and microlenses implanted in the brain to apply

electrophysiology, optogenetics, Ca2? imaging, and minia-

ture two-photon microscope manipulations or measure-

ments to match brain activity in relation to external

behavior. These implanted devices vary greatly in shape

and size, and even for specific modalities, such as

electrodes, there are differences among configurations.

Modifying these systems to adapt to different implanted

devices is challenging because it requires recalibration or

rearrangement of the light source and other components on

the device. Thus, there is a strong demand to develop a

general-purpose eye-tracking device that can easily inte-

grate other neural implants.

To overcome these limitations, we developed an easily

compatible eye-tracking system for freely-moving small

animals to coordinate various neurological devices. First,

our head-mounted eye-tracking unit (ETU) integrates ultra-

micro components, except for the necessary image sensors

and optical components; the peripheral circuits are moved

to the remote end. We used a software approach to replace

a portion of the hardware, which significantly reduced the

device’s weight and allowed animals to carry other devices.

Second, the ETU’s mounting structure fully exposed the

top of the skull, facilitating other neural implants with

accurate event synchronization. Finally, to accurately track

the pupil dynamics, we compared the currently commonly-

used pupil extraction methods and adopted complementary

advantages. By designing an adaptive Kalman filter (AKF),

we integrated the traditional image segmentation algorithm

with a method based on machine learning to overcome the

noise. We designed an AKF fusion algorithm based on

DeepLabCut (DLC) [36] to overcome the noise caused by

the large curved eyeballs and the close head-mounted light

source, as well as a large eye movement range and

increased blinking. These features allow the researcher to

combine and synchronize neural recordings and manipu-

lations to comprehensively interpret cognition.

Materials and Methods

Design and Fabrication of the Eye-Tracking Device

We designed a compatible device for recording eye

movements in freely-moving small animals (Fig. 1A),

which included three main parts (Fig. 1A, B): the ETU,

ETU connector, and peripheral acquisition circuit.

ETU

The ETU has two design options (Fig. 1C). The first

scheme (Sch1) is designed to be lightweight. The image

sensor (ultra-micro camera) is aimed directly at the

animal’s eye, suitable for experiments with additional

devices implanted on the head. Sch1 requires the camera to

be aimed at the center of the pupil to obtain the most

accurate measurement; however, it may obscure the central

area of the animal’s visual field. Thus, the second

scheme (Sch2) also includes a reflected optical path. A

near-infrared (NIR) total reflector reflects the image of the

eye to the camera and transmits visible light, allowing the

animal to observe the environment. Sch2 does not occlude

the visual field, thus allowing the animal to undergo visual

cognition experiments.
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The cameras in both schemes are based on the ultra-

micro CMOS image sensor (resolution: 1280 9 720;

OVM9724, OmniVision, China) equipped with a macro

lens (Fig. 1E). Six NIR light-emitting diodes (LEDs,

OmniVision, GTG1005IRC-940) integrated around the

camera provide an infrared source, which is used to

illuminate the animal’s eye directly or through the NIR

total reflector. To avoid interference from the environment,

an NIR band-pass filter (940 nm, K9, Wuhan Huaxing

Photoelectric Technology Co., Ltd), which transmits

infrared light and filters visible light, is mounted in front

of the lens. The assembled direction of the NIR total

reflector in Sch2 is 45� from the central axis of both the

eyeball and the camera. For high imaging quality, quartz is

used as the material of the NIR total reflector in Sch2

(Fig. 1C, E), which accounts for the main weight. These

components are assembled on the base of a 2-pin female

header made of insulating material (polyvinyl chloride).

ETU Connector

Regarding the mounting of the ETU to the animal’s head,

we applied a detachable design (Fig. 1B), including a male

pin header (2.54-mm pitch) with both ends of the ETU

connector horizontally fixed on the head. A square hole

was made in the middle of the header as a slot for

implanting optical fibers, electrode wires, or other neuronal

recording/manipulation devices. The ETU is mounted only

when it is needed to avoid hardware damage caused by the

animals’ chewing or fighting. This detachable design

allows the experimenter to quickly plug or unplug the

ETU and reuse it in multiple sessions to improve its

Fig. 1 The miniature eye-tracking system for freely-moving small

animals. A An overview of the ETU fixed on a freely-moving mouse

inside a circular open-field. The ETU is mounted on the animal’s

head. B The detachable design for mounting the ETU. The ETU

connector comprising a male pin header and implanted slot is

surgically mounted on the head in advance, and the left and right

ETUs can be mounted to it detachably. The implant slot allows the

head to be exposed to allow insertion of other neural recording or

manipulation devices. C Two optional ETU schemes. D Screenshot of

online recording software with a user-friendly interface. The main

panel shows a mouse eye image captured in real-time, and the display

quality (exposure and ROI) can be adjusted by the user within an

appropriate range. E Photograph of a single ETU: ultra-micro image

sensor (camera), NIR illumination source, NIR filter, quartz NIR

reflector, ETU base, and the first-stage acquisition circuit. F–H
Photographs showing the ultra-micro image sensor (diameter: 4 mm),

and the width (8 mm) and weight (0.10 g) of a single ETU (C).
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utilization. In addition, the ETU can be used in different

small-animal species by only adapting the ETU connector

without modifying the device itself. The position of the

ETU connector may vary depending on the experimenter’s

surgical requirements and the brain region to be targeted.

To include the eye in the field of view of the camera, only

two pins of the 3-pin connector are connected, thus

facilitating the adjustment of the ETU’s position.

Acquisition Circuit

The acquisition circuit involves a two-stage design. The

optical image of the eye is collected by the camera of the

ETU and encoded as a digital signal via the first-stage

circuit (frame rate: 30 fps) to improve the anti-noise

performance during transmission. The encoded signal is

transmitted through a flexible flat cable (50 cm) to the

second-stage peripheral circuit and converted to a USB

signal. A conductive slip ring (Jinpat Electronics Co., Ltd;

LPMS-04A) between the peripheral circuit and the USB

cable prevents knotting of the cable during the free

movements of the animal.

This two-stage design offers two advantages. First, the

additional load on the animal only includes the ETU and

the first-stage circuit, which account for 1/7th of the entire

acquisition circuit, leading to a 6/7th reduction in load on

the animal. The reduced weight and volume are beneficial

for the implantation of electrodes, optical fibers, micro-

lenses, or other implants. Second, during image acquisi-

tion, the circuit produces heat. Thus, moving the main

heating components to the peripheral circuit instead of

placing them close to the body effectively protects the

animal from thermal injury.

Real-Time Online Eye-capture and Pupil Detection

The real-time eye image-acquisition software was imple-

mented based on LabVIEW (National Instruments, Texas,

USA). The software obtains the camera data from the USB

and displays the real-time image on the main panel. Before

the recording starts, the experimenter can adjust the image

quality (exposure, gain, and region of interest [ROI])

through the software to adapt to different illumination

conditions. After the experiment is started, the researcher

can monitor the eye reactions on the software and store the

videos on the hard drive (raw image data is zoomed and

cropped to 640 9 360 pixels in the eye region to save

storage and computation consumption) with a specified file

name. In addition to saving the video, the software can also

detect pupils from real-time eye images. The pupil

detection algorithm applies an ROI-based threshold seg-

mentation method (ROI-Seg); thus, the experimenter needs

to adjust the threshold and ROI manually before the

experiment starts. The detected pupil region is then

subjected to ellipse fitting, and the major axis of the

ellipse is set as the pupil diameter (Fig. 1D).

Pupil Detection with Deep Learning-based Methods

The eight deep learning-based methods involved belong to

two categories, one aims at semantic image segmentation,

which includes Fully Convolutional Network (FCN), Unet,

ResNet18, ResNet50, InceptionResNetV2, MobileNetV2,

and Xception, and the other (DLC) is based on landmark

estimation. Both types require generating training sets to

train models and estimate pupil size.

Training Set Generation

Each video recorded by the eye-tracking system was down-

sampled to 150 frames with k-means clustering [36], thus a

total of 600 frames to be labeled were extracted from the

four videos. Two types of training sets were generated. For

the first type (seven models for semantic segmentation), we

used the MatLab (MathWorks, MA, USA) Image Labeler

tool to manually label pixels of the pupil region, and the

frames that were difficult to recognize were discarded. We

then defined the category for each pixel value as ‘‘back-

ground’’ or ‘‘pupil’’ to construct semantic segmentation

training sets. For the second type, we created a DLC

(version: 2.1.8.2) project and configured nine pupil feature

points to be detected: eight pupil landmarks including eight

different angles and one pupil center point. To train the

DLC model, we used DLC graphical user interfaces (GUIs)

to manually label 600 selected eye images.

Models Training

Seven models for semantic segmentation were trained in

MatLab. Specifically, five networks (ResNet18, ResNet50,

InceptionResNetV2, MobileNetV2, and Xception) were

created based on deeplabv3plusLayers [37]. The other two

networks were based on fcnLayers [38] and unetLayers

[39]. The DLC model was trained in the Python3 (www.

python.org) environment. These training steps were exe-

cuted on an NVIDIA GeForce RTX 3090 graphic pro-

cessing unit. More training parameters are available in the

Supplementary Materials.

Pupil Size Estimation

Each frame of the recorded eye videos was input to the pre-

trained models for semantic image segmentation, the

categorical labels of the image were the output. Then, the

converted binary image was used to extract the largest

object as pupil region and followed with morphological
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operators. Finally, by measuring the properties of the pupil

region, the major axis was set as the pupil diameter. For the

DLC pre-trained model, the pupil feature points were

detected from the frames of the recorded videos. Then, we

filtered out landmarks with a likelihood \0.8 and calcu-

lated the distances between the retained landmarks and the

pupil center as the pupil radii. Finally, the pupil radius was

estimated as the average value of the radii. A micrometer

was used to calibrate and calculate the conversion coeffi-

cient to convert the pupil data obtained in pixels to the

actual pupil size in millimeters.

AKF Design

To measure the pupil size as accurately and robustly as

possible in the eye-tracking experiment and to fully

combine the complementary information of the two pupil

measurement approaches (ROI-Seg and DLC), we

designed an AKF fusion algorithm (Fig. 5C) to integrate

the two types of pupil diameter data obtained separately

(Fig. S1). The algorithm was implemented in two main

stages: the pre-fusion and the fusion stage.

Pre-fusion Stage

At the pre-fusion stage, the pupil data obtained by the two

independent approaches of ROI-Seg and DLC were

processed using the same method. The purpose of this

stage was to estimate the noise of the two independent

pupil measurements, that will be used to calculate the

Kalman fusion gain for the next fusion stage.

First, the conventional Kalman filter (KF) estimates the

state and yields smooth data after eliminating extreme

values. It includes two steps: prediction and update. The

following equations are used for the prediction step:

r ¼ R z� zð Þ2

n� 1
z � 0ð Þ ð1Þ

q ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

R z�zð Þ2
n�1

q

n
ð2Þ

x̂k ¼ ax̂k�1 ð3Þ
pk ¼ apk�1aþ q ð4Þ

where r is the observation noise; q is the process noise;

z 2 Rn�1 is the observation (two separate pupil measure-

ments); x̂k is the posteriori state estimation at current time

k; a is the state transition constant from time k-1 to k, which

can be set to 1 (assuming that the current state is consistent

with the previous state); and pk is the posteriori estimated

error of the state estimation and is computed recursively.

To initialize the KF, x̂0 is set to z0, and p0 is set to 1.

The following equations are used for the update step:

gk ¼
pk

pk þ r
ð5Þ

x̂k  x̂k þ gk zk � x̂kð Þ ð6Þ
pk  1� gkð Þpk ð7Þ

where gk is the Kalman gain at current time k, as a tradeoff

to balance the current observation with the prediction of the

previous state.

Second, the covariance of the observation noise largely

determines the performance of the KF fusion algorithm by

affecting the fusion gain. Therefore, the observation noise

is re-calculated dynamically by combining the estimated

states with the observation values. By adaptively adjusting

the fusion gain, the weight is inclined to a more reliable

measurement source. Here, the equation for noise estima-

tion is as follows:

ek ¼
n x̂k � zkj j
zk þ e

ð8Þ

where e is an infinitesimal value such that zk þ e[ 0.

To make the observation noise of the two measurements

comparable, we normalized them as follows:

enorm ¼ 20log10
e

n

� �

ð9Þ

Fusion Stage

The fusion stage also includes two steps: update and

prediction. The equations for the prediction step are the

following:

Rk ¼
eROI�Segk 0

0 edlck

� �

ð10Þ

Q ¼ 1

n n� 1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

zROI�Seg � zROI�Seg
� �2þ

X

zdlc � zdlcð Þ2
q

ð11Þ

X̂k ¼ AX̂k�1 ð12Þ

Pk ¼ APk�1A
T þ Q ð13Þ

where zROI�Seg and zdlc are the two separate pupil

measurements obtained by the ROI-seg and DLC methods,

and eROI�Segk and edlck are their observation noise each

estimated at the pre-fusion stage; Rk is the covariance

matrix between each pair of measurements at current time

k; Q is the covariance of the process noise; X̂k is the

posteriori state estimation at current time k; A is the state

transition constant from time k-1 to k, which can be also set

to 1; and Pk is the posteriori covariance matrix of the

estimated states at time k. To initialize, X̂0 is set to

zROI�Seg0 , and P0 is set to 1.

The equations for the update step are as follows:
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C ¼ 1

1

� �

ð14Þ

Zk ¼
zROI�Seg
zdlc

� �

ð15Þ

Gk ¼
PkC

T

CPkCT þ Rk
ð16Þ

X̂k  X̂k þ Gk Zk � CX̂k

� �

ð17Þ

Pk  1� GkCð ÞPk ð18Þ

where Gk is the Kalman fusion gain at current time k,

which is an adaptive weight to tune the contribution of the

measurement source to the final fused output Xfuse.

Performance Evaluation of Different Pupil Detec-

tion Methods

We used seven recorded videos and evaluated the accuracy

according to the workflow shown in Fig. S2. We first

screened for pupil data with high noise (good; noise\–30

dB) and low noise (poor; noise[ –5 dB) by thresholding

the estimated noise. According to the data quality of the

ROI-Seg and DLC, the ground truth (GT) was generated

with the following five conditions: (1) random selection;

(2) both ROI-Seg and DLC are good; (3) only ROI-Seg is

good; (4) only DLC is good; (5) both ROI-Seg and DLC

are poor. A maximum of 150 GTs were generated under

each condition. When labeling the GTs for a specific

condition, the frames to be labeled were randomly selected

from the videos that met the condition. For each of the

seven recorded eye-tracking videos, the number of frames

to be labeled was proportional to the recording duration.

When the total number of eligible frames in one of the

conditions was insufficient, the number of GTs was\150.

After selecting the frames to be labeled under all condi-

tions, we used a custom-written MatLab script to manually

draw an ellipse along the pupil boundary. Frames that were

difficult to recognize were discarded. Finally, the major

axis of the ellipse in each frame was considered to be the

pupil diameter. To measure the accuracy, the GTs’ pupil

diameter was subtracted from each pupil diameter obtained

by different approaches, and we used the mean absolute

error as the metric for accuracy evaluation.

We used a 5000-frame pupil video to estimate the pupil

detection speed of the ten methods. According to the

properties and implementations of these methods, the

evaluation was performed in three environments: (1) ROI-

Seg and AdaThresh were executed in a MatLab CPU

environment; (2) seven semantic segmentation methods

were executed in a MatLab GPU environment; (3) DLC

was executed in a Python GPU environment.

Experiments

Animals

C57BL/6J mice (8–10 weeks old) were obtained from

Hunan SJA Laboratory Animal Co., Ltd (Changsha,

China). The mice were maintained in standard cages

(22–25�C) with a 12-h light-dark cycle and were given

food and water ad libitum. All experimental procedures

were approved by the Animal Care and Use Committee at

the Shenzhen Institute of Advanced Technology, Chinese

Academy of Sciences (Shenzhen, China).

ETU Mounting and Implantation of Electroen-

cephalogram (EEG) Electrodes During Implanta-

tion Surgery

Mice were anesthetized with sodium pentobarbital (80 mg/

kg) and placed on a stereotaxic apparatus (RWD, China);

anesthesia was maintained with 1% isoflurane. After

disinfection, ophthalmic ointment was applied to the eyes,

the skin was incised to expose the skull, and the overlying

connective tissue was removed. Then the ETU connector

was attached directly to the skull with dental cement.

For EEG/electromyography (EMG) recordings, two

stainless-steel screw electrodes were inserted into the

skull, 1.5 mm from the midline and 1.5 mm anterior to the

bregma, while two other electrodes were inserted 3 mm

from the midline and 3.5 mm posterior to the bregma. Two

EMG electrodes were inserted into the neck musculature.

Insulated leads from the EEG and EMG electrodes were

soldered to a pin header, which was secured to the skull

using dental cement. After implanting the electrodes, the

ETU connector was cemented onto the skull using dental

acrylic. Eye-tracking experiments were conducted at least

1 week after the ETU connector was mounted to ensure

adequate postoperative recovery. During experiments, the

ETU was plugged into the header of the ETU connector.

Behavioral Tests

We conducted three behavioral tests. First, we tested the

eye movements and obtained EEG synchronization record-

ing (n = 1), which lasted for[1 h. In the second test, we

collected eye movement data to evaluate the performance

of the AKF algorithm. Both of these experiments were

conducted in an acrylic 40 cm 9 40 cm 9 30 cm square

open-field arena with a shelter nest in a corner outside and

a door at the bottom of one side. The day before the

experiment, the ETU was mounted on the head, and the

mouse was habituated to the arena for 10 min. On the day
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of the experiment, the mouse was habituated to the arena

for another 5 min.

The third test was designed to test the effect of the ETU

on mouse movement. The test was performed in two

sessions: a mouse without ETU versus with ETU. In each

session, the mouse was permitted to move freely in a

square open-field for *10 min. We used Bonsai [40]

(bonsai-rx.org) to track the mouse; customized MatLab

scripts were used to visualize and analyze behavioral data.

EEG/EMG Recording

EEG/EMG data were collected as previously described

[41]. Briefly, a pre-amplifier unit (Part #8406-SL, Pinnacle

Technology, Inc., Lawrence, KS) that was rigidly attached

to the head-mount, provided the first-stage amplification

(1009) and initial high-pass filtering (first order: 0.5 Hz for

EEG and 10 Hz for EMG). These signals were then routed

to an 8401 conditioning/acquisition system (Pinnacle

Technology, Inc.) via a tether and low-torque commutator

(Part #8408, Pinnacle Technology, Inc.). The 8401 ampli-

fier/conditioning unit provided an additional 509 signal

amplification, additional high-pass filtering, and 8th-order

elliptic low-pass filtering (50 Hz for EEG; 200 Hz for

EMG). The signals were then sampled at 400 Hz, digitized

using a 14-bit A/D converter, and routed via USB to be

processed by a PC-based acquisition and analysis software

package.

Pupil–EEG Correlation Analysis

We first applied band-pass filtering to the raw EEG signal

in different frequency bands (delta, 0.5–4 Hz; theta, 4–8

Hz; alpha, 8–12 Hz; beta, 12–30 Hz; gamma, 30–80 Hz).

Thereafter, the power was calculated as the squared value

of each filtered signal. To analyze the correlation between

pupil dilation and EEG power, the synchronized two types

of data were binned with a 5-s window. Finally, Pearson’s

correlation analysis was applied to five pairs of data.

Event Synchronization Module and Precision

Validation

We designed a flexible event synchronization module to

synchronize eye-tracking data with other neural recordings

or external events. This module can be triggered by analog,

digital, and optical signals; and a microcontroller (Arduino

UNO R3; Arduino, www.arduino.cc) is used to convert

these signals into event commands. The online software

then captures the event trigger signals and records them as

timestamps. The analog trigger channel receives a 5-V

signal generated by a waveform generator or other device

or uses a photoresistor (PT908-7C; Everlight Electronics.,

Ltd) to convert a visual cue into a voltage signal. The

digital trigger channel receives a transistor-transistor logic

(TTL) signal sent by an external micro-control unit. In our

synchronous EEG and eye-movement data recording, the

digital TTL trigger was used. The event synchronization

module of the eye-tracking system and the EEG amplifier

receive the recording starting trigger simultaneously, and

these two systems independently record the timestamp for

subsequent alignment of data.

The precision of event synchronization refers to the time

delay between the event marker timestamps and the laser-

on event captured by the eye-tracking camera. To validate

the precision of the event synchronization module, we

applied the test strategy shown in Fig. 2D: (1) produce the

events by laser; (2) obtain the actual events and event

markers through two independent approaches (synchro-

nization module and ETU camera); and (3) compare the

time delay between actual laser-on events and event

markers. Since capturing the eye image and laser-on event

use the same camera, these events are considered synchro-

nized. In addition, compared with analog and digital

triggers, the delay of the optical signal trigger is the largest;

therefore, we can test the limit delay of our system. We first

used the ETU’s 30-fps camera to capture the laser

brightness. Since the 30-fps camera is relatively slow in

laser capture, to assess whether the synchronization module

can achieve millisecond accuracy, we tested it with a

240-fps camera. In both tests, laser-on events were

repeated for ten trials in a 5-s cycle. A customized MatLab

script was used to extract the laser-on event timestamps

(threshold set to 1/10 of the maximum brightness, and the

laser-on event is considered to start when the brightness

exceeds the threshold).

Data Analysis

Pupil data extracted by different approaches were imported

into MatLab. The AKF fusion algorithm and subsequent

visualizations were implemented using custom-written

MatLab functions and scripts.

The data used for the accuracy evaluation of AKF are

expressed as the mean ± SD. Statistics were analyzed

using Prism 8.0 (GraphPad Software, Inc.). Before hypoth-

esis testing, the data were first tested for normality using

the Shapiro-Wilk normality test and for homoscedasticity

using the F test. One-way analysis of variance with the

Kruskal–Wallis test was applied to determine whether the

AKF fusion algorithm significantly improved the pupil

measurements.
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Results

A Compatible Eye Tracking Device Combined

with Additional Neural Implant for Use in Freely-

Moving Animals

To combine eye tracking with various neural implant

devices for recording and manipulating unconstrained

small animals, we designed and implemented a novel

eye-tracking device that is compatible with such neural

devices. Because the maximum load on a mouse’s head is

*3 g, combining eye-movement recording with other

devices in free-moving mice requires reducing the weight

of the ETU as much as possible. We measured the physical

parameters of the ETU with its connector (Fig. 1F–H). The

total width and total weight a single Sch1 ETU were 8 mm

and 0.10 g, respectively, which applied to most adult mice.

We applied a detachable design for ETU mounting,

allowing the ETU to be mounted immediately before an

experiment. During postoperative recovery or in the home-

cage, the mouse only needed to have the ETU connector

mounted, which significantly increased the utility of the

ETU. Although the ultra-micro image sensor we used is

smaller than conventionally-used sensors, it has better

imaging quality and provides a resolution of 1280 9 720

pixels.

We also developed a user-friendly GUI software to

facilitate setting up, monitoring, and recording the eye-

tracking data (Fig. 1D). The software allowed real-time

pupil detection, and the detected pupil features, along with

the synchronization event information of the neural

recording or manipulation, could be saved.

Performance Validation and Synchronized EEG–

Eye Movement Recording

Two essential factors determined the compatibility and

coordination of the eye-tracking system with other neural

Fig. 2 Effects on animal movement and validation of the precision of

event synchronization. A Mouse movement trajectories and velocities

of the two test sessions (without ETU versus with ETU). In both tests,

the mice moved freely in a square open-field for *10 min.

B Histogram showing consistent velocity distributions between the

two tests. C Velocity distribution in the two test sessions. The dot on

each violin plot represents the average velocity in a 1-s bin. Bin

numbers: Without ETU, n = 614; With ETU, n = 590; P = 0.0544,

Mann-Whitney test.. D Diagram (upper) and photograph (lower) of

the event synchronization temporal accuracy test. An additional

240-fps camera is used to test whether the event synchronization

module can achieve millisecond accuracy. E–G Comparisons of

laser-on events with their event markers (upper, test by 30-fps

camera; lower, test by 240-fps camera). E Laser-on events repeated

for 10 trials in a 5-s cycle. Blue traces, laser brightness value captured

by the camera in the ROI; orange traces, the states of event markers

(0: baseline, 1: laser on). F Comparison of the camera-captured laser-

on events with event marker timestamps. The points around the green

diagonal indicate a low time delay. G Distribution of time delay.
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implants. First, the animal’s behavior should not be

significantly affected after the ETU is mounted. Second,

the system accurately records the timestamps of external

events. Therefore, we first assessed the effect of the ETU

on mouse behavior. We visualized the velocity and

trajectory heatmaps of two behavioral sessions (without

ETU versus with ETU, Fig. 2A) and compared their

velocity distribution (Fig. 2B, 2C). We found that the

histograms of the velocity distribution of the two sessions

closely overlapped. We also found no significant differ-

ences between the binned velocities (1-s time window) of

the two tests (without ETU: 33.1 ± 39.0 mm/s; with ETU:

30.1 ± 47.7 mm/s, P = 0.0544, mean ± SD).

We then tested the temporal precision of the event

synchronization module (Fig. 2D). Besides the 30-fps

camera (ultra-micro camera of the ETU), an additional

240-fps camera was used to test the limit delay of our

system. We compared the laser brightness with the event

marker. With the laser on, the brightness of the ROI of the

laser in the captured video increased immediately, and the

event marker was recorded instantly (video 2). The

recorded traces of the laser brightness and event marker

status were also well aligned in both the 30-fps and 240-fps

tests (Fig. 2E). We extracted the event timestamps from the

cameras that captured laser brightness (Fig. 2F) and

calculated the time delays between the camera timestamps

and captures (Fig. 2G). The delays of the 30-fps and

240-fps were 29.3 ± 8.5 ms and 2.4 ± 0.6 ms, respectively.

Since there was a delay of *1/30 s for the 30-fps camera,

we demonstrated that our system can achieve a precision of

*2.4 ms through the 240-fps test. While most experiments

accept a 1/33-s delay, the ETU offers a camera with a

higher frame rate for experiments requiring greater time

accuracy.

Finally, to test whether our device was robustly

compatible with other neural implants in freely-moving

mice during eye-movement experiments, we first mounted

the ETU connectors on the mice, and the implant slot

allowed us to expose the skull. Thereafter, the EEG

electrodes were implanted through this slot (Fig. 3A). The

same ETU was used repeatedly for recording from all

tested mice. The simultaneous recording lasted[1 h, and

the mice moved freely in the square open-field behavioral

chamber (Fig. 3B), without any attached cable or fiber

winding. The collected synchronized data and preliminary

analysis (Fig. 3C, D) showed that pupil dilation strongly

correlated with the alpha (8–12 Hz) and beta (12–30 Hz)

frequency bands of EEG. These results suggest that our

system can be used to study the neural activity mechanisms

of brain state in freely-moving animals [42].

Comparison of Performance of Different Pupil

Detection Methods

To accurately and efficiently extract pupil dynamics from

the recorded eye video, we applied ten commonly-used

pupil-extraction methods based on image processing and

deep learning (Fig. 4A). These methods include two

traditional image segmentation methods ROI-Seg and

adaptive threshold segmentation (AdaThresh), and seven

deep neural network-based semantic segmentation meth-

ods: FCN, Unet, ResNet18, ResNet50, InceptionResNetV2,

MobileNetV2, Xception, and DLC-based pupil landmark

estimation.

The performance comparison included two aspects.

First, we evaluated the accuracy of these methods by

comparing the extracted pupil diameter with the manually-

labeled GT (randomly selected). Among these methods

(Fig. 4B and Table 1), DLC had the best performance with

an average error of 3.84 ± 5.75 pixels (mean ± SD). The

two lightweight networks Xception (21.36 ± 12.41 pixels)

and MobileNetV2 (20.51 ± 15.92 pixels) had the worst

performance with the same number of training sets. For the

two traditional image-processing methods, although Ada-

Thresh was more accurate than ROI-Seg in some cases, the

overall error was larger than ROI-Seg due to mis-detection

of the eyelid as the pupil. Then, we compared the detection

speed of the different methods (Fig. 4B and Table 2). Since

ROI-Seg used real-time online detection, it performed

fastest with an average frame rate [1000 fps. AdaThesh

used local first-order statistics to determine thresholds [43],

and was slower than ROI-Seg (154 fps on average). In the

deep learning-based methods, DLC performed best, while

the other methods were too slow to achieve real-time

processing of 30 fps eye video.

The image-processing method depends on the image

features, while deep learning methods rely on human

knowledge. Therefore, to fully test these methods, we used

ROI-seg and DLC as representatives, and accuracy was

further compared under five noise conditions. The results

(Fig. 4C and Table 1) showed that the pupil regions

estimated by ResNet18, ResNet50, InceptionResNetV2,

MobileNetV2, and Xception were relatively larger than

GT, while FCN and Unet were relatively smaller. The

errors of ROI-Seg, AdaThresh, and DLC were evenly

distributed around zero. These results showed that with the

same number of training sets, although most deep learning-

based methods located the pupil region correctly, it was

difficult to accurately segment the pupil boundary. In

addition, due to the large eye movements and complex

illumination in the freely-moving eye tracking, ROI-Seg

had a higher average error. But when the pupil was in the

range of the ROI, ROI-Seg was the most accurate method

to detect the pupil boundary.
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Table 1 Accuracy evaluation for ten different pupil detection methods (Error in pixels, Mean ± SD at 6409360 pixels resolution).

Conditions

Methods Random Both good ROI-Seg good &

DLC poor

DLC good &

ROI-Seg Poor

Both poor Average

ROI-Seg 10.49 ± 13.59 4.86 ± 5.99 12.49 ± 9.61 42.69 ± 21.00 43.01 ± 30.48 22.66 ± 25.18

AdaThresh 14.06 ± 21.85 8.54 ± 15.68 21.38 ± 20.66 14.18 ± 21.58 37.06 ± 31.01 18.13 ± 24.68

FCN 10.93 ± 12.87 8.09 ± 8.36 32.48 ± 30.21 20.12 ± 19.74 31.21 ± 27.67 18.57 ± 21.95

Unet 18.59 ± 21.56 13.51 ± 14.05 32.71 ± 25.57 32.08 ± 26.05 32.41 ± 31.12 24.45 ± 25.10

ResNet18 14.79 ± 13.53 13.27 ± 11.00 15.62 ± 13.00 17.00 ± 16.96 24.03 ± 20.00 16.83 ± 15.65

ResNet50 13.34 ± 11.18 11.98 ± 8.74 12.75 ± 11.67 11.37 ± 11.25 25.83 ± 23.84 15.05 ± 15.26

InceptionResNetV2 16.81 ± 17.04 13.81 ± 10.84 20.10 ± 15.59 19.09 ± 17.58 26.19 ± 21.00 18.78 ± 17.08

MobileNetV2 20.51 ± 15.92 17.45 ± 13.37 20.07 ± 17.10 17.66 ± 17.16 24.84 ± 21.80 19.95 ± 17.25

Xception 21.36 ± 12.41 19.95 ± 12.45 22.99 ± 16.22 20.50 ± 15.24 25.38 ± 20.48 21.81 ± 15.45

DLC 3.84 ± 5.75 2.73 ± 3.34 17.30 ± 30.75 4.55 ± 5.90 13.19 ± 31.88 7.05 ± 18.70

Fuse 4.10 ± 4.83 3.93 ± 5.26 11.50 ± 9.47 4.34 ± 4.85 9.65 ± 14.85 6.03 ± 8.92

Fig. 3 Simultaneous recording of eye movements and electroen-

cephalogram (EEG) in a freely-moving mouse. A ETU and the

combined EEG head-stage mounted on the head. B Synchronized eye-

tracking and EEG recording from a freely-moving mouse in a square

behavioral chamber. C Example of synchronized data collected over

0.6 h showing the extracted pupil diameter, along with EEG and EMG

raw signals and their spectrograms. D Representative plots of

Pearson’s correlation between pupil diameter and EEG power in

each frequency band. Dashed line in each plot is the linear fit.
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The AKF-Based Algorithm Improves the Measure-

ment of Pupil Size

The systematic comparison of pupil extraction methods

indicated that DLC had the best performance balance in

accuracy and speed, while real-time online ROI-Seg

extracted the pupil more accurately under stable illumina-

tion and weak pupil shaking. Therefore, we proposed an

AKF algorithm (Fig. 5A–C) that efficiently fused multiple

pupil data sources obtained from the DLC and ROI-Seg

approaches, thus improving the tracking quality of pupil

data in freely-moving mice (Fig. S1).

The conventional Kalman fusion algorithm statically

estimates the measurement noise from a global perspective

[44]. However, the performance of the KF is sensitive to

noise estimation [45–47]. If the measurement noise was

Fig. 4 Performance of different pupil-detection methods. A Dia-

gram showing the use of ten different methods to detect the pupil

region. The two traditional image segmentation methods output the

binarized image of the segmented pupil region; seven deep neural

network-based semantic segmentation methods output a categorical

label image to indicate the pupil region; the DLC method outputs

pupil region landmarks. B Pupil detection error and speed in the

various models. The speed was estimated by recording the processing

time of a 5000-frame pupil video. fps: frames per second. Error bars

are presented as the mean ± standard deviation (SD) of mean

absolute error. GTs were randomly selected (117 GT samples).

C Evaluation of different methods under five different noise

conditions based on ROI-Seg and DLC performance: (1) randomly-

selected (117 samples, corresponding to the Random column in

Table 1); (2) samples obtained by both approaches have a low noise

level (137 samples); (3) only samples obtained by DLC have high

noise (57 samples); (4) only samples obtained by ROI-Seg have high

noise (112 samples); (5) samples obtained by both approaches have a

high noise level (108 samples). The dots represent the error for each

detection under specific methods and conditions. Area charts repre-

sent error distributions.

Table 2 Average pupil detection speed of various methods (fps at 6409360 pixels resolution).

Methods ROI-Seg AdaThresh FCN Unet ResNet18 ResNet50 InceptionResNetV2 MobileNetV2 Xception DLC

Speed 1075.68 131.48 24.40 26.52 32.31 18.99 6.35 24.09 17.88 154.79
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regarded as constant, it was difficult to achieve the optimal

performance for dynamic and complex pupil tracking data

in freely-moving animals. Therefore, we first applied a

novel noise estimation method to calculate the Kalman

gain adaptively. Compared with the conventional KF,

which considers the measurement noise as constant, our

algorithm was based on the difference between KF state

estimation and the measurement that dynamically calcu-

lated the noise at each sampling point. We used the

algorithm to calculate the measurement noise at each data

point for a representative single recording (Fig. 5D, E). The

measurement noise for DLC was –19.249 ± 34.639 dB and

that for ROI-Seg was –25.768 ± 11.024 dB (mean ± SD),

indicating that the pupil measurement quality by DLC was

superior to that by ROI-Seg. In addition, the rate of missing

values for the pupil diameter extracted by ROI-Seg was

0.97%; this was usually due to off-tracking caused by

blinking or sudden illumination changes. The measurement

noise affects the fused data by adjusting the Kalman gain.

When there is a large difference between the measurement

and estimation for one of the measurement sources, the

fusion gain inclines to the source with lower noise. In

addition, when a missing value appears, a conventional

noise estimation method, such as the standard deviation,

assumes that the noise is zero. In such situations, our

algorithm estimated the noise as infinite. Therefore, the

fused data directly relied on another data source.

We obtained fused pupil diameter data extracted by two

individual approaches using the AKF. As shown in Fig. 6A

and video 1, the representative data (*7 min) were

Fig. 5 Diagram of AKF-based measurement algorithm and noise

estimation of two pupil extraction approaches. A Mouse eye video

recorded online by the eye-tracking unit. B Extraction of pupil

diameter by ROI-Seg and DLC approaches. Upper, ROI-Seg method

to detect pupil region, ellipse fitting on the boundary, and estimation

of the pupil diameter (xROI-Seg, red curve) as the major axis of the

ellipse; lower, pre-trained DLC model to detect the landmark points

from different angles and the center. Pupil diameter (xROI-Seg, red

curve) is estimated based on the maximum axis of the fitted ellipse or

the average of eight radii. C Denoising and fusion pupil diameters

extracted from two independent processes by AKF. First, using AKF

to estimate current state (xROI-Seg(k)_hat and xdlc(k)_hat) and

current noise (eROI-Seg(k) and edlc(k)) of each data source according

to previous observation and noise; second, calculating the fusion gain

adaptively based on the current prediction and observation to obtain

the denoised and fused pupil diameter (xfuse, green curve). D, E Raw

pupil diameter traces extracted by ROI-Seg (D, red) and DLC (E,
blue). The scattered data on the top of each panel represent the

estimated measurement noise at each time point, and larger values

indicate higher noise. The downward-pointing triangles mark the

values missing from the pupil diameter estimation.
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smoother after fusion and showed a stronger anti-noise

capacity. We manually examined the details of the fused

data with their corresponding pupil image: (1) when the

data extracted by ROI-Seg were noisy, the fused data had a

higher level of trust in DLC (Fig. 6B); (2) when the data

extracted by DLC were noisy, the fused data were more

dependent on ROI-Seg (Fig. 6C); and (3) when both data

had a low noise level, the two data sources were averaged

using a compromise strategy (Fig. 6D). We further

evaluated the accuracy of AKF under five noise conditions.

The evaluation results show that the average error of AKF

(Fused: 6.03 ± 8.92) was lower than DLC (7.05 ± 18.70)

and ROI-Seg (22.66 ± 25.18). These results show that our

algorithm can effectively improve the measurement of

pupil diameter.

Discussion and Conclusion

We developed a compatible eye-tracking system to monitor

the eye movements of freely-moving animals, contributing

to both the hardware and software development of this

novel system. We reduced the size and weight of the

hardware, while improving the imaging quality. We

Fig. 6 Representative example of using the AKF algorithm for pupil

data denoising. A Comparison of the raw pupil diameter shown as red

and blue traces, and AKF fused pupil diameter in green. B–D Three

selected magnified charts and the corresponding eye images under

different noise conditions.

Table 3 Hardware comparison.

References Present design Wallace et.al., Nature, 2013 Meyer et.al., Neuron, 2018

Species Mice Rats Mice

Resolution 12809720 7529480 6409480

Frame rates 30 Hz 40-50 Hz 90 Hz

Dimensions (sin-

gle side)

12912 mm 50940 mm 22915 mm

Weight 0.8 g 3.7 g 2.6 g (only camera system)

Applications Eye tracking, EEG recording Eye tracking Eye tracking, head movement,

electrophysiology

Highlights Lightest hardware, detachable design, robust

pupil detection

First eye tracking device on freely-

moving rodents

Multimodal recording
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integrated an ultra-micro camera, Lan ED infrared illumi-

nation source, an acquisition circuit, and a signal trans-

mission circuit on a thin flexible printed circuit. The

lightweight hardware and detachable design allowed our

device to be flexibly combined with other neural implants.

Our hardware focused on a lightweight design (Table 3).

When only one eye was recorded, the heaviest design,

Sch2, was 1.01 g, which is lighter than a previously-

developed eye-tracking device for freely-moving animals

[34]. The detachable design between the ETU and the ETU

connector enabled the flexible combination of various

neural implant devices for stable and long-term studies.

Accurately extracting pupil dynamics to match neural

activity is essential for many neuroscience studies. Con-

ventional methods based on image processing, such as

adaptive thresholding [43] or edge detection (Else) [48]

followed by ellipse fitting [49], circular binary feature

(CBF) detection [50], exclusive curve selector (ExCuSe)

[51], and the Haar-like feature-based methods, which can

achieve 1000 fps pupil detection [52], have been widely

used. Recent studies have addressed these challenges by

training deep neural networks with thousands of manually

labeled data, such as PupilNet [53], Unet-based pupil

segmentation [54], DeepVOG [55], and Tiny convolution

neural network (TinyCNN) [56]. In this study, we applied

DLC to detect the pupils and systematically compared its

performance with previous methods and different datasets.

The results showed that DLC had significant advantages in

accuracy, speed, and the number of training sets (Supple-

mentary Materials and Fig. S3 and Table S1). We

demonstrated that although traditional ROI-Seg performs

badly when the pupil shakes or under sudden illumination

changes, it can more easily obtain accurate pupil features

without introducing human bias in a stable condition [57].

Therefore, we proposed an efficient data fusion algorithm

to complement the advantages of these data sources. This

algorithm optimized pupil feature detection by robust

adaptability under various conditions. In both the test and

practical application, there was no need to specify the

parameters for each dataset, and the algorithm was able to

dynamically estimate the optimal pupil features.

Accurate and robust eye-tracking and eye-movement

feature detection in freely-moving animals is beneficial in

many aspects. Our system is a general-purpose tool that can

be applied across species and in human studies. The

miniature camera sensor is superior to the bulky and heavy

devices commonly designed. The two-stage acquisition

circuit and detachable design allow users to mount the

device on monkeys and humans with minimal modifica-

tions to our hardware. Our pupil detection algorithm can

also be used with other commercial custom-built pupi-

lometers. For mice, we will make the pre-trained model

and open-source code publicly available. Taken together,

these advantages will facilitate the integration of our

system with those of two-photon imaging in freely-moving

animals [58–60], electrophysiology [61], optogenetics

[62, 63], virtual reality [64], and machine learning-based

behavioral analysis [65], enabling it to become an impor-

tant readout toolbox for neuroscience research.

Limitations of the Study

The current version of our device is limited in terms of the

frame rate, and we are considering upgrading the acqui-

sition circuit for other applications with higher temporal

resolution. Nevertheless, most recent studies on pupil

dilation in small animals focus on changes in the time

domain. Even for spectral analysis, related reports have

shown that pupil oscillations in mice and humans are

usually around 1 Hz [66], and pupil dilation power is\3

Hz in most cases [67, 68]. Thus, our current version can

meet the specifics of most applications. Besides, currently,

DLC pupil estimation is still offline. The next step will

consider integrating the DLC model and AKF into online

recording software.

Resource Availability

The source code for the data analysis of this paper can be

found at https://github.com/huangkang314/PupilLab. The

pre-trained DLC model along with the labeled datasets

(mice and PupilNet datasets), and pixel labeled data used in

the comparison of different methods are available in the

Zenodo repository https://doi.org/10.5281/zenodo.

5602387. Any other relevant data are available upon rea-

sonable request.
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