
Genetics and population analysis

Fast numerical optimization for genome sequencing data

in population biobanks

Ruilin Li 1,*, Christopher Chang2, Yosuke Tanigawa 3, Balasubramanian

Narasimhan3,4, Trevor Hastie3,4, Robert Tibshirani3,4 and Manuel A. Rivas 4,*

1Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA, 2Grail, Inc, Menlo Park, CA

94025, USA, 3Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA and 4Department of Statistics,

Stanford University, Stanford, CA 94305, USA

*To whom correspondence should be addressed. mrivas@stanford.edu

Associate Editor: Russell Schwartz

Received on February 17, 2021; revised on June 8, 2021; editorial decision on June 12, 2021; accepted on June 15, 2021

Abstract

Motivation: Large-scale and high-dimensional genome sequencing data poses computational challenges. General-
purpose optimization tools are usually not optimal in terms of computational and memory performance for genetic
data.

Results: We develop two efficient solvers for optimization problems arising from large-scale regularized regressions
on millions of genetic variants sequenced from hundreds of thousands of individuals. These genetic variants are
encoded by the values in the set f0; 1; 2;NAg. We take advantage of this fact and use two bits to represent each entry
in a genetic matrix, which reduces memory requirement by a factor of 32 compared to a double precision floating
point representation. Using this representation, we implemented an iteratively reweighted least square algorithm to
solve Lasso regressions on genetic matrices, which we name snpnet-2.0. When the dataset contains many rare var-
iants, the predictors can be encoded in a sparse matrix. We utilize the sparsity in the predictor matrix to further re-
duce memory requirement and computational speed. Our sparse genetic matrix implementation uses both the com-
pact two-bit representation and a simplified version of compressed sparse block format so that matrix-vector
multiplications can be effectively parallelized on multiple CPU cores. To demonstrate the effectiveness of this repre-
sentation, we implement an accelerated proximal gradient method to solve group Lasso on these sparse genetic
matrices. This solver is named sparse-snpnet, and will also be included as part of snpnet R package. Our implemen-
tation is able to solve Lasso and group Lasso, linear, logistic and Cox regression problems on sparse genetic matri-
ces that contain 1 000 000 variants and almost 100 000 individuals within 10 min and using less than 32GB of
memory.

Availability and implementation: https://github.com/rivas-lab/snpnet/tree/compact.

Contact: ruilinli@stanford.edu

1 Introduction

Constantly growing biobanks have provided scientists and

researchers with unprecedented opportunities to understand the
genetics of human phenotypes. One component is to predict

phenotypes of an individual using genetic data. However, data-
sets of increasing size also pose computational challenges for

this task. On the statistics side, genetic datasets are usually high
dimensional, meaning the number of genetic variants is larger

than the number of sequenced individuals. High-dimensional
statistics have been studied for more than two decades with well
understood solutions. One such solution is to ‘bet on sparsity’:
the assumption that only a small subset of variables is associ-
ated with the response. The sparsity assumption is usually
embodied through an objective function that encourages spars-
ity in the solution. Well known examples include the Lasso and
the group Lasso. On the computation side, a statistical estima-
tor that describes the relationship between the genetic variants

VC The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 4148

Bioinformatics, 37(22), 2021, 4148–4155

doi: 10.1093/bioinformatics/btab452

Advance Access Publication Date: 19 June 2021

Original Paper

https://orcid.org/0000-0002-5152-7086
https://orcid.org/0000-0001-9759-157X
https://orcid.org/0000-0003-1457-9925
https://github.com/rivas-lab/snpnet/tree/compact
https://academic.oup.com/


and the response of interest are often obtained by optimizing an

objective function involving the genetic matrix. While off-the-

shelf solvers may exist for these optimization problems, they

are usually not optimal for genetics data. First, these general-
purpose solvers require loading a floating point predictor ma-

trix in memory before optimization can be done. This can de-

mand a very large amount of memory for biobank scale data.
For example, loading a matrix with 200 000 rows and 1 000 000

columns as double precision floating point numbers takes 1.6

terabytes, much larger than the RAM size of most machines. In

particular, they do not exploit the fact that genetic variants can
take on only four possible values. Secondly, many of these solv-

ers do not fully utilize modern hardware features such as multi-

core processors, which leaves lots of performance on the table.

Thirdly, a large number of variants in exome and whole genome
sequencing data are rare variants. If a variant is encoded as the

number of copies of the minor allele, then the corresponding

genetic matrix is sparse. In the UK Biobank’s exome sequencing
data (Szustakowski et al., 2020), more than 99% of the variants

in the targeted regions have minor allele frequency <1%. As a

result, more than 98% of the entries of the corresponding genet-

ic matrix are zero. The sparsity in the predictor matrix can po-
tentially be exploited to improve both memory requirements

and computational speed.
The main result of this work is an extremely efficient regular-

ized regression solver for problems with sparse genetic predictors,

named sparse-snpnet. The main features of this solver are the
following:

1. A compact, two bits representation of genetic variants based on

PLINK2’s (Chang et al., 2015) pgen files.

2. Good scalability to multi-core processors.

3. A simplified version of the compressed sparse block format so

that arithmetic operations on the genetic matrices are more

amenable to parallelism.

In addition, we provide an extension to the popular R package

glmnet (Friedman et al., 2010; Simon et al., 2011) specifically for

Lasso problems involving genetic matrices. This extension exploits

the compact representation and is multi-threaded, but does not as-
sume sparsity of the input genetic matrix. We incorporate this solver

to the screening framework (Qian et al., 2020) in snpnet and name it

snpnet-2.0. Both solvers are implemented in Cþþ and wrapped as

part of the R package snpnet, which is available at https://github.
com/rivas-lab/snpnet/tree/compact. We refer the readers to Section 5

for comparisons between these two methods.

2 Materials and methods

2.1 Optimization algorithm
We focus on regularized regression problems whose objective func-

tions are in the following form:

f ðbÞ ¼ hðXbÞ þ kRðbÞ (1)

where X 2 f0;1; 2;NAgn�d is a genetic matrix, b 2 R
d is the par-

ameter vector, h : Rn 7!R is usually the negative log-likelihood
function of a generalized linear model (Hastie and Tibshirani,

1986), and is always assumed to be smooth and convex. We

have omitted the dependence of h on the response vector to sim-

plify the notation. R : Rd 7!Rþ is a regularization function, and
k 2 Rþ represents the strength of regularization. Here are some

examples of h:

1. Linear regression: hðXbÞ ¼ 1
n jjy�Xbjj22 for a response vector

y 2 R
n.

2. Logistic regression: write g ¼ Xb; hðXbÞ ¼ hðgÞ ¼
Pn
i¼1

yi logð1þ
egi Þ þ ð1� yiÞ logð1þ e�gi Þ for a binary response y 2 f0;1gn.

3. Cox regression (Cox, 1972): Write g ¼ Xb; hðXbÞ ¼ hðgÞ ¼Pn
i¼1

Oi½�gi þ log ð
P

yj�yi
egj Þ� for a survival time vector y 2 R

n
þ

and an event indicator O 2 f0;1gn.

The regularization function is usually a seminorm but not al-
ways. Some examples are:

1. Lasso (Tibshirani, 1996): RðbÞ ¼ jjbjj1 ¼
Pn
i¼1

jbij.
2. Elastic net (Zou and Hastie, 2005): RðbÞ ¼ jjbjj1 þ ajjbjj22 for

some a > 0.

3. Group Lasso (Yuan and Lin, 2006): RðbÞ ¼
P

g2G jjbgjj2, where

g 2 G; g � f1; 2; . . . ;dg represents a subset of variables.

To minimize (1), we apply an accelerated proximal gradient des-
cent algorithm (Beck and Teboulle, 2009; Daubechies et al., 2004;
Nesterov, 1983) with backtracking line search to determine the step
size. This algorithm has fast convergence rate, essentially no tuning
parameter, and is particularly suitable for the simple regularization
functions that we use. In short, this algorithm alternates between a
gradient descent step that decreases the value of hðXbÞ, and a prox-
imal step that ensures that the regularization term is not too large.
Note that the gradient here refers to the gradient of hðXbÞ with re-
spect to b. The regularization function is usually not differentiable at
0. The proximal operator is defined as:

proxR;tðbÞ :¼ argmin
z2Rd

1

2t
jjz� bjj22 þ kRðzÞ: (2)

When the regularization function is one of the examples above,
the corresponding proximal operator has explicit expression. We
summarize this process in the pseudo-code in algorithm 1.

Fast numerical optimization for genome sequencing data 4149

https://github.com/rivas-lab/snpnet/tree/compact
https://github.com/rivas-lab/snpnet/tree/compact


We observe that in this algorithm, the only operations that in-
volve the predictor matrix X are matrix-vector multiplications Xb
and XTr, where r ¼ rhðXbÞ 2 R

d. When X is dense, these two oper-
ations are also the most computationally intensive ones in this algo-
rithm, having complexity OðndÞ, whereas all other operations are
either OðnÞ or OðdÞ. This, together with the need to reduce the
amount of memory required to load X, motivate a more compact
and efficient representation of the genetic predictor matrix X.

2.2 Sparse genotype matrix representation
In this section, we describe the format we use to represent sparse
genetic matrices. First of all, we pack each entries in the matrix to
two bits. 0, 1, 2 and NA are represented by 00, 01, 10 and 11, re-
spectively. The compressed sparse column (CSC) format is a popular
way to store a sparse matrix. The PLINK 2.0 library (Chang et al.,
2015) provides functions that make loading a genetic matrix into
this format straightforward. Under CSC, a matrix with n rows, d
columns and nnz non-zero entries are represented by three arrays:

1. A column pointer array colptr of size d þ 1.

2. A row index array row_idx of size nnz.

3. A value array val of size nnz.

For each column j 2 f1; 2; . . . ; dg, the non-zero entries in that
column are stored from the col_ptr[j]th (inclusive) entry to the
(col_ptr[jþ1] - 1)th entry of row_idx and val, where row_idx stores
the row index of the non-zero entry and val stores the non-zero
value. Figure 1 provides an illustration of a sparse genetic matrix
under CSC format.

When a sparse matrix is stored in CSC format, accessing a par-
ticular column is simple. As a result, one can trivially parallellize the
computation of XTr. For example, thread j can compute the inner
product of the jth column of X and r and write to the jth entry of the
output without interfering with other threads. However, same thing
can’t be said about Xb. We can’t directly access a row of X stored in
CSC format, so there is no easy way to make each thread compute
the inner product between b and a row of X. Another way is to, say,
have thread j add bj times the jth column of X to the output, but
doing this in parallel leads to data race. Alternatively, one can store
X in the compressed sparse row format, which makes parallelizing
Xb easy but XTr difficult.

Our implementation uses a simplified version of the compressed
sparse block (CSB) format proposed in Buluç et al. (2009). In this
format, the sparse matrix is partitioned into a grid of smaller, rect-
angular sub-matrices with same dimensions, which are referred to as
blocks. When partitioned to B blocks, a matrix with n rows, d col-
umns, and nnz non-zero entries are represented by four arrays:

1. A block pointer array blk_ptr of size B þ 1.

2. A row index array row_idx of size nnz.

3. A column index array col_idx of size nnz.

4. A value array val of size nnz.

In this representation, non-zero entries in a block (as oppose to
those in a column in CSC format) are stored contiguously. The row
indices, column indices and values of the non-zero values in a block
b 2 f1;2; . . . ;Bg are stored in row_idx, col_idx and val, starting at

the index blk_ptr[b] and ending at the index blk_ptr[bþ1]-1. In the
original CSB paper, the non-zero elements in each block has a Z-
Morton ordering (Morton, 1966), while the blocks can have any
order. In our simplified version, we store the blocks and the non-
zero elements within a block in a column major fashion. Figure 2
provides an illustration.

Under this representation accessing a block in the sparse matrix
is easy. As a result, parallellizing both Xb and XTr are straightfor-
ward. For example, if X is the matrix in Figure 2, then to compute
Xb we can have thread 1 compute the inner product of the first three
rows of X and b, thread 2 compute the inner product of row 4–6
and b, etc. Similarly, to compute XTr thread b will compute the inner
product between r and the columns 3b� 2; 3b� 1; 3b in X for
b 2 f1;2;3g.

Since our implementation uses 2 bits to store a matrix entry and
32 bits to store each index, the genetic CSB format (compared to a
dense representation) will only save memory when the matrix is suf-
ficiently sparse (approximately < 3% of entries are non-zero).
While there are many techniques to reduce the number of bits
needed to represent the indices (such as storing the indices relative to
the start of the block, differential encoding, bit packing), the current
version of our software does not implement these techniques. For
variants with high minor allele frequency, we store the correspond-
ing columns in dense format and keep track of their column indices.
We also keep an additional array of length d to store the mean im-
putation of the missing values in X.

3 Benchmarks

3.1 Performance on dense matrix-vector multiplications
In the first benchmark, we evaluate the performance improvement
when the predictor matrix uses the two-bit compact representation,
but not the sparse format described in the last section. The genetics
data are dense and simulated through the plink2–dummy command.
The matrix have n¼200 000 rows and d¼30 000 columns with
�5% entries NAs. In Figure 3, we show the relative speedup of the
compact matrix as a function of the number of threads used. The
baseline is R’s builtin matrix-vector multiplication function for dou-
ble precision matrices (a basic, single-threaded BLAS implementa-
tion). The numbers reported are based on the median wall time of
10 runs. Figure 3 demonstrates a more than 20 folds of speedup over
the baseline, and good performance scalability in the number of
threads for up to almost 20 threads. Unless otherwise specified, all
computational experiments in this article are done on an Intel Xeon
Gold 6258R. For most of our applications, 16 out of the 28 CPU
cores that come with this CPU are used.

3.2 Performance on solving large-scale lasso problems
In the second benchmark, we compare the performance of the two-
bit compact genetic matrix representation when it is incorporated in
the software packages glmnet and snpnet to solve large-scale Lasso
problems where the predictors are mostly single-nucleotide polymor-
phisms (SNPs) (with perhaps a few real-valued covariates such as
age). As mentioned in the introduction, we call this implementation

Fig. 2. A sparse genetic matrix represented in the compressed sparse block format.

The zero entries on the left are omitted. The color indicates that the non-zero ele-

ments in each block are stored contiguously

Fig. 1. A sparse genetic matrix represented in the compressed sparse column format.

The zero entries on the left are omitted. Color indicates that the non-zero entries in

the same column are stored contiguously in the memory

4150 R.Li et al.



snpnet-2.0. The main performance gain comes from these factors
[the readers can refer to Qian et al. (2020); Li et al. (2020) for the
definitions of some terms below]:

1. glmnet fitting is based on the iteratively reweighted least square

(IRLS) algorithm, where the main bottleneck is computing inner-

products between columns of X and a real-valued vector. This is

done using the two-bit compact representation and is multi-

threaded in snpnet-2.0.

2. snpnet uses a screening procedure named the batch screening it-

erative Lasso (BASIL). At each BASIL iteration, a different set of

predictors is used to fit a model. Using the compact representa-

tion reduces the amount of memory traffic needed.

3. snpnet-2.0 uses reduced precision floating point numbers

(float32 instead of float64) to do Karush–Kuhn–Tucker (KKT)

conditions checking.

4. Warm start support, as well as more relaxed convergence crite-

ria, for binomial model and Cox model.

The data used here are a combination of directly genotyped variants
[release version 2 of Sudlow et al. (2015)], the imputed allelotypes in
human leukocyte antigen allelotypes (Venkataraman et al., 2020), and
copy number variations described in Aguirre et al. (2019), resulting in a
genotype matrix of 1080968 variants, as described in Sinnott-Armstrong
et al. (2021). The study population consists of 337129 unrelated partici-
pants of white British ancestry described in DeBoever et al. (2018). We
randomly select 70% of the study population as the training set, 10% as

the validation set and 20% as the test set. The computational performance
is summarized in Table 1. In this table, we compare snpnet-2.0, snpnet
and bigstatsr (Privé et al., 2018), which provides efficient Lasso solver for
larger-than-RAM data based on memory-mapping. In addition to compu-
tational performance, we also run benchmarks on the test set prediction
performance of our methods. Here, we compare our method against a
few other commonly used polygenic risk score methods including bigstatsr
(Privé et al., 2018), BOLT-LMM (Loh et al., 2015) and LDpred2 (Privé
et al., 2020). For BOLT-LMM, the input matrix is the combined training
and validation data, and we use the -LMM flag, which also produces lin-
ear mixed model association testing of the variants. This partially explains
the longer runtime of BOLT-LMM in Table 1. For LDpred2, we use the
training set to compute the summary statistic, the validation set to com-
pute the genetic correlation matrices by chromosome, and we use the
‘auto’ option to automatically find the hyper-parameters. Once the
LDpred2 returns the coefficients, we retrain a linear or logistic model on
the training set on the covariates and the polygenic scores to obtain the
final prediction (same is done for BOLT-LMM but only for binary re-
sponse). We published the code used in this benchmark at https://github.
com/rivas-lab/snpnet-2.0-paper. The results are summarized in Table 2.
The original snpnet paper (Qian et al., 2020) provides more detailed com-
parison and discussion on prediction performance against PRS-CS (Ge
et al., 2019) and SBayesR (Lloyd-Jones et al., 2019).

For time-to-event (survival time) responses, both snpnet and
snpnet-2.0 are able to fit regularized Cox regression on these
responses, which takes into account of both survival time and right-
censoring. Since the other methods cannot perform Cox regression,
we model instead the binary response 1ðT < ageÞ, where 1 is the
indicator function, T is the underlying survival time (such as age of

Fig. 3. A bar plot demonstrating the relative speedup in computing Xb when the compact representation is used. The baseline is the R’s builtin matrix-vector multiplication

function for double precision matrices. The horizontal axis is the number of threads. The vertical axis is the ratio of between time spent in the baseline and the time spent with

the compact representation. The baseline for Xb is 9.8 s

Table 1. Speed comparison between snpnet-2.0, snpnet and bigstatsr

snpnet-2.0 snpnet bigstatsr BOLT-LMM

High cholesterol (B) 21.9 109.8 44.98þ26.81 334.27

Asthma (B) 21.7 130.0 40.71þ29.18 278.22

Standing height (Q) 99.9 405:8a 41.04þ 217.91 1148.32

BMI (Q) 51.5 208:3a 40.38þ78.84 517.12

Other hypothyroidism (S) 13.5 71.5 44.23þ25.80 265.61

Thyrotoxicosis (S) 3.6 10.0 41.33þ24.54 243.52

Note: Time is measured in min. (B) indicates the response is binary, (Q) indicates the response is quantitative and (S) indicates that the response is a survival

time. For bigstatsr, the first number we report is the total duration of the time spent on attaching the genetic matrix to a file and mean imputation, which can be

shared among multiple responses if they use the same training set split. The second number is the duration of the model fitting function (big_spLinReg and

big_spLogReg). For snpnet-2.0 and snpnet, data loading and mean imputation are always done on the fly and are taken into account for this benchmark. For

BOLT-LMM, the total runtime also includes time spent on running single-variate regression and association testing on the variants.
aThe machine we used for most of the applications here has a dual-socket architecture, each having around 400 GB of local memory. The memory requirements

by the old version snpnet for both standing height and BMI exceeds the capacity of the local memory of a single socket in this machine. As a result, we ran these

two experiments on an Intel Xeon Gold 6130 (also 16 cores) machine with more memory.

Fast numerical optimization for genome sequencing data 4151

https://github.com/rivas-lab/snpnet-2.0-paper
https://github.com/rivas-lab/snpnet-2.0-paper


onset), and age is either the age of last follow-up if by then the indi-
vidual did not develop the disease, or the age of diagnosis if the indi-
vidual had the disease. We use the other methods to fit regularized
logistic regression on this binary response with age as an additional
covariate. Since this model completely specifies the distribution of T,
we are able to evaluate C-index on the fitted models. The last two
rows of Tables 1 and 2 describes the computational and predictive
performance of these models.

The tables show that snpnet-2.0 achieves better computational
performance over the other methods while achieving similar test set
prediction performance. We note that for standing height, more than
80 000 variants are selected by snpnet to fit the model. Since the pre-
dictor matrix is duplicated in its fitting process, snpnet requires
more than 400GB to successfully finish. On the other hand, 32GB of
memory is sufficient for snpnet-2.0.

3.3 Performance of the sparse format
In the third benchmark, we evaluate the performance improvement
when the genetic predictors make use of both the two-bit compact
representation, and the sparse representation described in the last
section. In this case, we use real exome data from the UK Biobank.
The raw data have 200 643 individuals and 17 777 950 variants.
For this benchmark, we only use variants with least three individu-
als having the minor allele and with missing rate at most 10%. The
result is a sparse genetic matrix with 200 643 rows and 7 462 671
columns. For our application, in the next section, the number of
variants used to fit models will be smaller since the training set will
be a subset of the entire population in this data. On average each
column of this matrix has 1399.5 non-zero entries, half of the col-
umns have <7 non-zero entries, and 90% of the columns have <91
non-zero entries. In our sparse representation, we divide this ma-
trix into 16�16¼ 256 blocks, each with dimension 12 540 by
466 416 (the size of the blocks is a tuning parameter), except at the
boundary the block size could be larger. As we mentioned in the
last section, storing dense blocks using our version of the com-
pressed sparse block format is not memory efficient, so if a column
has a large number of non-zero entries, we store all entries of that
column separately. For this particular matrix, 223 596 variants
does not use the sparse representation. In Table 3, we present the

amount of time to load the matrix and to compute Xb; XTr using

the sparse matrix representations. Again 16 cores are used for the
computation. Loading such matrix would take almost 12 terabytes
of memory if the entries are stored as double precision floating

point numbers.

4 Applications to UK biobank exome sequencing

data

In this section, we put our method into practice. Specifically, we use

the exome data described in the last part of Section 3 to fit group-
sparse linear models on multiple phenotypes. The method described
in this section is implemented in sparse-snpnet. In this case, the regu-

larization term will be the sum of the two-norms of the predefined
groups. For our applications, the groups are defined by the gene

symbol of the variants. For example, the objective function for a
Gaussian model is:

1

n
jjy�Xbjj22 þ k

X
g2G

ffiffiffiffiffi
jgj

p
jjbgjj2 (3)

where G ¼ fg : g � f1; 2; . . . ;dgg is a collection of indices corre-
sponding to variants with the same gene symbol. jgj, the number of

element in the group, is part of the regularization term so that
groups of same size are penalized by the same degree. bg 2 R

jgj is
the sub-vector of b corresponding to the indices in g. We do not

allow overlapping groups, so G needs to be a partition of all varia-
bles. That is, [g2Gg ¼ f1; 2; . . . ;dg and

P
g2G jgj ¼ d. One can show

that the proximal operator for this regularization function
satisfies:

z0 :¼ proxR;tðbÞ :¼ argmin
z2Rd

1

2t
jjz� bjj22 þ k

X
g2G

ffiffiffiffiffi
jgj

p
jjbgjj2: (4)

z0g ¼
0 ifjjzjj2 � tk

ffiffiffiffiffi
jgj

p
1� tk

ffiffiffiffiffi
jgj

p
jjzjj2

 !
z ifjjzjj2 > tk

ffiffiffiffiffi
jgj

p forallg 2 G:

8><
>: (5)

In practice, we would like to adjust for covariates such as age,
sex and other demographic information when fitting a regression
model. In our application, we first fit an unregularized regression

model of the response on these covariates and fit the regularized
model of the residual on the genetic variants. The number of covari-

ates are usually much smaller compared to the number of individu-
als, so the first fitting is not computationally or statistically
challenging. To be more precise, let Xcov 2 R

n�c be the c � 0 covari-

ates that we would like to adjust for. Using the same notation in (1).
We fit a model in two steps:

Table 3. The loading and computation time in seconds when the

genetic matrix is stored in sparse format

Loading Xb XTr

56.5 1.86 1.80

Note: This matrix has 200 643 rows and 7 462 671 columns with more

than 10 billion non-zero entries. The computation time are the median of 10

runs using 16 cores.

Table 2. Test set prediction accuracy comparison between snpnet-2.0, snpnet, bigstatsr, BOLT-LMM and LDpred2

snpnet-2.0 snpnet bigstatsr BOLT-LMM LDpred2 Covariates only

High cholesterol (B) 0.72533 0.72531 0.72705 0.70236 0.71240 0.69261

Asthma (B) 0.61609 0.61608 0.62257 0.62638 0.61112 0.53540

Standing height (Q) 0.71096 0.71100 0.71632 0.72169 0.67515 0.53789

BMI (Q) 0.11408 0.11412 0.12223 0.12869 0.094198 0.010859

Other hypothyroidism (S) 0.75194 0.75205 0.73818 0.71908 0.72158 0.66073

Thyrotoxicosis (S) 0.71020 0.71021 0.70432 0.67106 0.69009 0.64888

Note: For binary response, the test metric is the area under the ROC curve (AUC). For quantitative response, the metric is the R-squared. For survival response,

the metric is the C-index. The results of bigstatsr, BOLT� LMM and LDpred2 on survival responses are based on regularized logistic regression on the disease indi-

cator with age as an additional covariate. The results of BOLT-LMM on binary data, and LDpred2 on both binary and quantitative data, are obtained by refitting

a logistic or linear regression using the polygenic score and the covariates on the training set.

4152 R.Li et al.



1. First, we fit an unregularized model using the covariates:

b̂cov ¼ argmin
bcov2Rc

hðXcovbcovÞ: (6)

2. Then, we fit the regularized model on the ‘residuals’ using the

variants:

b̂ ¼ argmin
b2Rd

hðXcovb̂cov þXbÞ þ kRðbÞ: (7)

For example, if we write the predicted value of the covariates as
c ¼ Xcovb̂cov 2 R

n, then for a Gaussian model, the objective function
of the second step above is:

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
● ●

● ●

●

●

●

● ●

● ●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
● ●

●
●

●
●

●

●
●

●
●

●

●

● ●
●

●
●

●
●

●

● ●
●

● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●

●
●

●

●
●

●
●

●

●

● ●
●

●
●

●
●

●

● ●
● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 2 4 7 10 23 40 56 87 14
6

23
1

39
9

61
9

11
54

13
47

20
05

24
75

33
99

40
59

53
40

61
41

71
79

82
03

90
85

99
58

10
90

5
11

82
8

12
78

9
13

75
5

14
81

5

0.56

0.60

0.64

0 20 40 60

Number of Active Genes

Lambda Index

M
et

ric
s 

(R
2) split

●

●

●

train

validation

test

Height

●

●

●

●

●

●

●
●

●
●

●
● ●

●
●

●
●

● ●
●

●
●

●

●

●
●

●

●

●
●

●
●

●

● ●
●

●
●

●
●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ●

●
●

●
●

● ●
●

●
●

●

●

●
●

●

●
●

●
●

●
●

● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●
●

●

●

●

●

●

●

●
●

●
●

●
● ●

●
●

●
●

● ●
●

●
●

●

●

●
●

●

●
●

●
●

●
●

● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●
●

0 1 1 2 2 3 5 9 16 22 34 59 93 13
2

27
1

41
7

53
9

99
2

12
65

21
47

25
62

48
45

49
74

54
87

66
14

76
05

89
73

10
11

4

0.00

0.05

0.10

0.15

0.20

0.25

0 20 40

Number of Active Genes

Lambda Index

M
et

ric
s 

(R
2) split

●

●

●

train

validation

test

LDL cholesterol(a) (b)

Fig. 4. Lasso path plots for the quantitative phenotypes height and LDL cholesterol. The horizontal axis is the index of the regularization parameter k, the vertical axis are the

R-squared of the solution corresponding to each k index. The numbers on the top are the number of genes with non-zero coefficients at the corresponding k indices. The color

corresponds to the train, validation and test set. The duration of training these two models (including data loading and mean imputation) are 8.34 and 8.35 min, respectively.

Plots a and b correspond to the phenotypes height and LDL cholesterol, respectively.

●
●

●
●

●
● ● ● ● ●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ● ● ●
●

● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ●
●

● ●
● ● ● ● ● ● ● ● ●

●
●

●

●

0 1 3 5 16 28 66 97 23
4

32
0

53
4

91
9

13
36

20
11

27
19

0.700

0.725

0.750

0.775

0 10 20 30

Number of Active Genes

Lambda Index

M
et

ric
s 

(A
U

C
) split

●

●

●

train

validation

test

High Cholesterol (binary)

● ● ●
● ●

●
●

● ● ●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

●
● ●

● ●
● ● ● ● ● ● ● ● ● ● ●

● ● ●
● ●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

1 10 14 19 26 43 67 11
6

24
0

38
6

66
5

10
55

15
56

22
49

30
55

38
91

51
20

57
99

0.6

0.7

0 10 20 30

Number of Active Genes

Lambda Index

M
et

ric
s 

(A
U

C
) split

●

●

●

train

validation

test

Asthma (binary)(a) (b)

Fig. 5. Lasso path plots for the binary phenotypes high cholesterol and asthma. The horizontal axis is the index of the regularization parameter k, the vertical axis are the AUC

values of the solution corresponding to each k index. The numbers on the top are the number of genes with non-zero coefficients at the corresponding k indices. The color corre-

sponds to the train, validation and test set. The duration of training these two models (including data loading and mean imputation) are 6.88 and 8.27 min, respectively. Plots a

and b correspond to the binary phenotypes high cholesterol and asthma, respectively.

Fast numerical optimization for genome sequencing data 4153



f ðbÞ ¼ 1

n
jjy� c�Xbjj22 þ k

X
g2G

ffiffiffiffiffi
jgj

p
jjbgjj2: (8)

For logistic regression this becomes:

f ðbÞ ¼ 1

n

Xn

i¼1

yi logð1þ egiþci Þ þ ð1� yiÞ logð1þ e�gi�ci Þþ

k
P

g2G
ffiffiffiffiffi
jgj

p
jjbgjj2; g ¼ Xb:

(9)

For Cox model, the objective function is

f ðbÞ ¼ 1

n

Xn

i¼1

Oi½�gi � ci þ log ð
X
yj�yi

egjþcj Þ�þ

k
P

g2G
ffiffiffiffiffi
jgj

p
jjbgjj2; g ¼ Xb:

(10)

We optimize these objective functions for a decreasing sequence
of ks starting from one such that the solution just becomes non-zero.
The initial value for the proximal gradient method of the next k is
initialized from the solution from the current k (warm start). As
alluded in the last section, we randomly assign 70% of the white
British individuals in this dataset to the training set, 10% to the val-
idation set and 20% to the test set. We remove individuals whose
phenotype value is missing, keeping variants with at least three
minor allele count, has an associated gene symbol, has <10% of
missing value, and the ratio of the missing value and minor allele is
<10. We further filter out the variants that are not protein truncat-
ing or protein altering. Depending on the number of missing values
in the phenotype, the number of individuals and variants used for fit-
ting could be different. In all of the examples here the training set
has more than 90 000 individuals and the number of genetic variants
used are over 1 000 000. The covariates are the sex, age and 10 prin-
cipal components of the genetic data described in the second bench-
mark of Section 3.2.

To evaluate the fitted model, we use the R-squared value for
quantitative phenotype, the area under the receiver operating char-
acteristic (ROC) curve (AUC) for binary phenotype, and the con-
cordance index (C-index) for time-to-event phenotype. These
metrics will be computed on the validation set to determine the opti-
mal regularization parameter k and on the test set to evaluate the
model corresponding to the k used. Once the validation metric starts

to decrease, we stop the fitting process and do not compute the solu-
tions for smaller k values. Figures 4–6 illustrate a few Lasso path
plots obtained from our implementation. To evaluate whether this
grouping by genes improves the prediction performance, we also run
Lasso on these phenotypes with the same predictors. For the applica-
tions and grouping used here, we do not observe significant change
in prediction performance in Group Lasso compared to Lasso (Table
4).

In terms of computation, unlike in snpnet (or the 2.0 version),
the optimization in sparse-snpnet are all done without variable
screening, and the entire training data (in sparse format) is loaded in

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ● ● ● ● ● ●

●

●

●

●
● ● ● ● ●

●

●
● ●

● ● ● ● ● ● ●

●

●

●

●

●
●

●
●

● ● ● ●
●

1 1 2 2 4 7 9 20 34 73

0.5

0.6

0.7

0.8

5 10 15 20

Number of Active Genes

Lambda Index

M
et

ric
s 

(C
−

In
de

x)

split

●

●

●

train

validation

test

Alzheimer's disease (age of onset)

● ●
●

●
●

●
●

●

● ● ●
●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

● ● ●
●

●
●

● ●
● ● ●

● ● ●
● ● ●

● ● ● ● ● ● ●
●

●
●

●

●
●

●
●

● ●
●

●
●

●
●

●

● ● ●
● ●

●
● ●

● ● ●
● ● ●

● ● ●
● ● ● ● ● ● ●

●
●

●
●

●
●

●

●

0 2 4 6 9 17 22 35 59 97 17
0

30
7

54
1

83
6

12
88

18
84

26
10

34
09

41
98

51
50

0.7

0.8

0.9

0 10 20 30 40

Number of Active Genes

Lambda Index

M
et

ric
s 

(C
−

In
de

x)

split

●

●

●

train

validation

test

Hypothyroidism (age of onset)(a) (b)

Fig. 6. Lasso path plots for the time-to-event phenotypes Alzheimer’s disease and hypothyroidism. The horizontal axis is the index of the regularization parameter k, the vertical

axis are the C-index of the solution corresponding to each k index. The numbers on the top are the number of genes with non-zero coefficients at the corresponding k indices.

The color corresponds to the train, validation and test set. The duration of training these two models (including data loading and mean imputation) are 6.12 and 6.92 min, re-

spectively. Plots a and b correspond to the survival phenotypes age of onset of Alzheimer’s disease and hypothyroidism, respectively.

Table 4. Comparison between Group Lasso and Lasso in the predic-

tion performance on quantitative (Q), binary (B) and survival (S)

phenotypes

Group Lasso Lasso

Height (Q) 0.59495 0.59385

LDL cholesterol (Q) 0.13207 0.13390

High cholesterol (B) 0.70421 0.70690

Asthma (B) 0.56523 0.56296

Alzheimer (S) 0.71559 0.71633

hypothyroidism (S) 0.70587 0.70211

Here, the grouping are defined by variants in the same gene.

Table 5. A comparison between the two solvers we present in this

article

snpnet-2.0 sparse-snpnet

Algorithm IRLS Proximal gradient

Use variable screening Yes No

Easy to extend to other GLMs Yes Yes

Easy to extend regularizations No Yes

Use two-bit representation of variants Yes Yes

Use sparse matrix format No Yes

Multi-threaded Yes Yes

4154 R.Li et al.



memory before fitting starts. This eliminates all the I/O operations car-
ried out in the KKT checking step of snpnet. The applications in this
section successfully finished when we allocate 32GB of memory to
these jobs. In addition, while the applications in this article focus on
Gaussian, logistic and Cox families and group Lasso regularization,
our implementation uses abstractions in Cþþ so it is easy to extend
to other generalized linear models and regularization functions.

5 Discussions

We present two fast and memory efficient solvers for generalized lin-
ear models with regularization on large genetic data. Both methods
utilize a two-bit compact representation of genetic variants and are
accelerated though multi-threading on CPUs with multiple cores.
The first solver implements the iteratively-reweighted least square al-
gorithm in glmnet, and its goal is to provide boosted computational
and memory performance to the large-scale Lasso solver described
in (Li et al., 2020; Qian et al., 2020). The second solver implements
an accelerated proximal gradient method that’s able to solve more
general regularized regression problems. One important feature of
this solver is that it combines a version of compressed sparse block
format for sparse matrices and the two-bit encoding of genetic
variants. We summarize the characteristics of these two solvers in
Table 5. We demonstrate the effectiveness of our methods through
several benchmarks and UK Biobank exome data applications. We
believe our method will be a useful tool as whole genome sequencing
data becomes more common.

Acknowledgements

We thank all the participants in the study. The primary and processed data used

to generate the analyses presented here are available in the UK Biobank access

management system (https://amsportal.ukbiobank.ac.uk/) for application

24983, ‘Generating effective therapeutic hypotheses from genomic and hospital

linkage data’ (http://www.ukbiobank.ac.uk/wp-content/uploads/2017/06/

24983-Dr-Manuel-Rivas.pdf). All of the computing for this project was per-

formed on the Nero and Sherlock clusters. We would like to thank Stanford

University and the Stanford Research Computing Center for providing compu-

tational resources and support that contributed to these research results.

Funding

Y.T. was supported by a Funai Overseas Scholarship from the Funai

Foundation for Information Technology and the Stanford University School

of Medicine. M.A.R. was supported by Stanford University and a National

Institute of Health center for Multi and Trans-ethnic Mapping of Mendelian

and Complex Diseases grant (5U01 HG009080). This work was supported by

National Human Genome Research Institute (NHGRI) of the National

Institutes of Health (NIH) under awards R01HG010140. The content is solely

the responsibility of the authors and does not necessarily represent the official

views of the National Institutes of Health. R.T. was partially supported by

NIH grant 5R01 EB001988-16 and NSF grant 19 DMS1208164. T.H. was

partially supported by grant DMS-1407548 from the National Science

Foundation, and grant 5R01 EB 001988-21 from the National Institutes of

Health. This research has been conducted using the UK Biobank Resource

under application number 24983.

Conflict of Interest: none declared.

Data availability statement

The data that support the findings of this study are available for approved re-

search. Access to the data can be applied through UK Biobank’s website

https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access

References

Aguirre,M. et al. (2019) Phenome-wide burden of copy-number variation in

the UK biobank. Am. J. Hum. Genet., 105, 373–383.

Beck,A. and Teboulle,M. (2009) A fast iterative shrinkage-thresholding algo-

rithm for linear inverse problems. SIAM J. Img. Sci., 2, 183–202.

Buluç,A. et al. (2009). Parallel sparse matrix-vector and matrix-transpose-vec-

tor multiplication using compressed sparse blocks. In: Proceedings of the

Twenty-First Annual Symposium on Parallelism in Algorithms and

Architectures, SPAA ’09, page 233–244, New York, NY, USA. Association

for Computing Machinery.

Chang,C. et al. (2015) Second-generation plink: rising to the challenge

of larger and richer datasets. GigaScience, 4. doi: 10.1186/s13742-015-

0047-8

Cox,D.R. (1972) Regression models and life-tables. J. R. Stat. Soc. Series B,

34, 187–220.

Daubechies,I. et al. (2004) An iterative thresholding algorithm for linear in-

verse problems with a sparsity constraint. Commun. Pure Appl. Math., 57,

1413–1457.

DeBoever,C. et al. (2018) Medical relevance of protein-truncating variants across

337,205 individuals in the UK biobank study. Nat. Commun., 9, 1–10.

Friedman,J. et al. (2010) Regularization paths for generalized linear models

via coordinate descent. J. Stat. Software, 33, 1–22.

Ge,T. et al. (2019) Polygenic prediction via Bayesian regression and continu-

ous shrinkage priors. Nat. Commun., 10, 1776.

Hastie,T. and Tibshirani,R. (1986) Generalized additive models. Stat. Sci., 1,

297–310.

Li,R. et al. (2020) Fast Lasso method for large-scale and ultrahigh-dimensional

Cox model with applications to UK Biobank. Biostatistics.

Lloyd-Jones,L.R. et al. (2019) Improved polygenic prediction by Bayesian mul-

tiple regression on summary statistics. Nat. Commun., 10, 5086.

Loh,P.-R. et al. (2015) Efficient Bayesian mixed-model analysis increases asso-

ciation power in large cohorts. Nat. Genet., 47, 284–290.

Morton,G. (1966) A Computer Oriented Geodetic Data Base and a New

Technique in File Sequencing. Technical Report, Ottawa, Canada: IBM

Ltddy.

Nesterov,Y. (1983). A method for solving the convex programming problem

with convergence rateOð1=k2Þ. Proc. USSR Acad. Sci., 269, 543–547.

Privé,F. et al. (2018) Efficient analysis of large-scale genome-wide data with

two R packages: bigstatsr and bigsnpr. Bioinformatics (Oxford, England),

34, 2781–2787.

Privé,F. et al. (2020) LDpred2: better, faster, stronger. Bioinformatics, 36,

5424–5431.

Qian,J. et al. (2020) A fast and scalable framework for large-scale and

ultrahigh-dimensional sparse regression with application to the UK biobank.

PLoS Genet., 16, e1009141.

Simon,N. et al. (2011) Regularization paths for cox’s proportional hazards

model via coordinate descent. J. Stat. Software, 39, 1–13.

Sinnott-Armstrong,N. et al.; FinnGen. (2021) Genetics of 38 blood and urine

biomarkers in the UK biobank. Nat. Genet., 53, 185–194.

[CrossRef][10.1038/s41588-020-00757-z]

Sudlow,C. et al. (2015) UK biobank: an open access resource for identifying

the causes of a wide range of complex diseases of middle and old age. PLoS

Medicine, 12, e1001779.

Szustakowski,J.D. et al. (2020) Advancing human genetics research and drug

discovery through exome sequencing of the UK biobank. https://www.medr

xiv.org/content/10.1101/2020.11.02.20222232v1

Tibshirani,R. (1996) Regression shrinkage and selection via the Lasso. J. R.

Stat. Soc. Series B (Methodological), 58, 267–288.

Venkataraman,G.R. et al. (2020) Pervasive additive and non-additive effects

within the HLA region contribute to disease risk in the UK biobank.

bioRxiv.

Yuan,M. and Lin,Y. (2006) Model selection and estimation in regression with

grouped variables. J. R. Stat. Soc. Series B, 68, 49–67.

Zou,H. and Hastie,T. (2005) Regularization and variable selection via the

elastic net. J. R. Stat. Soc. Series B (Statistical Methodology), 67,

301–320.

Fast numerical optimization for genome sequencing data 4155

https://amsportal.ukbiobank.ac.uk/
http://www.ukbiobank.ac.uk/wp-content/uploads/2017/06/24983-Dr-Manuel-Rivas.pdf
http://www.ukbiobank.ac.uk/wp-content/uploads/2017/06/24983-Dr-Manuel-Rivas.pdf
https://www.medrxiv.org/content/10.1101/2020.11.02.20222232v1
https://www.medrxiv.org/content/10.1101/2020.11.02.20222232v1

	tblfn1
	tblfn2
	tblfn4
	tblfn3
	tblfn5

