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Abstract 

Background:  Elaeagnus angustifolia L. is a deciduous tree in the family Elaeagnaceae. It is widely used to study abi-
otic stress tolerance in plants and to improve desertification-affected land because of its ability to withstand diverse 
types of environmental stress, such as drought, salt, cold, and wind. However, no studies have examined the mecha-
nisms underlying the resistance of E. angustifolia to environmental stress and its adaptive evolution.

Methods:  Here, we used PacBio, Hi-C, resequencing, and RNA-seq to construct the genome and transcriptome of E. 
angustifolia and explore its adaptive evolution.

Results:  The reconstructed genome of E. angustifolia was 526.80 Mb, with a contig N50 of 12.60 Mb and estimated 
divergence time of 84.24 Mya. Gene family expansion and resequencing analyses showed that the evolution of 
E. angustifolia was closely related to environmental conditions. After exposure to salt stress, GO pathway analysis 
showed that new genes identified from the transcriptome were related to ATP-binding, metal ion binding, and 
nucleic acid binding.

Conclusion:  The genome sequence of E. angustifolia could be used for comparative genomic analyses of Elae-
agnaceae family members and could help elucidate the mechanisms underlying the response of E. angustifolia to 
drought, salt, cold, and wind stress. Generally, these results provide new insights that could be used to improve 
desertification-affected land.
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Background
The world’s population is increasing rapidly and is pro-
jected to reach 9.6 billion by 2050 [1]. Hence, global food 
production will need to increase 38 and 57% by 2025 and 
2050, respectively, to maintain the current level of food 
supply [2]. However, the world’s irrigated land is decreas-
ing by 1–2% annually [3], and soil degradation due to 
salinization is one of the major causes of this reduction 

in irrigated land [4]. More than 1125 million hectares of 
land worldwide are salt-affected, of which approximately 
76 million hectares are affected by human-induced salini-
zation and sodification [4]. Salinity stress is a major abi-
otic stress affecting plant growth and crop productivity 
[5]. Soil salinization is a major cause of land degradation, 
and it can make land unsuitable for crop cultivation [6]. 
In recent years, biological measures have been shown to 
be some of the most effective approaches for ameliorat-
ing salt-affected soil [7].

E. angustifolia L., also known as Russian olive, is a 
deciduous tree belonging to the family Elaeagnaceae 
(Fig. 1). It is native to central and western Africa and is 
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distributed in the United States, Canada, the Mediterra-
nean coast, southern Russia, Iran, and India. It is widely 
distributed in China and occurs in several provinces 
including Xinjiang, Gansu, Ningxia, and Shandong [8]. 
The fruit of E. angustifolia is rich in sugars, flavonoids, 
and other substances that can regulate the circulation of 
blood and immune function in humans; the branches, 
leaves, and flowers have anti-aging properties and can be 
used to treat burns, bronchitis, dyspepsia, and neurasthe-
nia [9]. E. angustifolia is tolerant of drought, salt, cold, 
and wind stress. It is prolific and highly adaptable, as it 
can grow in a variety of climates and soils [10]. E. angus-
tifolia can grow and reproduce normally in soil with a 
salt content of 0.8–1.2% [11]. As a nitrogen-fixing, acti-
norrhizal plant, E. angustifolia is likely an early succes-
sional, pioneer species that can colonize nitrogen-poor 
soils such as sandy, eroded mineral soils and wetlands 
[12]. Consequently, E. angustifolia has often been used 
for the reforestation of arid and salinized zones [13].

Although the development of genome sequencing 
has aided the domestication and improvement of many 
species [14], relatively few studies have used genomic 
tools to study E. angustifolia. Ghodhbane-Gtari et  al. 
[15] reporteds the 11.3-Mbp draft genome sequence of 
Frankia sp. strain BMG5.11 in E. angustifolia, which had 
a G + C content of 69.9% and 9926 candidate protein-
encoding genes. Lin et al. [16] conducted a genome-wide 
transcriptome analysis and found that high salt concen-
tration inhibited the growth and photosynthesis of E. 
angustifolia, which was caused by the down-regulation 
of genes encoding key enzymes involved in photosyn-
thesis and genes related to important structures in the 
photosystems and light-harvesting complexes. However, 
no studies to date have examined the reference genome 
of E. angustifolia. Furthermore, little is known about the 
mechanisms of adaptive evolution and transcription of E. 
angustifolia under salt stress.

Here, we used PacBio, Hi-C assisted assembly, rese-
quencing, and other technologies to explore the adaptive 
evolution of E. angustifolia. We used the transcriptome 
to explore the mechanism by which E. angustifolia 
responds to salt stress. The results of this study provide 
new insights that could be used to aid the planting of E. 
angustifolia, increase food income, and promote recov-
ery from global land desertification.

Materials and methods
Sample collection and DNA extraction
Samples from E. angustifolia trees (obtained from 
Xinjiang Province, NCBI Taxonomic ID, 36777) were 
collected from the south campus of Shandong Agricul-
tural University, Tai’an, Shandong, China (36.17101°N, 
117.16074°E, 134.0  masl) (Fig.  1) for genomic DNA 
sequencing, Hi-C assisted assembly, and genome evolu-
tion and transcriptome analyses. Twelve wild E. angusti-
folia samples were collected for genome resequencing in 
Gansu, China (Table  1). After collection, samples were 
immediately immersed in liquid nitrogen and stored until 
DNA extraction. DNA was extracted using the Cetyltri-
methyl Ammonium Bromide (CTAB) method. The qual-
ity of the extracted genomic DNA was assessed using 1% 
agarose gel electrophoresis [17], and the concentration 
was quantified using a Qubit fluorimeter (Invitrogen Co., 
Carlsbad, CA, USA).

Genomic sequencing
The library was constructed after evaluating the quan-
tity and quality of DNA samples. Two 270-bp paired-
end libraries were prepared according to the Illumina 
protocol and sequenced on the Illumina HiSeq 2000 
platform (Biomarker Technologies Co., Ltd., Beijing, 
China). Whole-genome sequencing was performed using 
the PacBio Sequel sequencer (Biomarker Technologies 
Co., Ltd., Beijing, China). Twelve 20-kb single-molecule 

Fig. 1  E. angustifolia in the south campus of Shandong Agricultural University, Tai’an, Shandong, China
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real-time sequencing (SMRT) bell libraries were con-
structed using a PacBio DNA Template Prep Kit 1.0 
(Vazyme Biotech Co., Ltd., Nanjing, Jiangsu, China). The 
templates were size-selected, and the BluePippin devices 
(Sage Science, Inc., Annoron, Beijing, China) were used 
to enrich long snippets (> 10 kb). The PacBio Sequel plat-
form processed a total of 39 single cells per molecule in 
real time (SMRT).

Genome assembly and genome annotation
A kmer map of k = 19 was constructed using the two 
270-bp libraries and used to evaluate genome size, repeat 
sequence ratio, and heterozygosity. The formula used was 
G = (N k-mer—Nerror_k-mer)/D, where G is genome 
size, N k-mer is the number of k-mers, Nerror_k-mer is 
the number of k-mers with the depth of 1, and D is the 
k-mer depth.

All low-quality sequences shorter than 500  bp were 
removed through the PacBio sequencing platform (Bio-
marker Technologies Co., Ltd., Beijing, China). The 
results of Canu’s [18] assembly and the wtdbg (https://​
github.​com/​ruanj​ue/​wtdbg) assembly were merged using 
Quickmerge [19]. The homologous contigs of the merged 
genomes were determined by comparison of the two 
genome assemblies, and the short-read data were used to 
error correct the merged genome with Pilon [20].

State programs [21] were used to construct a database 
of repetitive sequences for the E. angustifolia genome. 
EVM v1.1.1 [20] software was then used to create a con-
sensus repeat library. Genscan [22] and other programs 
were used for ab initio gene model prediction. GeMoMa 
v1.3.1 [23] was used for homology-based gene prediction. 
Hisat v2.0.4 [24] and Stringtie v1.2.3 [24] were used for 
assembly based on reference transcripts. TransDecoder 

v2.0 [25] and GeneMarkS-T v5.1 [26] were used for gene 
prediction. PASA v2.0.2 [27] was used for the predic-
tion of unigene sequences based on transcriptome data 
without a reference assembly. Finally, EVM v1.1.1 was 
used to integrate the prediction results obtained by the 
above three methods. Based on the Rfam [28] database 
and miRBase [29] database and Infenal 1.1 [30] for rRNA 
and microRNA prediction, tRNAscan-SE v1.3.1 [31] 
was used to identify tRNAs. BLAST v2.2.31 [22] with 
an E-value cutoff of 1E-5 was used to align the predicted 
gene sequences with functional databases such as Gene 
Ontology (GO) [32] and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) [33].

The Core Eukaryotic Gene Mapping Approach 
(CEGMA) v2.5 [34] database contains 458 conserved 
core genes in eukaryotes. CEGMA was used to evalu-
ate the completeness of the final genome assembly. The 
embryophyta_odb9 database in BUSCO v2 [35] contains 
1440 conserved core genes in terrestrial plants. We used 
BUSCO software to evaluate the completeness of the E. 
angustifolia genome assembly.

Hi‑C analysis and assembly
Formaldehyde was used to fix the fresh E. angustifolia tis-
sue samples. The DNA was digested with the restriction 
enzyme HindIII; after adding biotin-labeled bases, the 
repaired DNA was circularized, de-crosslinked, and puri-
fied, followed by fragmentation into 300–700-bp frag-
ments. Streptavidin magnetic beads were used to capture 
the DNA fragments showing interaction relationships for 
library construction. Qubit2.0 (Life Technologies, CA, 
USA) and Agilent 2100 (Agilent Technologies) were used 
to detect the concentration and insert size of the library, 

Table 1  Wild E. angustifolia samples used in this study for whole-genome resequencing

The numbers (R01, R02, R03, R04, R05, R06, R07, R08, R09, R10, R11, R12) represent 12 wild E. angustifolia samples. G1, G2, and G3 were short for Group 1, 2, and 3, 
respectively

Population Code ID Sample ID Group Country Province City Coordinates Altitude (m)

E. angustifolia R01 1583 G1 China Gansu Gulang 37°29ʹ25ʺN; 102°54ʹ37ʺE 2026.8

R02 1619 G1 China Gansu Jinchang 38°21ʹ25ʺN; 102°8ʹ24ʺE 1704.6

R03 1684 G1 China Gansu Linze 38°58ʹ1ʺN; 99°54ʹ52ʺE 1900.3

R04 1697 G2 China Gansu Jia Yuguan 39°31ʹ28ʺN; 98°51ʹ8ʺE 1531.1

R05 1726 G2 China Gansu Jiuquan 39°33ʹ37ʺN; 98°51ʹ37ʺE 1457.4

R06 1758 G2 China Gansu Jiuquan 39°41ʹ40ʺN; 98°35ʹ55ʺE 1433.6

R07 1784 G2 China Gansu Jiuquan 39°41ʹ44ʺN; 98°35ʹ57ʺE 1473.0

R08 1811 G2 China Gansu Zhangye 39°41ʹ42ʺN; 99°35ʹ33ʺE 1450.1

R09 1857 G3 China Gansu Zhangye 39°47ʹ14ʺN; 98°14ʹ36ʺE 1695.0

R10 2063 G3 China Gansu Dunhuang 40°7ʹ55ʺN; 94°54ʹ48ʺE 1756.2

R11 2106 G3 China Gansu Guazhou 40°22ʹ3ʺN; 99°54ʹ52ʺE 1133.0

R12 2216 G3 China Gansu Lanzhou 36°29ʹ21ʺN; 103°33ʹ22ʺE 1902.8

https://github.com/ruanjue/wtdbg
https://github.com/ruanjue/wtdbg
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and qPCR was used to quantify the effective concentra-
tion of the library.

The Illumina high-throughput sequencing platform 
was used to sequence the Hi-C library to produce a large 
number of high-quality reads. BWA (version: 0.7.10-r789; 
alignment mode: aln; other parameters default) [36] was 
used to compare the sequencing paired-end data with the 
sequences of the assembled genome. The contigs of the 
draft genome were split into simulated 500-kb contigs, 
and LACHESIS software [37] was used to cluster these 
contigs into groups.

Genome evolution and gene family expansion
We used the single-copy protein sequences of seven 
other species, Solanum lycopersicum, Arabidopsis thali-
ana (Linn) Heynh, Populus trichocarpa Torr & Gray, 
Glycine max (Linn) Merr, Oryza sativa Linn, Amborella 
trichopoda Baill, and Ziziphus jujuba M, to build phy-
logenetic trees using PHYML software [38]. The diver-
gence times between E. angustifolia and the seven other 
sequenced species were estimated using MrBayes60 and 
the Mcmctree [39] programs implemented in the Phy-
logenetic Analysis by Maximum Likelihood (PAML) 
61 software package. Calibration times were obtained 
from the TimeTree database (http://​www.​timet​ree.​org/) 
with ‘(A. trichopoda, O. sativa) ‘< 199 > 173’, (A. thaliana, 
P. trichocarpa) ‘< 117 > 98’, (Z. jujuba, E. angustifolia) 
‘< 117 > 79’, and (G. max, E. angustifolia) ‘< 113 > 89’. We 
then calculated the four-fold synonymous third-codon 
transversion (4DTv) values.

OrthoMCL [40] software was used to cluster the 
protein sequences of E. angustifolia and seven other 
sequenced species. CAFE [41] was used to analyze gene 
family contraction and expansion. Functional enrichment 
analysis was used to identify the function of genes over-
represented in our genome assembly. GO enrichment 
analysis and KEGG annotation were performed using R 
scripts [42]. CodeML [43] was used in PAML to detect 
the rapidly evolving genes in E. angustifolia with a single 
copy shared by all species.

Genome resequencing
The code IDs of 12 wild E. angustifolia samples were 
R01–R12 (Table 1). The raw reads obtained by sequenc-
ing were filtered, low-quality reads with adapters were 
removed, and clean reads were obtained for subsequent 
information analysis. We used single nucleotide poly-
morphisms (SNPs) and small insertions and deletions 
(small Indels) to detect differences between our 12 wild E. 
angustifolia and the reference genome. The demographic 
history of 12 wild E. angustifolia was inferred using a hid-
den Markov model approach as implemented in the Pair-
wise Sequentially Markovian Coalescent (PSMC) model 

based on the SNP distribution [44]. We scaled results to 
real time, assuming 2 years per generation and a neutral 
mutation rate of 7.31 × 10–9 (CI 95% Poisson distribution: 
5.20 × 10–9 ~ 8.00 × 10–9) per generation [45]. Genes with 
SNPs and Indels were analyzed by functional annotation. 
Polymorphic genes in the 12 wild E. angustifolia samples 
were compared with BLAST, GO, KEGG, and other func-
tional databases to evaluate their function. MEGA X [46] 
software was used to construct phylogenetic trees with 
the neighbor-joining method. Admixture [47] software 
was used to analyze the group structure of the samples. 
The number of subgroups (K value) was preset to 1–10 
for clustering; the clustering results were cross-validated, 
and the optimal number of clusters was determined 
according to the valley value of the cross-validation error 
rate. We artificially divided the 12 wild E. angustifolia 
species into three groups (G1–G3) based on factors such 
as latitude and longitude of the sampling sites (Table 1), 
and we designated the outgroup Z. jujuba as G0. PCA 
was performed on 12 wild E. angustifolia species and Z. 
jujuba.

Salinity experiment
A greenhouse experiment was conducted in 2018 at State 
Key Laboratory of Crop Biology, Shandong Agricul-
ture University, Tai’an, China. In March 2018, we mixed 
200 seeds (collected from the E. angustifolia field in the 
breeding experimental base of Shandong Agricultural 
University) and wet sand into woven bags and placed 
them in an outdoor leeward shelter for lamination. We 
prepared 45 clay pots with an outer diameter of 29 cm, an 
inner diameter of 25 cm, and a depth of 18 cm. Each pot 
contained 15 kg of sterilized soil [48]. Three seeds were 
planted in each pot after one-third of the seeds had ger-
minated in April 2018.

Irrigation of all pots was carried out for 2  months 
using normal urban water (salinity of 0.6  dS  m−1) at 
field capacity. When seedlings were well established 
two months after planting, four concentrations (elec-
trical conductivity of 12 dS m−1, 16 dS m−1, 20 dS m−1, 
and 24 dS  m−1) of NaCl analytical reagent (Keephway 
Technologies Corporation, Beijing, China) solution 
were used for the salt stress treatment; 5 pots of E. 
angustifolia were randomly selected for each treat-
ment following the methods of Zeng et  al. [49]. The 
other 25 pots were watered using normal urban water. 
Observations of the leaves of the four test groups were 
made every day to determine the level of salt stress 
(Fig. 2). Salinity stress continued for 10 days when the 
salinity toxicity in the leaves was over 20 dS m−1. Salin-
ity treatment was initiated with 25 pots by NaCl ana-
lytical reagent (Keephway Technologies Corporation, 
Beijing, China) solution with 20 dS m−1. We randomly 

http://www.timetree.org/
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divided 25 pots into 5 treatments (Group 1, 2, 3, 4, 5). 
The leaves of E. angustifolia in Group 1 were collected 
immediately (control group including T01&T02&T03); 
the leaves in Group 2 were collected 1  h after treat-
ment (salinity group including T04&T05&T06); the 
leaves in Group 3 were collected 6  h after treatment 
(salinity group including T07&T08&T09); the leaves 
in Group 4 were collected 12 h after treatment (salin-
ity group including T10&T11&T12); and the leaves in 
Group 5 were collected 24  h after treatment (salinity 
group including T13&T14&T15). All fresh leaf sam-
ples were immediately dissected and submerged in 
RNA later® solution and stored in a − 80 °C freezer for 
RNA extraction. During the experiment, the maximum 
temperature was 31.0 ± 5.0 °C, and the minimum tem-
perature was 19.5 ± 4.5 °C.

RNA extraction, library construction, and RNA sequencing
The total RNA of each sample was extracted from 
the leaves of E. angustifolia using the RNA plant Plus 
Reagent (Vazyme Biotech Co., Ltd., Nanjing, Jiangsu, 
China). The RNA integrity and concentration were 
assessed using an Agilent 2100 Bioanalyzer (Agilent 
Technologies, Inc., Santa Clara, CA, USA). mRNA was 
isolated by the NEBNext Poly (A) mRNA Magnetic 
Isolation Module (NEB, E7490). The cDNA library was 
constructed using the NEBNext Ultra RNA Library 
Prep Kit for Illumina (NEB, E7530) and NEBNext Mul-
tiplex Oligos for Illumina (NEB, E7500) per the manu-
facturer’s instructions. Briefly, the enriched mRNA 
was fragmented into approximately 200-nt RNA 
inserts, which were used to synthesize first-strand 
cDNA and second-strand cDNA. End-repair/dA-tail 
and adaptor ligation were performed on the double-
stranded cDNA. The suitable fragments were isolated 
by Agencourt AMPure XP beads (Beckman Coulter, 
Inc.) and enriched by PCR amplification. Finally, the 
constructed cDNA libraries of E. angustifolia were 
sequenced on a flow cell using the Illumina HiSeq™ 
sequencing platform.

Transcriptome analysis using reference genome‑based 
reads mapping
Low-quality reads, such as those containing adaptors, 
with unknown nucleotides > 5%, or Q20 < 20% (percent-
age of sequences with sequencing error rates < 1%), 
were removed using perl scripts. The clean reads that 
were filtered from the raw reads were mapped to the E. 
angustifolia genome (OGSv3.2) using Tophat2 [50]. The 
aligned records from the aligners in BAM/SAM format 
were further examined to remove potential duplicate 
molecules. Gene expression levels were estimated using 
FPKM values (fragments per kilobase of exon per mil-
lion fragments mapped) by Cufflinks software [51].

Identification of differentially expressed genes
DESeq2 [52] and Q-value were used to identify differ-
entially expressed genes between Group 1 and Groups 
2, 3, 4, and 5. Differences in gene abundance between 
these samples were calculated based on the ratio of 
the FPKM values. The false discovery rate (FDR) con-
trol method was used to identify the P-value thresh-
old to evaluate the significance of differences. Here, 
only genes with an absolute value of log2 ratio ≥ 2 and 
FDR significance score < 0.01 were used in subsequent 
analyses.

Sequence annotation
Differentially expressed genes were compared against 
various protein databases by BLASTX, including the 
National Center for Biotechnology Information (NCBI) 
non-redundant protein (Nr) database and Swiss-Prot 
database with a cut-off E-value of 10–5. Furthermore, 
genes were searched against the NCBI non-redundant 
nucleotide sequence (Nt) database using BLASTn with 
a cut-off E-value of 10–5. Genes were retrieved based 
on the best BLAST hit (highest score) along with their 
protein functional annotation.

The Nr BLAST results were imported into the Blast2 
GO program [53]. GO annotations for the genes were 
obtained by Blast2GO. In this analysis, all of the anno-
tated genes were mapped to GO terms in the database, 
and the number of genes associated with each term was 
counted. A perl script was then used to plot the GO 
functional classification for the unigenes to visualize 
the distribution of gene functions. The obtained anno-
tations were enriched and refined using the TopGo (R 
package). The gene sequences were also aligned to the 
Clusters of Orthologous Group (COG) database to pre-
dict and classify functions [54]. KEGG pathways were 
assigned to the assembled sequences by perl scripts.

Fig. 2  Treatment of E. angustifolia under salt stress for 10 days. The 
letters in pictures represent the electrical conductivity of different 
NaCl analytical reagent solutions. A 12 dS m−1; B 16 dS m−1; C 
20 dS m−1; D 24 dS m−1
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Results and discussion
Genome assembly of E. angustifolia
One band was visible following 1% agarose gel electro-
phoresis, and the concentration of DNA extracted was 
approximately 474.3  mg  L−1. A total of 5,125,675 sub-
reads were obtained by filtering low-quality data, and a 
total of 44.27 Gb raw PacBio sequel reads were obtained, 
with an average length of 8.64  kb (Additional file  1: 
Table S1). The subread N50 was 12,635 bp, and the aver-
age length was 8636 bp (Additional file 1: Table S2). After 
merging and correcting the assemblies, the final esti-
mated genome size was 526.80 Mb, and the contig N50 
was 12.60 Mb (Additional file 1: Table S3).

The total number of k-mers was 153,631,375,991, with 
a k-mers peak at a depth of 111 (Fig.  3A), and the final 
genome had a heterozygosity estimate of 1.47%. We con-
structed a specific repeat sequence database for the pre-
diction of repeat sequences for specific species, and the 
prediction yielded approximately 263.44  Mb of repeats 
without overlap, accounting for 50.01% of the total length 
of repeat sequences (Additional file 1: Table S4). A total of 
31,730 (Additional file 1: Table S5) protein-coding genes 

and 127 miRNAs were annotated by integrating different 
methods (Additional file 1: Table S6). There were 30,771 
genes available for transcriptome sequencing, account-
ing for 96.98% of all genes (Fig. 3B). A total of 96.89% of 
the genes could be annotated to NR and other databases 
(Additional file 1: Table S7). Conserved CEGMA analyses 
indicated that 97.38% of the core protein-coding genes 
were recovered in our assembled genome (Additional 
file  1: Table  S8). BUSCO revealed 1290 complete gene 
models out of 1,440 (89.58%); 23 fragmented and 184 
complete genes were found in duplicate (Additional file 1: 
Table S9).

Hi‑C assisted assembly
We obtained 39.56  Gb clean reads, with a sequenc-
ing coverage of 75 × and Q30 ratio of > 95.46% (Addi-
tional file 1: Table S10). The ratio of reads mapped to the 
assembled genome was 90.68%, and the ratio of unique 
mapped read pairs was 61.13%, indicating that the Hi-C 
data were suitable for subsequent analysis (Additional 
file 1: Table S11). A total of 80.79 M pairs of reads from 
the genome were obtained in this experimental library. 

Fig. 3  Genome assembly and genome evolution. A K-mer distribution of genome sequencing reads of E. angustifolia. K-mers (K = 19) were 
extracted from the paired-end library with an insert size of 270 bp. The total 23-mer count is 51,064,317,165. The peak 19-mer depth is 111, and the 
genome size was calculated as 51,064,317,165/111 = 456.24 Mb. B The integrated gene is derived from the distribution map of three prediction 
methods. C Phylogenetic tree of eight species D Estimation of the divergence time between E. angustifolia and other species. The number in 
each branch is the divergence time from the present (in million years ago). E Distribution of 4DTV values among Z. jujuba, E. angustifolia, and A. 
trichopoda genomes
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Among them, 72.98  M pairs were valid Hi-C data, 
accounting for 90.32% of the data from the genome, and 
the ratio of invalid interaction pairs was 9.68% (Addi-
tional file 1: Table S12).

E. angustifolia has 14 chromosomes. The genome was 
also visualized at the chromosome level. After Hi-C 
assembly, a total of 510.71 Mb of genomic sequences were 
mapped to the chromosomes, accounting for 96.94% of 
the total length of the sequences, and the correspond-
ing number of sequences was 269, accounting for 45.83% 
of the total number of sequences. Among the sequences 
located on the chromosomes, the sequence length that 
could determine the order and direction of chromosomes 
was 473.91 Mb, accounting for 92.8% of the total length 
of the sequences located on the chromosomes, and the 
number of corresponding sequences was 104, accounting 
for 38.66% of the total number of sequences located on 
the chromosomes (Table 2).

Genome evolution of E. angustifolia
Comparative genome analysis harnesses the power 
of sequence comparisons within and between species 
to infer evolutionary history and provide information 
on the function of specific DNA sequences [55]. The 
deep-level evolutionary history of E. angustifolia has 
not yet been clarified. In our study, a phylogenetic tree 
(Fig.  3C, D) revealed that the origins of A. trichopoda, 
O. sativa, and S. lycopersicum were dated to 187.35, 

178.21, and 137.32  million years ago (Mya), respec-
tively. The origins of A. thaliana in the family Brassi-
caceae and P. trichocarpa in the family Salicaceae were 
dated to 137.32  Mya; G. max (107.52  Mya) in the fam-
ily Leguminosae was in the same branch as Z. jujuba in 
the family Rhamnaceae and E. angustifolia in the family 
Elaeagnaceae. The origins of Z. jujuba and E. angustifolia 
were both dated to 84.24 Mya. These findings are similar 
to those of Harkess et al. [56].

To further analyze the evolutionary divergence of E. 
angustifolia and other species, 4DTv rates were calcu-
lated (Fig. 3E). The highest 4DTV value of A. trichopoda 
was 0.68, indicating that no recent genome-wide dupli-
cation has occurred. The 4DTV value peak of Z. jujuba 
was 0.08, and that of E. angustifolia was 0.12, indicating 
that both Z. jujuba and E. angustifolia have undergone 
recent genome-wide replication. Both 4DTv values of 
the autopolyploid of Z. jujuba and E. angustifolia peaked 
at 0.48, indicating that the time of the polyploid split-
ting event of Z. jujuba and E. angustifolia was similar 
to the time before the divergence of Rosaceae and Elae-
agnaceae. The orthologs between E. angustifolia and Z. 
jujuba and between E. angustifolia and A. trichopoda 
indicated that the 4DTv values peaked at 0.25 and 0.48, 
respectively, suggesting that the divergence between E. 
angustifolia and A. trichopoda occurred earlier.

Expanded gene families related to stress adaptation in E. 
angustifolia
The identification of expanded gene families provides val-
uable insights into the biological innovation and adaptive 
evolution of E. angustifolia. A total of 27,553 of 31,730 
genes of E. angustifolia could be classified into 13,309 
gene families, of which 433 gene families were unique to 
E. angustifolia (Additional file  1: Table  S13). Compared 
with Z. jujuba, E. angustifolia had fewer expanded gene 
families (375 vs. 404) and fewer contracted gene fami-
lies (464 vs. 469) (Fig.  4A, Additional file  2: Table  S14). 
Enrichment analysis of the 839 expanded and contracted 
gene families revealed that they were enriched in the 
pathways strictosidine synthase and xylanase inhibitor 
N-terminal. Strictosidine synthase has been detected in 
some major crops and is thought to make crops resist-
ant to salt stress [57]. Xylanase inhibitor N-terminal is 
thought to be related to thermal stability [58]. The ampli-
fication of the above taxonomic genes might be related to 
the environmental conditions experienced by E. angusti-
folia. High temperature and drought have driven adaptive 
evolution in E. angustifolia [8] and increased evolution-
ary differences between E. angustifolia and other species.

The KEGG results revealed a scattered functional dis-
tribution of these genes, and 1 variant gene of the 330 
genes was related to the biosynthesis of amino acids 

Table 2  The genomic sequence of E. angustifolia mapped to the 
chromosomes

The statistics were all based on sequence lengths of 1 Kb or more

Group Sequence count Sequence length (bp)

Lachesis group 0 28 27,993,989

Lachesis group 1 41 99,096,873

Lachesis group 2 23 57,474,495

Lachesis group 3 12 48,501,719

Lachesis group 4 28 30,089,891

Lachesis group 5 7 26,462,114

Lachesis group 6 28 18,656,685

Lachesis group 7 10 24,577,875

Lachesis group 8 8 26,266,316

Lachesis group 9 8 24,034,829

Lachesis group 10 9 27,579,915

Lachesis group 11 19 32,396,042

Lachesis group 12 26 37,035,969

Lachesis group 13 22 30,539,364

Total sequences clus-
tered (ratio %)

269 (45.83) 510,706,076 (96.94)

Total sequences 
ordered and oriented 
(ratio %)

104 (38.66) 473,912,606 (92.8)
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(Additional file  1: Table  S15). Further analysis of this 
pathway (Fig. 4B) revealed that the expression of the two 
pathways was increased during the synthesis of PRPP and 
imidazole-glycerol-3p. Previous studies indicate that both 
PRPP and imidazole-glycerol-3p are related to defense 
[59]. The GO (Additional file 1: Table S15) results showed 
that 28 variant genes were related to catalytic activity, 36 
to metabolic process, and 29 to cellular process. Many 
variant genes were related to response to stimulus, which 
might indicate previous natural selection on E. angustifo-
lia in response to harsh environments.

Drawing conclusions regarding the reduction in the 
adaptation of gene families was difficult given that we 
only analyzed gene families that were partly amplified 
from E. angustifolia. We identified 80 rapidly evolving 
genes in E. angustifolia through comparison of genes 
with 7 other species (Additional file  3: Table  S16). The 
functional predictions showed that several genes were 
related to pseudouridine-metabolizing bifunctional pro-
tein and RNA pseudouridine synthase. Previous research 
has shown that pseudouridine-metabolizing bifunctional 
protein is related to human urinary tract pathogenic 
Escherichia coli, the principal agent of urinary tract infec-
tions in humans [60]. Genomic studies of humans and 
other mammals have shown that there is no gene encod-
ing pseudouridine-metabolizing bifunctional protein, 
and the ability to metabolize pseudouridine has been lost 
[60]. This pattern of evolution in E. angustifolia might 
also be related to human and mammalian activities. 
The gene encoding carbon catabolite repressor protein 
4 is also rapidly evolving in E. angustifolia. The carbon 

catabolite repressor 4-CCR4 associated factor1 complex 
is the major enzyme complex responsible for catalyzing 
mRNA deadenylation. The degradation of messenger 
RNA caused by poly (A) tail shortening (deadenylation) is 
a central mechanism for the biological regulation of gene 
expression. This is a mechanism that plants have evolved 
to reprogram gene expression to maintain homeostasis in 
constantly changing environments [61]. Previous studies 
investigating carbon catabolite repressor 4-CCR4 associ-
ated factor1 function in plants have focused on the role 
of these genes in mediating biotic stress responses, such 
as resistance to pathogens [62]. This study has shown that 
the regulation of the gene encoding carbon catabolite 
repressor protein 4 has evolved rapidly in E. angustifolia 
to improve its tolerance to abiotic and biotic stress [63]. 
This is also the first study showing that a gene regulating 
carbon catabolite repressor protein 4 has been discov-
ered in E. angustifolia. Genes related to biotic and abiotic 
stress resistance were also among some of the 80 rapidly 
evolving genes, such as peptidyl-prolyl cis–trans isomer-
ase [64].

Resequencing analysis of 12 wild E. angustifolia samples 
in Gansu Province, China
The resequencing analysis of 12 wild E. angustifolia sam-
ples in Gansu Province, China (Table 1, Additional file 6: 
Fig. S1) generated 86.58 Gp clean reads, with a Q20 of 
96.64% and Q30 of 91.79%. The average coverage depth 
was 11 ×, and the genome coverage was 92.89% (Addi-
tional file 1: Tables S17–S19). In diploid genomes, runs of 
homozygosity are uninterrupted homozygous segments 

Fig. 4  Expanded gene families. A Expansion (red numbers) and contracted (blue numbers) gene families in different plants; “ + ” represents the 
number of gene families that have expanded on the node; and “−” represents the number of gene families that have contracted on the node. Black 
dots indicate a common ancestor. B Biosynthesis of the amino acid regulation pathway in the KEGG analysis of E. angustifolia 
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in the genome [65], and they can be used to quantify the 
level of inbreeding either in individuals or populations 
[66]. In this study, homozygous types accounted for most 
of the other 11 individuals except for R11 (Table 3). This 
suggests that hybridization might occur between differ-
ent close relatives in nature, which is consistent with the 
observation that hybridization is common in plants [67]. 
We also detected 74,790 CDS and 1,791,719 genome-
wide Indels (Additional file 1: Table S20).

The Pairwise Sequentially Markovian Coalescent 
(PSMC) model was used to estimate the historical effec-
tive population size based on genome-wide data of 12 
wild E. angustifolia species (Fig. 5A). In this study, there 
was no significant difference in the effective popula-
tion size among 12 wild E. angustifolia species 3.0 Mya, 
which indicated that there were no evolutionary differ-
ences among the 12 E. angustifolia 3.0 Mya. This was also 
similar to the time of differentiation of A. trichopoda, the 
sister of all angiosperms [56]. From 3.0 Mya to 350 thou-
sand years ago (Kya), the effective population size of 
12 wild E. angustifolia changed slightly. Notably, from 
1.5  Mya to 150  Kya, the species occured in Africa and 
showed no signs of divergence. The effective population 
size of the genome data of each race in this period was 
the same [44]. The effective population size of 12 wild E. 
angustifolia changed greatly from 350 to 23 Kya. The larg-
est change was observed in the effective population size 
of wild E. angustifolia R11 (2106), especially in the period 
55–35 Kya. The effective population size reached a maxi-
mum of approximately 60 × 104. At this time, the global 
temperature continued to rise, which might promote the 
rapid growth of the population of E. angustifolia [68]. At 

23 Kya, the effective population size of 12 wild E. angus-
tifolia decreased drastically, which corresponded to the 
last glacial period (the duration is approximately 26.5 to 
19  Kya). The global temperature continued to decrease, 
and the glaciers at the poles and mountains began to 
extend to low latitudes and altitudes [69]. This drastic 
change in the environment might have led to a reduction 
in the effective population size of E. angustifolia.

We used the R01 result to evaluate the function of 
the mutated genes (Additional file  1: Tables S21, S22, 
Fig.  5B, C). Substitutions mainly occurred in DNA 
binding (GO:0003677), Cellular Component: Nucleus 
(GO:0005634), DNA binding (GO:0003677) related to 
cytochrome [70], and Cellular Component: Nucleus 
(GO:0005634) related to defensive T cells [71]. This vari-
ation might be related to the environmental conditions 
experienced by E. angustifolia, including water shortages 
at high altitude [72].

The results of the phylogenetic tree (Fig. 5D) and PCA 
(Fig.  5E) were not consistent with expectation, with the 
exception of G1. This might be related to climate change 
[73] and landform change [74]. Alternatively, differ-
ences in the altitude, latitude, and longitude of the sam-
pling sites might explain this pattern (Table  1); various 
other factors might cause the results to deviate from 
expectation.

Genetic mechanisms underlying salt tolerance in E. 
angustifolia
To investigate the genetic mechanisms underlying salt 
tolerance in E. angustifolia, we performed a salinity 
experiment. We obtained 113.85  Gb clean reads. There 

Table 3  Number of SNPs for wild E. angustifolia samples

In a diploid, if a certain SNP site on homologous chromosomes is the same base, the SNP site is referred to as a homozygous SNP site. If the SNP loci on homologous 
chromosomes contain different types of bases, the SNP locus is referred to as a heterozygous SNP locus. Greater numbers of homozygous SNPs correspond to greater 
differences between samples and the reference genome. Greater numbers of heterozygous SNPs correspond to higher degrees of heterozygosity

number number of SNPs detected; Transition number of SNPs of the conversion type; Transversion number of SNPs of transversion type; Ti/Tv the ratio of SNPs of 
conversion to transversion type; Heterozygosity number of heterozygous SNPs; Homozygosity number of homozygous SNPs; Het-ratio the ratio of heterozygous SNPs

Code ID Sample ID SNP number Transition Transversion Ti/Tv Heterozygosity Homozygosity Het-ratio (%)

R01 1583 3,097,175 2,110,179 986,996 2.13 1,412,964 1,684,211 45.62

R02 1619 3,223,761 2,197,723 1,026,038 2.14 1,492,655 1,731,106 46.30

R03 1684 3,094,736 2,108,611 986,125 2.13 1,417,978 1,676,758 45.81

R04 1697 3,021,352 2,057,327 964,025 2.13 1,417,892 1,603,460 46.92

R05 1726 3,045,841 2,075,585 970,256 2.13 1,256,764 1,789,077 41.26

R06 1758 3,193,315 2,178,336 1,014,979 2.14 1,442,262 1,751,053 45.16

R07 1784 3,225,579 2,198,583 1,026,996 2.14 1,405,876 1,819,703 43.58

R08 1811 3,108,956 2,117,042 991,914 2.13 1,537,532 1,571,424 49.45

R09 1857 3,022,369 2,058,271 964,098 2.13 1,311,017 1,711,352 43.37

R10 2063 3,028,547 2,060,171 968,376 2.12 1,379,687 1,648,860 45.55

R11 2106 3,223,275 2,197,798 1,025,477 2.14 1,617,799 1,605,476 50.19

R12 2216 3,115,254 2,122,083 993,171 2.13 1,369,366 1,745,888 43.95
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were a total of 6.40 Gb clean reads for each sample, and 
the Q30 base percentage was 90.74% and higher (Addi-
tional file 1: Table S23). The clean reads of each sample 
were aligned to the reference genome, and the align-
ment efficiency ranged from 90.87 to 92.30% (Additional 
file  1: Table  S24). Based on the comparison results, we 
carried out an alternative splicing prediction analysis 
and gene structure optimization analysis. We also com-
pared the genome sequencing results of E. angustifo-
lia and identified 4,404 new genes in the transcriptome 
of E. angustifolia (Additional file  4: Table  S25), and we 
obtained 3953 functional annotations (Additional file  1: 
Table  S26). We analyzed the GO pathways functions of 
the new genes (Additional file 5: Table S27). The results 
showed that 3391 genes were involved in the regula-
tion of Molecular Function, 3121 genes were involved 

in the regulation of Biological Process, and 2613 genes 
were involved in regulation of Cellular Component. In 
Molecular Function, 256 genes were involved in regulat-
ing ATP binding (GO:0005524), 158 genes were involved 
in regulating metal ion binding (GO:0046872), and 
131 genes were involved in regulating zinc ion binding 
(GO:0008270), 106 genes were involved in regulating the 
nucleic acid binding (GO:0003676), and 104 genes were 
involved in regulating the structural constituent of ribo-
some (GO:0003735). Previous studies have shown that 
AtABCG36-overexpressing plants are more resistant to 
drought and salt stress [75], overexpression of metal ion 
binding peptides–phytochelatins and metallothionein 
genes increases tolerance to stress [76], and overexpres-
sion of GsZFP1 (zinc ion binding) in alfalfa increases 
salt tolerance [77]. ‘Nucleic acid binding’ was the most 

Fig. 5  Resequencing analysis. A Demographic history of 12 wild E. angustifolia samples. B GO annotation clustering of variant genes in sample 
R01. C Sample clustering results corresponding to each K value of Admixture. D Phylogenetic trees of 12 wild E. angustifolia samples and outgroup 
Z. jujuba. The numbers (1583, 1619, 1684, 1697, 1726, 1758, 1784, 1811, 1857, 2063, 2106, 2216) represent the Sample IDs of 12 wild E. angustifolia 
samples, and the number ‘1550’ represents the outgroup Z. jujuba. The color of G0, G1, G2, and G3 was purple, red, blue, and green. respectively. E 
Three-way PCA plot of E. angustifolia and Z. jujuba 
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significantly enriched GO term in the MF category for 
both Supreme and Parish up-regulated genes under salt 
treatment, suggesting that this process might play an 
important role in salt tolerance in both cultivars [78]; the 
structural constituent of ribosome has been shown to 
play an important role in salinity tolerance [79]. In Bio-
logical Process, there were 236 genes involved in the reg-
ulation of oxidation–reduction process (GO:0055114), 
108 genes involved in the regulation of protein phospho-
rylation (GO:0006468), and 94 genes involved in the reg-
ulation of transcription, DNA-templated (GO:0006355). 
Previous transcriptome profiling experiments have 
indicated that oxidation–reduction processes, protein 
phosphorylation, and DNA-templated are related to salt 
tolerance in plants [80–83]. Xiong et  al. [84] suggested 
that the homeostasis of the oxidation–reduction process 
is important for salt tolerance in plants. Hsu et  al. [85] 
identified novel salt stress-responsive protein phospho-
rylation sites from membrane isolates of abiotic-stressed 
plants by membrane shaving followed by Zr4 + -IMAC 
enrichment, and the identified phosphorylation sites play 
an important role in the salt stress response in plants. Wu 
et  al. [78] showed that genes that were down-regulated 
under salt treatment are involved in “regulation of tran-
scription, DNA-templated.” In Cellular Component, there 
were 668 genes involved in the regulation of the inte-
gral component of membrane (GO:0016021), 201 genes 
involved in the regulation of nucleus (GO:0005634), 153 
genes in the regulation of membrane (GO:0016020), 116 
genes involved in regulating cytoplasm (GO:0005737), 
and 101 genes involved in regulating plasma membrane 
(GO:0005886). In conclusion, the GO pathways functions 
of the new genes in E. angustifolia showed that the func-
tions of the new genes in the Molecular Function and 
Biological Process categories were mainly involved in the 
regulation of salt stress.

According to Additional file 1: Table S28 and Fig. 6A–
D, the number of transcripts with significant expression 
differences between control Group 1 and experimental 
Group 2 was 137. The expression of 82 and 55 transcripts 
was significantly up-regulated and down-regulated, 
respectively. Similarly, the number of transcripts with 
significant expression differences between control Group 
1 and experimental Group 3 was 2670, of which 1260 
were up-regulated and 1410 were down-regulated. The 
number of transcripts with significant expression differ-
ences between control Group 1 and experimental Group 
4 was 3619, of which 1668 were up-regulated and 1951 
were down-regulated. The number of transcripts with 
significant expression differences between control Group 
1 and experimental Group 5 was 1404, of which 1193 
were up-regulated and 211 were down-regulated. A large 
number of differentially expressed transcripts in the two 

databases indicate that salt stress induces a large num-
ber of gene expression changes in E. angustifolia, which 
reflects the complexity of the mechanism underlying the 
response of E. angustifolia to salt stress.

The GO pathway annotations (Fig.  6E–H) of the four 
experimental groups compared with the control group 
revealed a pattern consistent with the differential expres-
sion among the four experimental groups, and salt stress 
had a significant effect on proteins in the functional 
categories Biological Process, Molecular Function, and 
Cellular Component [86]; the effects on different physio-
logical processes also differed. After salt stress, metabolic 
process, cellular process, and single-organism process 
were greatly affected within Biological Process, and bind-
ing and catalytic activity were greatly affected within 
Molecular Function. Salt stress affected the expression of 
related genes during growth and development as well as 
the activity of certain proteins [87], which had a greater 
impact on the growth and development of E. angustifolia.

We also performed KEGG pathway analysis of dif-
ferentially expressed gene transcripts (Fig.  6I–L). The 
metabolic process and signal pathways that regulate and 
change under salt stress in plant bodies could be clearly 
observed according to the KEGG pathway analysis. Com-
parison of the experimental group and control group 
revealed that these changes were mostly concentrated in 
sugar, amino acid metabolism, and plant hormone sig-
nal transduction. Salt stress had obvious effects on Envi-
ronmental Information Process, Genetic Information 
Processing, and Metabolism and Organismal Systems. 
After 1  h of salt stress, there were significant changes 
in oxidative phosphorylation, ribosome, and starch and 
sucrose metabolism, and KEGG pathways (Fig. 6M) were 
enriched in oxidative phosphorylation and circadian 
rhythm-plant. After 6 h and 12 h of salt stress, there were 
significant changes in plant hormone signal transduction, 
protein processing in endoplasmic reticulum, biosynthe-
sis of amino acids, phenylpropanoid biosynthesis, carbon 
metabolism, and plant-pathogen interaction, and KEGG 
pathways (Fig.  6N, O) were enriched in plant hormone 
signal transduction. After 24 h of salt stress, there were 
significant changes in amino sugar and nucleotide sugar 
metabolism and other metabolic processes, and KEGG 
pathways (Fig. 6P) were enriched in plant hormone signal 
transduction.

Several studies have shown that partial KEGG path-
way changes are related to salt resistance. Circadian 
rhythms synchronize intracellular calcium dynamics and 
ATP production for growth [88] and have a large effect 
on plant immunity during plant–pathogen interactions 
[89]. Oxidative phosphorylation plays a role in plant salt 
tolerance by coordinating ROS scavenging pathways to 
regulate intracellular ROS levels, prevent cell damage, 
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and control ROS signal transduction [90]. The signifi-
cance of compatible solutes such as sugars, amino acids, 
and tertiary amines in salt stress has been well docu-
mented [91]. They not only provide an essential source 
of energy and nutrients for plants under salt stress but 
also act as osmotic adjustment substances to balance the 
osmotic potential appended by high salinity [92]. The 
accumulation of soluble sugars and sucrose can improve 
salt tolerance [93]. The loss of integrity of the ribosome 
through the removal of a putative ribosome maturation 
factor or a ribosomal protein confers salt tolerance to E. 
coli cells [94]. The endoplasmic reticulum is associated 
with salt tolerance in tomato [95]. Metabolic adaptation 
is crucial for abiotic stress resistance in plants, and the 

accumulation of specific amino acids has been suggested 
to increase tolerance to salt [96]. Enrichment of carbon 
metabolism and the biosynthesis of amino acids suggests 
that the synthesis of compatible solutes is fortified to alle-
viate osmotic stress in plant seedlings under salt treat-
ment [26]. Variation in gene expression under salt stress 
is also regulated by phytohormones [26]. Changes in the 
transcription level of hormone genes affect drought and 
salt stress in plants [97]. de Bruxelles et al. [98] showed 
that hormones are responsible for changes in the expres-
sion of salt-induced genes.

Fig. 6  Genetic mechanisms. A–D Volcano map of differentially expressed transcripts. A, Group 1 vs. Group 2; B, Group 1 vs. Group 3; C, Group 1 vs. 
Group 4; D, Group 1 vs. Group 5. E–H GO analysis of the differentially expressed transcripts. E, Group 1 vs. Group 2; F, Group 1 vs. Group 3; G, Group 1 
vs. Group 4; H, Group 1 vs. Group 5. I–L KEGG classification of differently-expressed gene transcripts. I, Group 1 vs. Group 2; J, Group 1 vs. Group 3; K, 
Group 1 vs. Group 4; L, Group 1 vs. Group 5. M–P Enrichment and distribution map of the KEGG pathway of differentially expressed genes. M, Group 
1 vs. Group 2; N, Group 1 vs. Group 3; O, Group 1 vs. Group 4; P, Group 1 vs. Group 5
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Conclusions
In this study, the genome of E. angustifolia L. was 
obtained using PacBio technology and Hi-C assisted 
assembly technology. We estimated the origin of E. 
angustifolia and evaluated its evolutionary relation-
ships with 8 other species. We used comparative 
genomics to study the adaptive evolution of E. angus-
tifolia in Gansu, China. Genes and pathways of salt 
resistance of E. angustifolia were identified through 
transcriptome analysis. Our findings could be used to 
aid future comparative genomic analyses of E. angusti-
folia and enhance our understanding of the response of 
E. angustifolia to drought, salt, cold, and wind stress. 
Our findings also have implications for the planting of 
E. angustifolia and recovery from global land desertifi-
cation. Several limitations of our study require consid-
eration, given that the findings might be affected by the 
analytical method used, test conditions, and other envi-
ronmental conditions; follow-up studies are needed to 
confirm our findings.
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6084/​m9.​figsh​are.​12957​110.​v1).
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