Table 4. Performance of the machine-learning algorithms.
Model | F1 score | Accuracy | Precision | Recall | AUC |
---|---|---|---|---|---|
Random forest (RF) | 0.5787 (+/− 0.1283) | 0.7836 (+/− 0.0363) | 0.6824 (+/− 0.1007) | 0.5904 (+/− 0.1452) | 0.8505 (+/− 0.1062) |
Logistic regression (LR) | 0.5730 (+/− 0.1100) | 0.7589 (+/− 0.0910) | 0.6419 (+/− 0.1221) | 0.5848 (+/− 0.1189) | 0.7546 (+/− 0.0559) |
Support vector machine (SVM) | 0.4630 (+/− 0.0587) | 0.7726 (+/− 0.0372) | 0.4549 (+/− 0.1531) | 0.5065 (+/− 0.0162) | 0.7879 (+/− 0.0822) |