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Abstract

A substantial body of recent research has aimed to better understand the clinical sequelae 

of military trauma through the application of advanced brain imaging procedures in Veteran 

populations. The primary objective of this review was to highlight a portion of these recent studies 

to demonstrate how imaging tools can be used to understand military-associated brain injury. We 

focus here on the phenomenon of mild traumatic brain injury (mTBI) given the high prevalence 

of mTBI in the Veteran population and current recognition of the need to better understand the 

clinical implications of this trauma. This is intended to provide readers with an initial exposure to 

the field of neuroimaging of mTBI with a brief introduction to the concept of TBI, followed by 

a summary of the major imaging techniques that have been applied to the study of mTBI. Taken 

together, the collection of studies reviewed demonstrates a clear role for neuroimaging towards 

understanding the various neural consequences of mTBI as well as the clinical complications of 

such brain changes. This information must be considered in the larger context of research into 
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mTBI, including the potentially unique nature of blast exposure and the long-term consequences 

of mTBI.
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Introduction.

There has been a substantial growth in research using neuroimaging to elucidate 

consequences of military-associated brain trauma. The focus of this review is on recent 

imaging studies in the U.S. military and Veteran population with deployment-related mild 

traumatic brain injury (mTBI or concussion). Specifically, this review provides an update 

of brain imaging work since a 2009 introduction to imaging techniques by Van Boven and 

colleagues 1. We attempt to highlight representative work from many fields of neuroimaging 

with an application to mTBI. However, this is not a comprehensive review (although our 

aim was to include the majority of studies in each field since 2009), and we do not fully 

evaluate all studies included here on their merit. Thus, the various studies reported each have 

strengths, weaknesses, and idiosyncrasies that make them difficult to compare directly and 

a detailed comparative assessment across the range of studies is beyond the scope of this 

review. The reader is therefore encouraged to examine the primary sources discussed for full 

comprehension of the work. We instead note some of the primary features to consider in 

the application of brain imaging to the study of mTBI and then review recent work in this 

domain. The vast majority of the work reviewed is in the military context, and we clarify any 

cases when discussing non-military work. We intend this review to be accessible to readers 

with little background in military trauma, as well as individuals with limited background in 

brain imaging. We therefore first summarize concepts related to TBI in general and in the 

military population, and next follow this with brief summaries of the various brain imaging 

domains used in the study of TBI. Finally, we conclude with considerations of the study of 

military mTBI and discuss directions for future work.

Diagnostic challenges of mTBI.

Much of the research on the effects of mTBI on the brain relies heavily on diagnosis of 

the injury in order to assign the participant to a research group. There are a number of 

factors that can make this diagnosis of mTBI difficult. First, it is logistically difficult to 

image Servicemembers near the time of a military-related head injury, and so most imaging 

studies take place after the symptoms of the injury have resolved (7–10 days after the event, 

in most cases. 2). Thus, researchers must either rely on retrospective self-reports of the 

event and the symptoms sustained at the time, or assess post-concussive syndrome (PCS). 

Self-reports can be unreliable, and there is even evidence that the psychological trauma 

of the event may additionally impact memory 3. Meanwhile, symptoms of post-concussive 

syndrome (PCS) are non-specific, and can often be equally attributed to other common 
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military-related conditions such as posttraumatic stress disorder (PTSD) 4. Further, some 

Veterans are motivated to attribute their persistent symptoms to a brain injury rather than a 

mental health disorder. Even when diagnosis of concussion takes place at the time of the 

injury, there can be factors that contribute to subjectivity in the diagnosis. Physicians are 

forced to rely heavily on the self-report of the soldier as to the nature and severity of their 

symptoms. Many factors, including desire to serve with their comrades or to avoid appearing 

weak, will cause the injured individual to ‘down-play’ their symptoms, avoid seeking care 

altogether, or make efforts to memorize answers to common cognitive tests so that they will 

appear uninjured. Further, the symptoms at the time of the injury are transient and dynamic, 

and thus may be missed by neuropsychological tests designed to diagnose TBI, such as 

the Military Acute Concussion Evaluation (MACE) 5 or the Automated Neuropsychological 

Assessment Metrics (ANAM) 6, perhaps even depending on when they are administered to 

the Soldier. Finally, even when a diagnosis was made at the time of the event, it may not 

be available in medical records for investigators to access, so the researchers are still left to 

rely on retrospective reports. Taken together, it is clear why diagnosing or even defining this 

condition is challenging. These complications are especially relevant for research studies of 

military cohorts and such limitations of this research should be considered throughout this 

review.

Considerations for the study of Military TBI.

TBI is a broad etiological and pathobiological concept and there are certain aspects of this 

condition that require unique consideration as a clinical entity. Thus, we present information 

here that would be helpful in assessing any given neuroimaging study of TBI. One important 

consideration for the study of TBI is the vast heterogeneity of injuries. Due to the unique 

nature of the events that result in any given TBI (e.g., ‘degree’ of exposure, how hard 

a hit was, the direction of the exposure, or where the impact occurred on the head), the 

injuries themselves are expected to vary from individual to individual to a much larger 

extent than brain disorders arising from stereotyped biological processes such as sporadic 

neurodegenerative disease (e.g., Alzheimer’s disease). Another consideration is the length 

of time since the traumatic exposure. It is difficult in military contexts to study injury 

in a relatively acute phase and this is rarely achieved. An exception is the work of Mac 

Donald and colleagues, 7–9 described later in this review. Rather, it is common for trauma 

to be examined months to years post-exposure and differences in timing across studies and 

participants will likely have an important impact on the clinical presentation and ability to 

detect the injury. As such, detection of group differences requires large, well-characterized 

cohorts, which are technically and financially challenging to acquire. In addition, traditional 

methods for group-based analysis of brain imaging data (e.g., registration to a template brain 

and comparison of similar anatomic locations) may not be the most sensitive for this type of 

population, as individuals may be better conceptualized as a set of case studies as opposed to 

a homogeneous group.

In the context of military TBI, there are a number of unique factors that may further 

complicate an individual’s response to TBI, including the fact that most Veterans experience 

multiple TBIs throughout their lifetime, often of various etiologies and severities, and these 

may not be captured in the clinical scales assessing TBI history. For this and other reasons, 
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the question of how best to assess and characterize these injuries is one that is evolving as 

new knowledge is gained. Currently the predominant schema is to categorize TBIs into mild, 

moderate, and severe 10, based on several factors including the depth of coma (typically 

assessed by Glasgow Coma Scale, especially in civilian TBI) and consideration of the 

duration of symptoms arising at the time of the injury. According to many guidelines for TBI 

diagnosis, including the VA/DoD guidelines 11, mild cases of TBI have no visible injury on 

traditional clinical imaging (see Table 1). Most TBIs, in both military and civilian contexts, 

are mild in severity and recovery of the initially presented symptoms is expected. In these 

cases, generally no emergency intervention is required. Mild TBI will be the focus of this 

review, as mTBIs account for 84% of military brain injuries 12 and have more recently been 

recognized as an important clinical entity. It should be noted that the definitions described 

below are not universally utilized, and differences in the definition of TBI severity across 

studies likely contribute to differences in conclusions.

Another feature of military-related TBI are the highly comorbid mental health issues, 

notably PTSD and depression. There is considerable discussion, especially regarding the 

long-term functional and cognitive outcomes of mTBI, as to what extent outcomes due 

to these comorbid conditions may be misattributed to mTBI. Careful characterization 

and attention to demographic differences across groups and in statistical comparisons are 

necessary to completely address research questions while considering these factors. With 

the implementation of the comprehensive TBI evaluation (CTBIE) in 2007 13, retrospective 

accounts of TBI have become more available to researchers, and have thus become the 

predominant method of assessing military TBI in research. However, caveats of this method 

should be noted, including potential memory disruptions from the psychological trauma 

surrounding the event that may ultimately affect the categorization of the TBI’s severity 14.

What is a ‘mild’ TBI?

‘Mild’ TBI is, in many ways, an almost distinct entity from moderate to severe TBI, where 

damage to the brain is typically prominent and therefore brain imaging is an important 

component of clinical management 15. Abnormal neuroimaging after moderate or severe 

TBI may include skull fracture or intracranial hemorrhage, typically detected on computed 

tomography (CT). These findings are often clinically indicative of the need for emergency 

intervention in the intensive care unit (ICU), which may involve restoration of respiratory 

function, neurosurgical intervention, and monitoring of intracranial pressure 15. Recovery 

from severe TBI takes significant time and individuals typically retain some form of deficit 

and are at increased risk of mortality 15. None of these characteristics are typically present 

for mTBI. Rather, mTBI is commonly defined as individuals who have had brain trauma 

resulting in mild deficits on the Glasgow Coma Scale (GCS 16; score ranging from 13–

15, when available), loss of consciousness (LOC) of less than or equal to 30 minutes, 

post-traumatic amnesia (PTA) of less than or equal to 24 hours, and/or alteration of mental 

status less than or equal to 24 hours (see Table 1). Clinically, if the symptoms following a 

head injury indicate that it is a mild TBI, neuroimaging may not be involved in diagnosing 

the injury. Although there is a general belief that individuals with mild symptomology are 

primarily ‘free’ from significant abnormalities on conventional clinical imaging, research in 

civilian mTBI demonstrates that injury can often be detected even in this mild range with 
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intraparenchymal lesions found in 50% of individuals on CT and 75% on acute 3T MRI 
17. Hemorrhagic traumatic axonal injury was detected in 4.5% on CT and 47% on MRI, non-

hemorrhagic traumatic axonal injury was found in 1% on MRI and cerebral contusions were 

found in 36% on CT and 58% by MRI. However, these detectible lesions were not linked 

to cognitive deficits in this population suggesting that other more quantitative imaging 

metrics may be necessary to predict long-term outcomes from mTBI 17,18. Research in 

blast-related mTBI demonstrate similar findings on 3T MRI, with a recent report showing a 

high incidence of white matter hyperintensities on T2-weighted imaging as well as pituitary 

abnormalities in individuals with blast-related mild TBI 19, although it is currently unknown 

if or how this may relate to cognition. Overall, it is important to consider that although 

not necessarily clinically actionable, it is likely that overt brain tissue damage is prevalent 

in individuals with clinically defined mTBI and such findings are variable based on the 

technology (e.g. CT v MRI).

Prior reviews.

Several prior reviews have been written on TBI and mTBI in the civilian and Veteran 

fields extending from the peri-2009 period and before 20–30. It is recommended that these 

prior sources complement this work. However, a substantive body of research has been 

produced specifically regarding mTBI in the expanding Veteran population in recent years, 

and summarizing this work is the unique goal of this current review.

Neuroimaging Techniques.

We have adopted an imaging-centric approach to this review, with sections organized based 

on imaging modality and limited to those modalities that have been used in recent studies 

of military mTBI. Although certain techniques show clear promise, there is currently no 

obviously dominant procedure for the identification and assessment of mTBI and, therefore, 

continued exploration across the various existing imaging domains will be necessary to 

determine the relative value of each procedure. From a neuroscience perspective, each 

technique is typically utilized to probe a particular aspect of the brain biology, and therefore 

this organization also allows for a consideration of such neural properties as well. For this 

reason, modalities are organized into ‘structural’ and ‘functional,’ and a note about potential 

biological processes that can be assessed with the technique are included in the description.

The biological processes following mTBI have been reviewed in detail elsewhere 31. Briefly, 

forces from physical trauma, including acceleration, deceleration, or blast pressure waves, 

are transmitted to the brain. Certain areas of the brain may be particularly vulnerable to 

these forces, including long white matter pathways and areas of tissue boundaries. At the 

cellular level, these forces disrupt membrane integrity, allowing a brief period of unfettered 

diffusion between the intracellular and extracellular space. This results in the loss of the 

electrochemical gradient, which must be restored by the cell before proper function can 

resume. The influx of ions from the extracellular space, especially calcium, results in both 

immediate release of excitatory neurotransmitter and a longer-term biochemical cascade, 

both of which can be toxic to cells. High concentrations of calcium in the cell can result 

in impaired mitochondrial function, exacerbating and prolonging the dysfunctional energy 
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needs. While these changes occur at a much smaller spatial scale than can be assessed by 

in vivo imaging techniques, many aspects of this biological process are expected to result 

in macroscopic changes that are visible in modern imaging techniques. However, it must be 

emphasized that, while these biological processes serve as motivation for examining brain 

injuries using imaging techniques, the changes discovered with imaging may arise from 

entirely different, even currently unknown, processes.

Structural Imaging. Brain morphometry.

Structural imaging refers to a set of procedures that provide anatomic contrast (Figure 1). 

While these images are used clinically to find abnormalities (including those discussed 

in the section on mTBI above), quantitative tools can be used to measure more subtle 

alterations in the amount of brain tissue in different regions of the brain in individuals 

or groups of individuals (Figures 2 and 3). In neurodegenerative conditions such as 

Alzheimer’s disease, reduction in the amount of grey matter tissue measured by quantitative 

structural imaging (e.g. the measurement of ‘cortical thickness’ 32) is found in areas that 

exhibit profound histopathology. Thus, to some degree such procedures can be used as 

a proxy for degenerative changes, yet it should be noted that such procedures cannot 

clearly differentiate among various potential mechanisms of cortical thinning in different 

conditions. In mTBI, a common observation is thinner cortex (or less grey matter volume), 

and we may expect this to be an assessment of cell death or loss of dendritic branches but 

such histological correlates have not yet been examined and thus such interpretations should 

be cautioned. For example, rodent models of blast injuries have also identified shrunken 

neurons that may manifest in human studies as thinner cortical structures 33.

Using structural imaging procedures, Lindemer and colleagues 34 found that mTBI 

exacerbated the effects of PTSD on reducing cortical thickness. Michael et al. 35 and 

Tate et al. 36 found reduced regional cortical thickness in symptomatic mild-to-moderate 

blast-TBI in military Veterans. More recently, Tate and colleagues 37 examined additional 

morphometric parameters and found increased volume of subcortical structures in a 

symptomatic mTBI group but also reduced surface area of left thalamus. Morphometric 

measures did not differ between the mTBI group and a pure PTSD group. Overall, these 

studies provide evidence for an association between mTBI and brain structure. Further, 

results from Lindemer et al. 34 and others suggest a potential interaction of PTSD and mTBI, 

however, this requires further study.

Diffusion weighted imaging (tissue microstructure).

Diffusion weighted imaging refers to a set of procedures including diffusion tensor imaging 

(DTI) that use the diffusion of water within brain tissue to probe microstructural tissue 

properties (Figure 4). Additionally, due to the fact that neural fiber membranes typically 

restrict the directions that water can diffuse, diffusion imaging can be used to map 

anatomical properties of cerebral white matter fascicles. In the context of TBI, altered 

diffusion properties within white matter may be indicative of demyelination and axonal 

degeneration, which would allow more ‘free’ diffusion as well as potential ‘leakage’ of 

water through less intact myelin structures. This is often quantified through fractional 

anisotropy (FA), and lower FA is generally associated with tissue injury. Animal models 
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have demonstrated both increases in the permeability of axons 38 and demyelination 39 

associated with brain injury. As such, diffusion imaging is an imaging domain that may be 

more sensitive to the subtle effects of mTBI, which has been associated with axonal injury 

post-mortem 40. As noted for brain morphometry however, the extent to which diffusion 

imaging can be mapped to a pathologic mechanism is yet to be determined for mTBI. 

Diffusion imaging has been applied in several studies of TBI in both military and civilian 

contexts 41–43. A recent literature review of approximately 100 studies over the decade up 

to 2011 that were not specific to military/Veteran TBI concluded that diffusion imaging 

effectively differentiates individuals with TBI from those without 44. However, the reliability 

and sensitivity of these procedures are yet to be determined and little, if any, work has 

directly compared the utility of diffusion procedures to other classes of brain imaging. 

Regardless, several published studies suggest that diffusion imaging may contribute to our 

understanding of mTBI.

Levin and colleagues 45 examined the utility of diffusion imaging to detect white matter 

abnormalities linked to mild to moderate blast-related TBI in a sample of 37 Iraq 

or Afghanistan Veterans and Servicemembers. Using tractography and region-of-interest 

procedures, the investigators were not able to detect abnormalities due to mild to 

moderate blast TBI or associations with symptom measures. However, the authors did 

report associations between diffusion measures and neuropsychological performance. These 

findings demonstrate that tissue variation is linked to cognitive status, yet a lack of findings 

linked to blast-TBI may suggest that novel methodology is required to detect abnormalities 

in individuals with non-stereotyped pathology.

Davenport and colleagues 46 examined the potential regional heterogeneity (spatial 

inconsistencies across individuals) in white matter abnormalities in 25 Operation Enduring 

Freedom/Operation Iraqi Freedom (OEF/OIF) military Servicemembers with and 33 without 

blast-related mTBI. They found that effects in blast-exposed individuals were diffuse 

and global, and were not detectable by using standard spatial matching procedures. 

Moreover, individuals exposed to more than one blast mTBI had a greater number of 

abnormalities compared to single blast injury. This study demonstrated that effects of mTBI 

may be spatially variable and therefore require unique data processing and quantification 

procedures. Since Davenport et al.’s original publication, several other studies investigating 

white matter in blast-related mTBI have found similar results, suggesting that the injury is 

associated with diffuse white matter abnormalities, particularly in those who experienced a 

LOC 47–49. Additionally, these diffuse white matter disruptions have been associated with 

both neurocognitive 47,49 and behavioral 48 outcomes in blast-related mTBI, with more 

recent work suggesting that the associated cognitive impairment of these global disruptions 

is also heterogeneous 50. This heterogeneity may be to blame for studies that did not find 

differences in DTI imaging associated with military mTBI, some of which found that other 

contributing factors, such as cognitive impairment 51 or co-occurring PTSD 52 (but see 47,48) 

could account for variability among individuals with mTBI.

Mac Donald and colleagues 9 examined US military personnel with clinical diagnosis of 

blast-related mTBI that were evacuated from theater to Landstuhl Regional Medical Center 

in Germany for evaluation within 90 days of the injury. This provides a unique window 
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into the semi-acute effects of blast-associated injury, as most studies of military mTBI 

examine individuals at much longer post-injury intervals. They found abnormalities on 

diffusion imaging that were attributed to traumatic axonal injury in Veterans with mTBI. 

Effects were distributed throughout the brain, but most prominent in the middle cerebellar 

peduncles, cingulum, and orbitofrontal white matter and these abnormalities were persistent 

across time. The authors also noted that it was not clear to what degree the primary blast 

overpressure injury and blunt injury from blast debris contributed to the effects, given the 

rarity of isolated primary blast exposure in the sample. However, the authors did confirm 

cerebellar white matter abnormalities in a follow-up paper investigating a small sample of 

primary blast mTBI individuals, suggesting that primary blast exposure may have specific 

disruptions to the cerebellum 8. This group has recently published a 5-year follow-up in 

this cohort where 74% of Veterans with blast-related mTBI were found to have imaging 

abnormalities 53. The authors note that, rather than the appearance of these relatively 

uncomplicated mTBIs resolving with time, the deficits appear to be more prevalent. Because 

of differences in data acquisition and processing across the studies, it is not clear if this 

should be interpreted as evidence of progressive changes brought on by brain injury or a 

cautionary note on the limitations of diffusion imaging in robust diagnosis of mTBI.

Functional imaging. Task-based functional brain imaging.

Functional brain imaging refers to a class of dynamic brain imaging procedures that 

measure time-dependent properties of the brain either directly or indirectly linked to 

neurophysiological processes (Figures 5–9). Task-based functional brain imaging uses 

dynamic procedures such as the blood oxygen level-dependent (BOLD) functional magnetic 

resonance imaging (fMRI) technique to identify brain regions that are time-locked to the 

performance of a task. In fMRI, regional changes in blood oxygenation resulting from 

vascular coupling with neuronal activity are used as an indirect marker of that neural 

activity. One of the benefits of task-based fMRI is that it is noninvasive and can be 

performed over repeated sessions. Additionally, researchers can measure task performance 

simultaneously with specific brain functions. As such, fMRI has been used to investigate 

brain function correlated with cognitive performance after brain injury in Veteran (and 

civilian) populations. For example, in a study investigating response inhibition, Fischer and 

colleagues 54 used the Stop Signal Task (SST) during fMRI. The TBI group (which included 

mild-to-moderate TBI) had reduced activation with correct inhibition responses compared 

to the control participants in brain regions supporting inhibitory control. Failure to inhibit 

was associated with greater activity in the military TBI group in temporal, caudate, and 

cerebellar regions. This was the opposite effect of civilian TBI, which was also included in 

this study, and the authors attribute this difference to blast vs. blunt etiology. In a group of 

military Veterans, Scheibel and colleagues 55 found that blast-related mTBI was associated 

with enhanced activation during a stimulus-response compatibility task in anterior cingulate, 

medial frontal, and visual cortical regions. This activation pattern was more extensive 

after statistically controlling for reaction time and symptoms of PTSD and depression. 

There was also a negative relationship between symptoms of PTSD and activation within 

posterior brain regions. These results provide evidence for increased task-related activation 

(generally interpreted as recruitment of more neural resources to accomplish the same 

task) following mild, blast-related TBI and additional changes associated with emotional 
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symptoms. Limitations of this study include no matching for combat exposure and different 

recruitment strategies so that the control group was largely a community-based sample, 

while many TBI subjects were seeking services 56. Together, these studies raise the 

possibility that mTBI is associated with altered brain activity that may include compensatory 

neural activation. However, it is currently unknown whether enhanced activation reflects 

compensatory processes, or rather may be associated with other, unknown processes in the 

injured brain.

Functional connectivity.

Functional connectivity refers to a set of neuroimage analysis procedures to quantify 

regionally correlated brain signal dynamics. Distant brain regions within a common 

network engage simultaneously to perform cognitive operations, thus, when interregional 

correlations are measured, for example, using fMRI, it can be interpreted as network 

communication (Figure 6). Alterations in functional connectivity (changes in the measured 

correlated signal between brain regions) may therefore indicate some sort of damage to or 

dysregulation of neural network systems. However, it should be noted that, because fMRI 

is an indirect measure of neural activity, changes in fMRI might be equally related to 

neural function or the biological processes that mediate the translation of neural function 

into the hemodynamic response. In mTBI, there is evidence that some of these underlying 

processes may be affected 57,58, and this should be considered when interpreting fMRI 

findings. Functional connectivity is sometimes also referred to as ‘resting state fMRI’ 

because the analysis does not require a cognitive task be performed by the subject during the 

measurement, so for practical reasons, the subject is often simply instructed to rest.

Vakhtin and colleagues 59 examined resting state networks in 13 Veterans with blast-related 

mTBI who had post-concussive syndrome in comparison to 50 healthy controls with no 

history of TBI. They found differences in the spatial extent of networks and temporal 

dynamics within certain regions, primarily in the default mode network. Moreover, they 

found that the mTBI group had reduced functional connectivity between several networks, 

primarily in the attentional/motor domains. However, other networks may equally contribute 

to cognitive dysfunction in blast-related mTBI. Gilmore and colleagues 60 examined visual 

network connectivity in Veterans with blast-related mTBI. The authors reported that blast 

mTBI severity was associated with connectivity to various nodes within the visual network, 

which were further predictive of performance on executive function tasks outside the 

scanner.

Two studies in particular examined the role of time since injury. Han and colleagues 7, 

utilizing a longitudinal approach, examined U.S. military personnel with blast-related mTBI 

and a matched blast-exposed cohort within 90 days of injury. The investigators reported 

altered brain network properties (between-module connectivity or ‘participation coefficient,’ 

a graph theory technique) in the individuals with TBI, which appeared to recover with 

time. Using an individualized subject approach, the investigators were able to classify 

approximately 65% of the TBI cohort tested as having ‘abnormal’ connectivity (with less 

sensitivity in a replication cohort). Nathan and colleagues 61 examined Veterans who had 

been evacuated from Iraq or Afghanistan with mTBI and compared them to US Military 
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active-duty controls. They assessed default mode network (DMN) connectivity through a 

goodness-of-fit metric, finding that the DMN had a lower goodness-of-fit score in the mTBI 

group compared to controls. Cross-sectionally, this score decreased with increasing time 

since injury, suggesting progressive dysfunction.

Recent work has examined the role of comorbid mental health conditions in Veterans with 

mTBI using functional connectivity measures. For example, Spielberg and colleagues 62 

found that mTBI modified the role of PTSD on brain connectivity patterns. Similarly, 

Newsome and colleagues 63 examined the role of PTSD in the functional connectivity of 

blast-TBI Veterans and deployed, demographically matched controls. They found that many 

of the group differences were ultimately better attributed to PTSD, although connectivity 

differences in the globus pallidus remained, even after accounting for PTSD.

Electroencephalography (EEG) and event related potentials (ERP).

EEG is a functional brain imaging modality that measures electrical activity of the brain 

with very fine temporal resolution (ability to resolve millisecond timing events) yet 

somewhat limited spatial resolution (ability to localize effects in the brain on the order 

of centimeters). Functionally, information from EEG is typically extracted in the form of 

event-related potentials, or ERPs, which represent an index of the neural response to a 

cognitive or sensory event (typically triggered by a specific task paradigm or stimulus) 

(Figures 7 and 8). In addition to the biological factors mentioned above that may affect 

neural response to a stimulus, there is evidence from animal studies that neurons exhibit 

altered electrical excitability after mTBI 64,65, a feature of neural activity that may be 

particularly well-addressed by EEG or MEG (discussed below), which probe the electrical 

activity of neurons.

EEG is an early technique used in the study of combat-associated concussion, with a 

study by Trudeau and colleagues published in 1998 demonstrating effects of remote blast 

history on EEG markers in a study of combat veterans with some early insights into the 

overlapping nature of PTSD and post-concussive conditions 66. This study included World 

War II, Korean conflict, Vietnam war, Cold War minefield duty, and Desert Storm Veterans. 

Since 2009 several studies have applied EEG in this context. Sponheim and colleagues 

used EEG to examine neural communication in individuals with blast-related mTBI using a 

novel time- and frequency-based procedure to quantify EEG phase synchronization 67. Shu 

and colleagues examined combat Veterans with mTBI with and without concomitant PTSD 
68. They tested participants with the Reading the Mind in the Eyes Test of empathy and 

emotional appraisal of facial features to extract task based ERPs. The investigators found 

that mTBI individuals with PTSD exhibited larger ERPs in response to emotional faces and 

that this response in posterior cortical regions (posterior cingulate/precuneus) was linked to 

the degree of PTSD symptoms. These results contribute to an understanding of how affective 

stimuli are processed in Veterans with mTBI and its common comorbidity, PTSD. In a more 

recent study 69, the investigators used the Stop Task of inhibitory control and found larger 

ERPs to inhibitory processing in the comorbid mTBI and PTSD participants localized to 

anterior cingulate cortex. The authors suggested that such abnormalities could be directly 

related to the control of thought processes in Veterans with mTBI and PTSD. Franke and 
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colleagues examined the spectral power of the EEG signal during the rest (a task-less 

paradigm similar to what is done in many fMRI connectivity studies) in Veterans with a 

range of mTBI and PTSD exposure and severity 70. Individuals with PTSD had reduced 

low frequency power localized to right temporal and parietal cortex. This was in contrast 

to individuals with blast-related mTBI who had greater low frequency power localized to 

prefrontal and right temporal areas. An interesting potential interpretation from this work is 

that the distinct profiles of neurophysiological deficits linked to mTBI compared to PTSD 

can be differentiated using spectral EEG procedures.

Magnetoencephalography (MEG).

MEG is a functional brain imaging procedure that employs extremely sensitive detectors to 

measure disruptions of magnetic fields resulting from electrical activity in the brain. High 

temporal resolution measurements (millisecond scale) are possible, allowing a more direct 

assessment of neural impulses than achievable from the fMRI techniques described above, 

which are dependent on the slower neurovascular response. While the spatial resolution of 

MEG is coarser than the MRI techniques described above, it can be considerably higher 

than that of EEG (although the procedures are measuring different aspects of neural signals). 

MEG has shown promise in detecting abnormalities due to TBI in both military and civilian 

contexts 71. For example, Huang and colleagues 72 examined MEG correlates of TBI in 

45 Veterans with mTBI (due to both blast and non-blast etiologies) and 10 Veterans with 

moderate TBI. The MEG method was able to identify abnormal brain activity in 87% 

of the mTBI group through abnormal slow-wave (1–4 Hz) generation that was correlated 

with post-concussive symptom scores in individuals with TBI. Another MEG study by 

Luo and colleagues 73 demonstrated reduced MEG signal complexity in Veterans with TBI 

and abnormal brain signals were related to neuropsychological measures including motor 

responses, visual perception, and memory.

Fluorodeoxyglucose positron emission tomography (FDG-PET).

Regional brain metabolism (assessed as glucose uptake) can be measured using FDG-PET 

(Figure 9). In this technique, FDG, a radioactive sugar similar to glucose, is injected 

into the participant. Unlike glucose, FDG accumulates in cells after being metabolized. 

Thus, brain metabolic properties can be assessed by measuring regional signal produced 

from radiation emission, which will be proportional to the regional glucose utilization. By 

and large, hypometabolism (that is, less FDG uptake) has been found in individuals with 

mTBI, which is consistent with the understanding of concussion as leading to an energy 

crisis 31. Peskind and colleagues 74 used FDG-PET to measure brain function in 12 Iraq 

war Veterans who reported one or more blast-related mTBIs. They found that Veterans 

with mTBI had decreased cerebellar, vermis, pons, and medial temporal lobe metabolism 

relative to control participants, suggesting that brain hypometabolism may contribute to 

impairments in individuals with military mTBI. This work shows overlap in the cerebellum 

but some differential effects in hypometabolim in comparison to a civilian cohort of boxers 

who underwent FDG imaging 75, potentially suggesting particular vulnerability of the 

cerebellum to a range of brain trauma exposures. In another recent study of 14 Veterans 

with a history of blast mTBI or blast exposure, the mTBI group exhibited significantly 

lower metabolic activity across several brain regions including the amygdala, hippocampus, 
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and parahippocampal gyrus compared to a control group of 11 Veterans without blast 

exposure or mTBI 76. These regions of hypometabolism were apparent in wakefulness as 

well as during rapid eye movement (REM) sleep, potentially suggesting a link to chronic 

sleep disturbances. The reader is referred to a recent review discussing the technical and 

theoretical considerations of the use of FDG-PET in the study of TBI 77.

Multimodal imaging.

Given the difficulties in isolating a specific neural signature of mTBI using individual 

imaging domains, there is some suggestion that the combined strengths of two or more 

imaging domains may provide a robust multimodal marker of mTBI and may be better 

able to determine system-level deficits involving multiple neural properties (e.g., structural 

and functional perturbations). To date, most of the studies that have utilized multimodal 

approaches have compared their findings to DTI.

Petrie and colleagues 78 examined 34 Iraq and Afghanistan Veterans with a history of 

combined blast/impact-related mTBI and 18 Veterans without such a history. They combined 

FDG-PET and DTI and found that Veterans with mTBI had disruptions to the white matter 

microstructure in several tracts, as well as reduced cerebral glucose metabolism in parietal, 

somatosensory, and visual cortices. However, this study was unable to demonstrate whether 

the white matter microstructure had any direct relationship with PET imaging findings.

Huang and colleagues 79 integrated DTI with neuromagnetic signals obtained from MEG 

to determine whether previously reported pathological low-frequency signal (delta waves 

1–4 Hz) in individuals with TBI (civilian- or military-related) were attributable to neurons 

exhibiting axonal injury (inferred through diffusion anisotropy measures). They examined 

10 individuals with TBI who showed minimal abnormalities on conventional imaging. The 

investigators demonstrated that the combined imaging modalities were more sensitive to 

subtle injury than either modality in isolation and that abnormal neural slow waves in 

individuals with TBI measured by MEG may be linked to regions of fiber deafferentiation.

As noted above, Sponheim and colleagues 67 found altered phase synchrony in individuals 

with mTBI. This work additionally investigated the utility of combined DTI and EEG.They 

found EEG phase synchrony alterations in frontal regions linked to blast-related mTBI. 

These were associated with the structural integrity of white matter tracts of the frontal lobe 

and were further linked to combat-stress symptoms. However, cognitive function did not 

appear impaired. Effects were independent of PTSD and depression suggesting that mTBI 

may contribute to a ‘disconnection’ syndrome.

Matthews and colleagues 80 examined 11 individuals with history of blast exposure and 

comorbid major depressive disorder using DTI and fMRI. They found abnormal activity in 

amygdala circuitry during performance of a fear-matching task in blast-exposed individuals 

with major depression relative to individuals without depression. Abnormal activity was 

linked to variation in white matter microstructure assessed by diffusion imaging. This work 

demonstrates that the complicated comorbidities common in Veteran populations may be 

intimately tied to mTBI-associated brain alterations, and highlights the importance of the 

dense characterization of large-scale Veteran populations in examining the multi-faceted 
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nature of military trauma. It is important for future work to continue to use multimodal 

approaches in mTBI to both understand the interplay between mTBI and the common 

comorbidities affecting Veterans as well as to determine the utility of such applications in 

biomarker quantification.

Additional imaging modalities with promise for applications to mTBI.

Outside the study of military-related TBI, other neuroimaging techniques have been utilized 

and have demonstrated utility in the study of brain injury in other contexts, such as 

sports concussion or moderate to severe TBI. These include spectroscopic imaging 81, 

susceptibility-weighted imaging 82, arterial spin labeling 83, and PET imaging with other 

tracers, such as those designed to detect signs of neurodegeneration 84,85. While these 

techniques have not been commonly used in military mTBI, they are available for use and 

may well contribute to our understanding of the effects of military-related mTBI on brain 

health.

Recent considerations in the study of mTBI.

Given the findings reviewed above, it is clear that neuroimaging will play an important role 

in the future of research into understanding mTBI. Although we have touched on many 

important considerations for this work in this review, we briefly discuss more recent classes 

of questions that have emerged from the study of military populations and mTBI as well as 

some future directions for this research in the remaining sections.

Is blast exposure/injury a special case of mTBI?

Much has been written in recent years about the potentially unique phenomenon of blast-

induced brain injury 86. Exposure to explosive munitions is one distinct category of trauma 

that is highly prevalent and somewhat unique to the military population. In fact, blast 

exposure is the most common form of TBI linked to recent conflicts 87. Blunt trauma is 

frequently a component of a blast event, and so the degree to which primary blast alone 

contributes to brain changes measured by neuroimaging in the absence of secondary blunt 

trauma is still unknown. Few Veteran studies have examined the effects of isolated blast. 

An FDG-PET study by Mendez and colleagues 88 found greater hypometabolism in a 

cohort of 12 Veterans with blast-related mTBI compared to 12 Veterans with blunt-force 

mTBI. Results from DTI suggests that blast exposures, without accompanying symptoms 

of concussion may produce changes in neural health 89–91, and functional imaging suggests 

that this may even be specific to blast exposure at close range (self-report of < 10 meters 

from blast) 92.

Animal models of TBI may shed light on the differences between contributions of blast 

and blunt etiologies, as they can provide unique insight into cellular mechanisms and 

biochemical effects of TBIs. However, animal models of brain injury are difficult to 

translate to humans. First, there are substantial differences between the anatomy of model 

organisms (primarily rats, although mice and swine are also common) and humans, and 

these differences will have a large effect on how external physical forces propagate through 

brain tissue. While physiology is more similar, it is still imperfectly matched, notably with 
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regards to time scales (e.g., 93). Given the role of symptom duration in assessing injury 

severity in humans, and our understanding of TBIs as time-varying biochemical processes 
94,95, this is a significant hurdle to the development and validation of experimental brain 

injury procedures to model specific types of brain injury. This may, at least in part, account 

for why TBI treatments that work well in animal studies have had limited success in humans 
96. To gain insight into human injury from animal models, an animal model that produces 

an analogous injury is vital, and the fact that different strains of mice react differently to 

experimental brain injury 97,98 underscores the difficulty of matching animal injuries to 

those of humans. Additionally, while the physics of producing blunt trauma is relatively 

straightforward, modeling the external forces (let alone the effects on tissue) for blast is 

complex, and not all models work well (see 99 for review). Thus, direct comparisons of 

blunt and blast-only brain injuries are difficult, even in experimental brain injury. Despite 

these difficulties, across animal studies, we see that one of the components of blast injuries 

that separate them from blunt injuries is the contribution from vascular effects 100, which 

are more pronounced in blast injuries. Indeed, one of the potential mechanisms of injury 

is transmission of the pressure wave from the thorax through major blood vessels to the 

brain 101. Additionally, cavitation, where blood gasses change permeability with rapidly 

changing pressure and form bubbles which then collapse with great force, is a unique 

aspect of blast-related injury 102. One study modeled blast-only and “complex” injuries in 

rats by changing whether the rats were directly in front of the blast tube (changing the 

degree to which the head moved) and found that the blast-only model was not associated 

with neuronal death, however, both model types were associated with glial injuries, and 

the blast-only setup, especially without body protection, was more highly associated with 

systemic neuroendocrine and neurotrophic factors in serum 103. However, most biochemical 

components of brain injury are present in both etiologies, although perhaps to different 

extents. For a review of animal models of TBI (blast and blunt, see 104).

Long term consequences of mTBI.

An active area of research aims to determine whether an early-life TBI alters brain aging 

trajectories, which, in turn, may increase the likelihood of the development of late-life 

dementia or specific neurodegenerative conditions such as Alzheimer’s disease. This has 

been the topic of several recent discussions in the literature 105,106 with a range of 

epidemiological and clinical studies suggesting that TBI increases later life cognitive risk 

to some degree 107–109. Brain imaging has demonstrated the potential modification of 

aging trajectories, at least cross-sectionally, in Veterans with blast exposure compared to 

unexposed Veterans 91,110 and for Veterans with symptomatic blast-related mTBI compared 

to pre-deployed military personnel 91. Moreover, recent imaging work demonstrates that 

genetic risk for Alzheimer’s disease and exposure to TBI have a potentially interactive effect 

on cortical thickness 111, which may suggest some enhanced risk for degenerative processes 

that have long term consequences. Despite the limitations noted in the field about the lack 

of confirmable records of past TBI, particularly in older military cohorts, and the fidelity 

of self-reports, we emphasize here that understanding how TBI influences brain aging and 

the risk for future neurodegenerative disease is of utmost importance. The alternative is 

an epidemic of dementia care from an aging military cohort from Operations Enduring 

Freedom, Iraqi Freedom, and New Dawn that will begin to approach the age range where 
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early dementia is typical within the next 15–20 years. As such, not preparing for this 

possibility may result in a major medical and societal burden.

Conclusions: The future of research into neural mechanisms of mTBI.

Although much has been uncovered since the application of sophisticated brain imaging 

to the study of mTBI, a vast amount remains to be learned. Towards this end, important 

major efforts are underway to further elucidate the causes of TBI-associated symptoms 

and disability. Through enhanced understanding of mechanisms there is hope that more 

effective therapeutics will ultimately be devised. It is imperative that research proceeds 

to develop large, well-characterized cohorts of Veterans and military service members 

that can be followed over time to chart and understand the long-term effects of both 

physical and psychological trauma incurred prior to and during military deployment. In 

order to illuminate specific noninvasive neuroimaging metrics that are sensitive to identify 

the instance of mTBI and determine its long-term course, it is essential to also capture 

specific factors of the brain injury itself 112. A number of research studies are currently 

ongoing to meet these goals. Additionally, efforts are being made to make data freely 

available to the research community, which will increase the likelihood of important findings 

from this work and further our understanding of combat-associated TBI. The Rehabilitation 

Research and Development service of VA funded the Translational Research Center for 

TBI and Stress Disorders (TRACTS) in 2009, and the center has now collected detailed 

biological, neuropsychology, psychiatric, lifetime trauma and multimodal neuroimaging 

data for over 500 OEF/OIF/OND Veterans, with more than half having returned for 

longitudinal evaluation 113. Requests for data from the TRACTS longitudinal cohort study 

can be made through visiting the TRACTS website (http://www.boston.va.gov/research/

Translational_Research_Center_for_TBI_and_Stress_Disorders_TRACTS.asp) or through 

email to the study Director, Dr. Regina McGlinchey (Regina.McGlinchey@va.gov). The 

Chronic Effects of Neurotrauma Consortium (CENC, https://cenc.rti.org), a joint venture 

by VA and DOD was funded in 2013 114,115, and is acquiring brain imaging and other 

characterization data from several US sites in an effort to examine the long-term effects of 

combat and other military-related mTBI. The Alzheimer’s Disease Neuroimaging Initiative-

Department of Defense (ADNI-DOD; http://adni.loni.usc.edu/study-design/collaborative-

studies/dod-adni) is an adjunct project to the large-scale initial ADNI projects that 

aims to understand how military trauma in early life results in late life brain and 

other changes. Data are accessible through their website. In addition to these studies, 

invaluable supporting information about the pathological basis of imaging findings will 

be available through complementary efforts such as the VA Biorepository Brain Bank (http://

www.research.va.gov/programs/specimen_biobanking.cfm). Moving into the future, the 

continued efforts of large-scale longitudinal studies that leverage many imaging modalities 

combined with thorough characterization of both the brain injury history and the biological 

and psychological context in which they occurred demonstrate much promise to propel the 

field forward. These advances will promote the understanding of the impact of mTBI on 

Veteran health and options for future treatment.
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Figure 1. 
Structural brain imaging refers to a set of procedures for measuring a variety of 

morphometric properties of the brain. Alterations in brain structure in individuals or 

groups of individuals may be linked to pathologic processes. Different types of imaging 

contrasts measure various aspects of brain structure including (A) T1-weighted (typically 

used for differentiation of gray and white matter and cortical surface modeling), (B) 

T2-weighted (typically used to detect tissue pathology with increased fluid content), & 

(C) Fluid attenuated inversion recovery (FLAIR; typically used to measure pathology 

including stroke). The pial and white matter surfaces are outlined in yellow and green, 

respectively, capturing the thickness of the cortex. Aberrations in each scan can represent 

neural abnormalities such as white matter lesions (red arrow) or hemosiderins (orange 

arrow).
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Figure 2. 
Cortical thickness in structural imaging is a measurement of the distance from the grey-

white matter boundary (green outline) to the edge of the cortex, or pial surface (yellow 

outline). Cortical thickness can change with normal aging as well as pathology. An example 

of a single subject is shown on the right with yellow regions demonstrating the areas with 

the highest cortical thickness and thinner regions of the cortex in red.
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Figure 3. 
Computational procedures can be used to model the brain and to measure the structural 

properties of brain tissue within defined regions. The figure demonstrates the automated 

(A) parcellation of the cerebral cortex based on gyral anatomy and (B) segmentation 

of subcortical regions by the Freesurfer software suite (freesurfer.net). The amount of 

tissue in the different regions is typically compared between groups to determine regional 

vulnerability to degenerative processes.
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Figure 4. 
Diffusion weighted imaging refers to a set of magnetic resonance imaging procedures that 

exploit water diffusion in tissue as the basis of image contrast. Diffusion imaging measures 

various properties of the behavior of water in the brain such as fractional anisotropy (FA), 

radial diffusivity, etc. These measurements can be used to quantify various aspects of tissue 

microstructure, which can be compared between groups, as well as used in visualization of 

the anatomy of prominent white matter fascicles and other anatomical properties. (A) The 

white matter tracts of a single subject’s brain, reconstructed from the FA values where high 

FA represents regions of strict, directed water diffusion (along the borders of white matter 

bundles) and low FA indicates regions with isotropic water diffusion. (B) The white matter 

tracts from FA values are color-coded to indicate the direction of water diffusion in order to 

illustrate the arrangement and organization of bundles of white matter. (C) Visualization of 

diffusion tensor imaging (DTI) data in the axial (left), sagittal (top right), and coronal plane 

(bottom right). Fiber bundle directionality is indicated by color (red = right to left/left to 

right (e.g. corpus callosum), green = posterior to anterior/anterior to posterior (e.g. cingulum 

bundle), blue = inferior to superior/superior to inferior (e.g. corticospinal tracts)).
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Figure 5. 
Task-related fMRI refers to the use of MRI to measure regional brain responses to cognitive 

and/or behavioral stimulation. (A) In the fMRI paradigm, an experimental task is performed 

at known times during imaging, and the resulting expected brain response (measured by 

MRI as the ‘hemodynamic response’ due to the phenomenon of neurovascular coupling) can 

be statistically analyzed to determine regions of the brain supporting the operations used 

to perform the task. (B) Activation patterns associated with behavioral fluctuations during 

a sustained attention task in 145 veterans from the TRACTS cohort (image courtesy of Dr. 

Michael Esterman, VA Boston Healthcare System).
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Figure 6. 
Functional connectivity refers to procedures used to examine covariance in regional brain 

activity. Correlated activity across brain regions is interpreted to indicate shared demands 

for a cognitive operation between regions, and potentially direct communication between 

regions. The image demonstrates a ‘seed’ region in the posterior cingulate (top) in which 

the fMRI signal (based on the blood oxygenation level-dependent mechanism of contrast) 

is quantified across time (blue waveform) and correlated with other regions throughout the 

brain. This analysis highlights functional connectivity among a set of regions referred to 

as the ‘default mode network,’ which has been demonstrated to be compromised across 

a range of conditions including blast exposure [73]. The red-yellow regions demonstrate 

positive correlation to the seed in which the fMRI signal is quantified across time (green 

waveform) and plotted over the fMRI signal from the seed (middle). The positive correlation 

between these two time-series is plotted in yellow (middle right). The blue-light blue regions 

demonstrate anticorrelation to the seed in which the fMRI signal is quantified across time 

(red waveform) and plotted over the fMRI signal from the seed. The anticorrelation between 

these two time-series is plotted in light blue (bottom right).
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Figure 7. 
Electrophysiological activity in the brain can be evaluated using electroencephalography 

(EEG) and magnetoencephalography (MEG). These techniques measure changes in the 

electric and magnetic fields, respectively, which are presumed to originate in the brain 

sources and rapidly propagate toward the participants’ scalp, affording high temporal 

resolution of the recordings. Event-related data can elucidate neural processing during 

performance on a task, discerning differences typically lasting between 50–500 ms. Top-left 

shows time-courses of the average electrophysiological response evoked by stimuli from 
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two conditions (40 trials per condition) at FC1 and P5 EEG sensors positioned on the scalp 

(by convention negative voltages are plotted up). The scalp topography at the time-points 

(indicated by white arrows), when the between-condition differences were maximal at each 

of these electrodes, is shown in top-right (the data from 64 EEG sensors, locations of FC1 

and P5 sensors indicated by the black dot). The fronto-central effect shown in blue (the 

time-course displayed in blue is more negative) and the left-posterior effect shown in red 

(the time-course displayed in yellow is more negative) peaked approximately 50 ms apart 

and were likely generated by distinct neural sources.

Models can be estimated that localize EEG and MEG data, recorded at the scalp, to the 

neural sources. Bottom-left shows time-courses of the average evoked electrophysiological 

activity (60 trials per condition) estimated at the cortical regions shown in bottom-right. 

The time-course in the experimental condition shown in yellow peaked a few dozens of ms 

earlier in the left temporal cortex (TC) than in the left prefrontal cortex (PFC).
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Figure 8. 
High temporal resolution of EEG/MEG, combined with an acceptable spatial resolution (on 

the order of 10 mm) of the source-localized activity estimates, afford dynamic information 

on connectivity in the large-scale functional neural networks, which is complementary to 

the fMRI data. Amplitude fluctuations in the band-limited electrophysiological oscillations 

(e.g., in the 15–30Hz beta band) can be measures in regions of interest (ROIs), such as areas 

in the inferior-parietal cortex (IPC) and temporal cortex (TC) shown in top-left, by taking 

an absolute value of the Hilbert-transformed data, as shown in top-right (oscillating activity 

time-course is shown in blue, and the Hilbert-transformed amplitude-envelope is shown 

in red). Then, functional connectivity between the ROIs can be evaluated by computing 

a correlation between the amplitude-envelope time-courses, as shown for the TC and 

IPC envelopes in bottom-left (yellow dots show the corresponding time-point data). The 

functional connectivity between ROIs may be dynamic as is evident from the values of the 
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correlation between the ROI envelope time-courses, which may vary over time, as shown in 

bottom-right for IPC (red) and TC (blue) time-courses: for approx. 10s the correlation was 

close to zero, but for the next approx. 10s-long time-interval the correlation increased to .61.

Salat et al. Page 32

Brain Inj. Author manuscript; available in PMC 2022 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
FDG-PET is a procedure that provides information about energy utilization in the brain. This 

is achieved through the use of an injected radiolabeled analog of glucose (FDG). Given that 

glucose is a primary energy substrate in the brain, FDG accumulation within brain areas is 

a marker of metabolic activity and this measure of energetics is regionally diminished in a 

variety of clinical conditions. Brighter colors are found in regions with greater tracer uptake 

(and therefore greater metabolic activity).
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