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Abstract

Cross-correlated relaxation (CCR) in multiple-quantum coherences differs from other relaxation 

phenomena in its theoretical ability to be mediated across an infinite distance. The two interfering 

relaxation mechanisms may be dipolar interactions, chemical shift anisotropies, chemical shift 

modulations or quadrupolar interactions. These properties make multiple-quantum CCR an 

attractive probe for structure and dynamics of biomacromolecules not accessible from other 

measurements. Here, we review the use of multiple-quantum CCR measurements in dynamics 

studies of proteins. We compile a list of all experiments proposed for CCR rate measurements, 

provide an overview of the theory with a focus on protein dynamics, and present applications to 

various protein systems.
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Cross-correlated relaxation (CCR) in multiple-quantum coherences can theoretically be mediated 

across an infinite distance. This property makes multiple-quantum CCR an attractive probe for 

structure and dynamics of biomacromolecules not accessible from other measurements.

• We compile a list of all experiments proposed for long-range multiple-quantum cross-

correlated relaxation rate measurements on proteins

• We provide an overview of the theory with a focus on protein dynamics

• We present applications to various protein systems

Keywords

Protein dynamics; cross-correlated relaxation; CCR; correlated motion; multiple-quantum 
coherence

1. Introduction

Owing to its quantum physical nature, nuclear magnetic resonance (NMR) spectroscopy 

has its own ‘spooky action at a distance’.[1] Cross-correlation effects in multiple-quantum 

(MQ) relaxation offer a tool to observe the interference of two spatially separated events 

in multi-spin systems.[2–5] These effects are fundamentally different from the better known 

autorelaxation, which is responsible for the return of magnetization to the equilibrium 

state after excitation by radio-frequency pulses. Because cross-correlated relaxation rates 

constants may be both positive or negative, cross-correlation can enhance or counteract 

autorelaxation. A brilliant use of this feature is made by so-called TROSY experiments:
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[6,7] Spectral peaks that are split by scalar couplings can have autorelaxation rates that 

are affected in opposite ways by cross-correlated relaxation. TROSY then selects only the 

component with the narrower lineshape which relaxes slower, thus enabling experiments 

with substantially larger tumbling times.[6,7] On the one hand, cross-correlated relaxation 

between two rank-two relaxation mechanisms including dipole-dipole interaction, chemical 

shift anisotropy and quadrupolar interaction depends on the relative orientation of the two 

relevant interaction axes or tensors.[8–14] As the interactions are modulated by the overall 

tumbling of the molecule and its internal dynamics with respect to an external polarizing 

magnetic field, the relaxation rates ultimately report on the temporal correlation of these 

relative orientations and are sensitive to motion on all time scales.[15–19] On the other 

hand, correlated modulation of two rank-zero isotropic chemical shifts provides insight 

into concerted changes of the electronic environment of two spins.[2,3,20] In order to be 

observable in MQ relaxation, this modulation must occur on the slow motion time scale, yet 

be sufficiently fast to average the chemical shifts of the exchanging spins (setting the limit to 

μs-ms).

In this review, we focus on the extraction of information on protein dynamics from cross-

correlated relaxation (CCR) between two mechanisms that do not share any spin (Figure 

1). These types of CCR are usually referred to as ‘remote’ CCR.[14] Measurement of such 

CCR rates allows quantification of correlated motions in proteins that may have implication 

for their functions. We note that CCR also occurs between interactions that share common 

spins.

We distinguish between four different classes of CCR: Interference between two 

dipole-dipole interactions (DD/DD), between a dipole-dipole interaction and chemical 

shift anisotropy (DD/CSA), between two chemical shift anisotropies (CSA/CSA), and 

interference between two isotropic chemical modulations (CSM/CSM). Dipole-dipole 

interaction is also active between a nucleus and an unpaired electron. In that case, the 

interaction is referred to as Curie-spin relaxation (CSR).[21] We do not treat quadrupolar 

interaction because it vanishes for spins-1/2, of which MQ coherences are typically analyzed 

in proteins. We denominate the two spins-1/2 being involved in MQ coherence I1 and S1. 

These spins are sufficient to describe CSA and CSM, while for DD interactions, which 

involve two spins, we assume additional spins I2 and S2 in proximity of I1 and S1, 

respectively. As opposed to the distance between I1 and S1, the I1-I2 and S1-S2 distances 

do impact the CCR rates, which are inversely proportional to the cube of these distances. 

Although the spatial separation of the two interfering mechanisms giving rise to CCR 

is unlimited in principle, a practical limitation poses the need to create MQ coherences 

between spins involved in both interactions. This is highlighted by an overview of all such 

CCR rates that have been measured in proteins (see Figure 1 and Table 1). The largest 

separation between almost any two interactions is three covalent bonds for all four classes of 

CCR translating into distances between the I1 and S1 spins of less than 4 Å. The exceptions 

are CSA(C’)/CSA(C’) and DD(HαCα)/DD(HαCα) between two neighboring strands in β 
sheets[22,23] with associated distances of 4.5–5 Å. Most CCR rates were measured on the 

protein backbone, while a few share one interaction from the backbone with one in a side 

chain.[24–27]
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For completeness, we mention that CCR rates have also been measured on RNA (such 

as DD(HC)/DD(HC) in riboses[28,29] and in an aminoethoxy side-chain in aminoethoxy-

substituted ribose[30]; DD(HC)/CSA(N) for χ angle determination[31]; DD(HC)/CSA(N) 

in bases or between riboses and bases[32]; DD(HC)/CSA(P) in the phosphodiester 

backbone[33]; CSM(N)/CSM(N) across hydrogen bonds in Watson-Crick base pairs[34] ), 

carbohydrates ( DD(HC)/DD(HC)[35] ) and small molecules ( DD(HH)/DD(HC) and 

DD(HC)/DD(HC) in a η3-allylpalladium complex and its intermediate in a metal-catalyzed 

substitution reaction[36,37] ). DD(HC)/DD(HC) CCR have also been used in the context 

of transferring structural information from a large complex to smaller molecules that 

are accessible to NMR analysis (‘transferred CCR’),[38–40] and CSM(HN)/CSM(N) or 

CSM(C’)/CSM(N) have been monitored under CPMG conditions[41–44].

1.1. The cross-correlated relaxation rate constant

The explicit expressions for I1/S1 MQ cross-correlated relaxation rate constants for the 

DD/DD, DD/CSA and CSA/CSA interferences are [12,14]

RDD(I1I2)/DD(S1S2) = μ0
4π

2γI1γI2γS1γS2h2

10π2
1

(rI1I2
eff )3(rS1S2

eff )3JDD(I1I2)/DD(S1S2)(0) (1)

RDD(I1I2)/CSA(S1) = μ0
4π

2γI1γI2γS1hB0
15π

1
(rI1I2

eff )3

ΔσS1, x
eff JDD(I1I2)/CSA(S1)

x (0) + ΔσS1, y
eff JDD(I1I2)/CSA(S1)

y (0)
(2)

RCSA(I1)/CSA(S1) =
8γI1γS1B0

2

45 ∑
μ = x,y

∑
μ′ = x',y'

ΔσI1, μ
eff ΔσS1, μ′

eff JCSA(I1)/CSA(S1)
μ, μ′ (0) (3)

γX is the gyromagnetic ratio of nucleus X, B0 the polarizing magnetic field, rXY
eff is 

the effective distance between nuclei X and Y (under the assumption that radial and 

spherical motion of the bond vectors and the CSA tensors are not correlated),[71,72] μ0 

is the permeability of free space and h denotes Planck’s constant. σX,μ
eff  is the principal 

component of the effective chemical shift anisotropy tensor of spin X along the μ dimension 

and ΔσX, μ
eff ≡ σX,z

eff − σX, μ
eff  (note that chemical shielding and chemical shift anisotropy are 

closely related and sometimes use the same symbols; for example, following the convention 

used in reference 73, σX,μ
eff  is the chemical shielding anisotropy and a negative sign would be 

added to the right-hand side of equation 2). The spectral density functions J are all taken at 

zero frequency and depend on the orientation and dynamics of the X1-X2 bond vectors and 

σX,μ
eff . In the simplest case of isotropic molecular tumbling with correlation time τc and no 

internal dynamics, the spectral density function is J = P2(cosθ)τC, where P2 is the Legendre 

polynomial of second order and θ the projection angle between the two interaction axes.
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Although never reported to our knowledge, the Curie-spin relaxation (CSR) with either 

DD[74–76] or CSA[77] in a three-spin system (two nuclei and one unpaired electron) can be 

expanded to a four-spin system. In that case, the CCR rates become:

RDD(I1I2)/CSR(S1Se)

= μ0
4π

2γI1γI2γS1γSeh
2geμeB0Se(Se + 1)

15π2kBT
1

(rI1I2
eff )3(rS1Se

eff )3JDD(I1I2)/CSR(S1Se)(0) (4)

RCSA(I1)/CSR(S1Se) = μ0
4π

4γI1γS1γSehgeμeB0
2Se(Se + 1)

45πkBT
1

(rS1Se
eff )3

× ΔσI1, x
eff JCSA(I1)/CSR(S1Se)

x (0) + ΔσI1, y
eff JCSA(I1)/CSR(S1Se)

y (0)
(5)

ge is the electronic g factor (for simplicity isotropic), μe the electronic Bohr magneton, Se 

the Curie spin quantum number, and kB Boltzmann’s constant. Note that the expressions 

for CSR cannot be obtained by simple substitution of the corresponding constants used for 

DD. Instead, the electron spin operator must be replaced by an expectation value before 

commutator rules are applied to calculate the CCR rate.[21] It is also worth to mention 

that CCR involving CSR is able to probe long-range effects even when one spin is shared 

by the two interfering interactions (for example DD(I1I2)/CSR(I1Se) in single-quantum I1 

relaxation).[78–81]

Cross-correlated relaxation between two CSR interactions is also possible, as recently 

measured via transverse relaxation of a single spin.[82,83] Theoretically, such a CSR/CSR 

CCR also acts on MQ coherence in a four-spin system:

RCSR(I1Ie)/CSR(S1Se)

= μ0
4π

22γI1γI2 γehgeμeB0Se(Se + 1) 2

45 πkBT 2
1

(rI1Ie
eff )3(rS1Se

eff )3JCSR(I1Ie)/CSR(S1Se)(0) (6)

γe stands for both γIe and γSe, which are identical, and we assumed that the Curie spin 

quantum numbers are the same for the two electrons, Ie = Se.

The cross-correlated relaxation rate constant due to CSM/CSM interference is [84]

RCSM(I1)/CSM(S1) = 1
2 JCSM(I1)/CSM(S1)(0) + JCSM(S1)/CSM(I1)(0) (7)

Here, the spectral density function J is different from above as it depends on the correlation 

of the chemical shifts of I1 and S1 rather than vectors. No interference between CSM and 

dipolar interaction or CSA occurs because these interactions have different ranks.
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Note that for all CCR rates mentioned above, there are CCR rates caused by other 

interferences from which they cannot experimentally be separated,[17,24] which are typically 

much smaller as long as no CSM/CSM is involved.

2. Cross-correlated relaxation as a probe of dynamics

In this review, we focus on approaches to extracting protein dynamics information from 

CCR data. While CSM/CSM CCR rates can be directly translated into dynamics information 

and all studies dedicated to their measurement necessarily obtained such information, most 

studies using the first three classes of CCR were restricted to obtain structural information at 

most, that is, average projection angles between the involved interaction axes (bond axis for 

DD) and tensors (CSA). Generally, interpretation of these CCR rates in terms of dynamics 

models is non-trivial because dynamics-induced alterations of the rates are typically much 

smaller than the rates per se. The quantification of the experimental errors are therefore 

crucial because they may mask the dynamics effects, and considerable effort has been 

made to estimate these errors.[85,86] In principle, however, the DD interaction carries the 

most directly accessible atomistic information as it is directly related to the bond vector 

connecting the two atoms that interact. The CSA tensor also has a clear formal relationship 

with the atom geometry, but a reliable tensor (main axis components and orientation) is 

required for dynamics extraction. In practice, the tensor uncertainties are usually prohibitive 

as the tensor ultimately depends on the electronic environment. For similar reasons, it is 

also difficult to translate CSM/CSM data into a structural representation, but it is useful to 

study temporal aspects of the dynamics. In the following section, the theoretical relationship 

between the spectral density functions used in equations 1–7 and protein dynamics is 

outlined. For the sake of compactness and our focus on dynamics studies, we use DD/DD 

interference to represent the first three classes of CCR. The generalization to DD/CSA and 

CSA/CSA is straight-forward. If the CSA tensor is axially symmetric the tensor reduces to 

a vectorial quantity, and is analoguous to the DD interaction with the constants substituted 

accordingly. If the CSA tensor is anisotropic it can be represented by a sum of two vectorial 

representations as proposed by Goldman[12] and done in equations 2, 3 and 5. Then, each 

summand carries an individual spectral density function with respect to the according 

direction of the CSA component.

2.1. Spectral density function of cross-correlated relaxation

Dynamic effects are encoded in the spectral density function JA/B(ω), where A and B are 

the two interfering interactions giving rise to the CCR. For simplicity, we omit the subscripts 

from here on. J(ω) is the Fourier transform of the correlation function:[87]

J(ω) = ∫
−∞

∞

C(t)cos(ωt)dt (8)

The correlation function describing dipole/dipole cross-correlated motion between the 

vectorial tensors A and B can be expressed as:
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C(t) = 4π
5 ∑

q = − 2

2 rB
eff 3 rA

eff 3

rB
3(t)rA

3 (0)
Y2q* (θB(t), ϕB(t))Y2q(θA(0), ϕA(0)) (9)

The angular brackets denote ensemble averaging, Y2q are the second rank spherical 

harmonics, rX(t) is the time-dependent length of vector X, and the polar angles θ and ϕ 
orient the vectors in the laboratory frame. In the case of CSA, (reff)3/r(t)3 would be replaced 

by Δσ(t)/Δσeff.

A reasonable assumption is that the fluctuations of the internuclear distances are not 

correlated with each other and with the orientations of the internuclear vectors. Thus, the 

dynamics effects may be absorbed into the effective distances used in equation 1 and the 

correlation function becomes distance independent:

C(t) = 4π
5 ∑

q = − 2

2
Y2q* (θB(t), ϕB(t))Y2q(θA(0), ϕA(0)) (10)

A slightly different notation of equation 9 is more convenient to express the correlation 

function.[19] We assume that the timescales of anisotropic molecular tumbling (τk) are at 

least one order of magnitude different from those of internal motions. In that case, the 

correlation function can be factorized into contributions from overall tumbling and internal 

motion if carried out for five summands individually:

C(t) = ∑
k = − 2

2
Ck

int(t, 0) e−t/τk (11)

where τk are the inverted eigenvalues of the anisotropic diffusion operator D:[17,82]

1/τ−2 = Dx + Dy + 4Dz
1/τ−1 = Dx + 4Dy + Dz
1/τ0 = 6(D − D2 − D′2)
1/τ+1 = 4Dx + Dy + Dz
1/τ+2 = 6(D + D2 − D′2)

(12.1–5)

and the coefficients Ck
int(t, 0) contain the angular dependencies on the vectors A and B 

given by the polar angles (θA, ϕA) and (θB, ϕB) in the molecular frame at times 0 and t, 
respectively:
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C−2
int(t, 0) = 3

4sin2θA(0)sin2θB(t)sin2φA(0)sin2φB(t)

C−1
int(t, 0) = 3

4sin2θA(0)sin2θB(t)cosφA(0)cosφB(t)

C0
int(t, 0) = 3μ2

4N2sin2θA(0)sin2θB(t)cos2φA(0)cos2φB(t)

− 3μw
4N2 sin2θA(0)cos2φA(0)(3cos2θB(t) − 1) + sin2θB(t)cos2φB(t)(3cos2θA

(0) − 1)

+ w2

4N2 (3cos2θA(0) − 1)(3cos2θB(t) − 1)

C+1
int(t, 0) = 3

4sin2θA(0)sin2θB(t)sinφA(0)sinφB(t)

C+2
int(t, 0) = 3w2

4N2sin2θA(0)sin2θB(t)cos2φA(0)cos2φB(t)

+ 3μw
4N2 sin2θA(0)cos2φA(0)(3cos2θB(t) − 1) + sin2θB(t)cos2φB(t)(3cos2θA

(0) − 1)

+ μ2

4N2 (3cos2θA(0) − 1)(3cos2θB(t) − 1)

(13.1–5)

with

μ = 3 Dx − Dy ; w = 2Dz − Dx − Dy + 2Δ;

Δ = 3 D2 − D′2; N = 2 Δw;

D′ =
DxDy + DxDz + DyDz

3 ; D =
Dx + Dy + Dz

3

2.2. Lipari-Szabo model-free approximation

Lipari and Szabo proposed a single-exponential approximation for C using an effective 

correlation time and a generalized order parameter quantifying motion independently of a 

specific physical model for isotropic overall tumbling.[87] Analogous application to fully 

anisotropic tumbling approximates the correlation function as linear superposition of five 

monoexponential decays

C(t) = ∑
k = − 2

2
Sk

2 + ( Ck
int(θB

av, ϕB
av; θA

av, ϕA
av) slow − Sk

2)e−t/τCCR e−t/τk (14)

with

Sk
2 ≡ Ck

int fast
(15)
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The internal motion correlation time τCCR characterizes the de-correlation process between 

vectors A and B. Sk
2 are the generalized order parameters, which are averages of Cint

k 

over the sub-nanosecond timescale, thus being only sensitive to fast motion. Impact of slow 

motion, on the other hand, is manifested in the averaging of Ck
int over timescales longer 

than the overall tumbling time (typically a few nanoseconds). Assuming that the ergodic 

hypothesis holds, the angled brackets indicate averaging over the fast and slow timescales 

as indicated by the superscripts. The polar angles (θav
A, ϕav

A) and (θav
B, ϕav

B) are averages 

over the fast time scale.

Fourier transformation of the correlation function gives the spectral density function:

J(ω) = ∑
k = − 2

2 Sk
2τk

1 + (ωτk)2 +
( Ck

int(θB
av, ϕB

av; θA
av, ϕA

av) slow − Sk
2)τ′k

1 + (ωτ′k)2 (16)

with

1
τ′k

= 1
τk

+ 1
τCCR

(17)

The impact of motion on the CCR rate may be absorbed into a heuristic order parameter:

RA/B = S2
CCRRA/B

rigid (18)

where the CCR rate expected for a rigid molecule can easily be calculated by using the 

following spectral density function:

J rigid(ω) = ∑
k = − 2

2 τkCk
int(θB

av, ϕB
av; θA

av, ϕA
av)

1 + (ωτk)2 (19)

2.3. Symmetrically and isotropically tumbling dynamic molecules

More convenient expressions are obtained for simpler models: If the molecular tumbling is 

axially symmetric, τk = τ-k and equations 11, 14, 16 and 19 can be rewritten as sums over 

three terms. If the molecular tumbling is isotropic, all τk equal the isotropic tumbling time 

commonly referred to as τC, and the summation is replaced by a single expression:

J iso(ω) = S2τC
1 + (ωτC)2 +

( P2(θAB
proj) slow − S2)τ′
1 + (ωτ′)2 (20)

The only remaining C coefficient is the Legendre polynomial P2 of the cosine of the 

projection angle between the vectors A and B, and the order parameter S2 is its time average 

over that fast time scale, which is
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S2 = 4π
5 ∑

q = − 2

2
Y2q* (θB, ϕB)Y2q(θA, ϕA) fast

(21)

2.4. Internal motion as a two-step process with a quasi-equilibrium

A slightly more complex model of internal motion accounts for fast and slow motion 

in isotropically tumbling molecules.[18,89] Internal dynamics is introduced as a two-step 

process with fast motions with respect to a quasi-equilibrium conformation of a local 

environment and slow fluctuations of the latter. Both types of motions have a characteristic 

correlation time, τCCR,f and τCCR,s, for the fast and slow motion, respectively. There is a 

correlation function Cint,quasi(t) of the quasi-equilibrium states reached over the fast time 

scale and therefore associated with the local environment, but which changes over the slow 

timescale. The fast time scale is faster than the one associated with S2, which is per se also 

faster than τC. The slow time scale, on the other hand, is not necessarily slower than τC (as 

opposed to the motion captured by ... slow in the previous sections). The spectral density 

function is (compare to equation 20)

J iso(ω) = S2τC
1 + (ωτC)2

+ τ′f
1 + (ωτ′f)2 P2(θAB

proj) slow − S2 − (Cint,quasi(0) − S2) τCCR,s
τCCR,s − τCCR,f

+ τ′s
1 + (ωτ′s)2 (Cint,quasi(0) − S2) τCCR,s

τCCR,s − τCCR,f

(22)

with 1
τ′f

= 1
τC

+ 1
τCCR,f

 and 1
τ′s

= 1
τC

+ 1
τCCR,s

For τCCR,s ≫ τC and τCCR,f ≪ τC we obtain

J iso(ω) = Cint,quasi(0)τC
1 + (ωτC)2 (23)

and is further simplified with axially symmetric fast fluctuations:

J iso(ω) =
SA,fastSB,fast P2(θAB

proj) slowτC

1 + (ωτC)2
(24)

SA,fast and SB,fast are the order parameters of fast motion of the A and B interaction vectors. 

This result is in agreement with derivations in references 17 and 19, which show that the 

degree of correlation of slow motion of the vectors A and B alter the spectral density 

function and thus the CCR rate, but not the correlation of fast motion. A model has been 

proposed based on a linearized Langevin approach to describe dynamical coupling between 

two interactions by expressions for correlation functions and their order parameters.[90] 

A simple experimentally accessible decomposition can be derived as follows.[19] Order 
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parameters of the A and B interaction vectors can be derived from residual dipolar couplings 

(RDCs), which are also sensitive to slow motion (up to tens of milliseconds).[91] If these 

motions are axially symmetric and not correlated, they can be used to express the Legendre 

polynomial in equation 24. Even if the overall tumbling is anisotropic, the following equality 

holds

J(ω) = SA,RDCSB,RDCJ rigid(ω) (25)

Any deviation from this equality is indicative of correlation of slow motion of the vectors of 

interactions A and B.

Finally, we note that the above derivations are all based on the assumption that the overall 

tumbling and the internal motion can be separated. Expressions for order parameters for 

CCR relaxation that are not under this restriction have been derived using slowly relaxing 

local structure (SRLS) theory.[92]

2.5. Spectral density function of CSM/CSM

CCR induced by CSM/CSM is caused by correlated deviations from the average chemical 

shifts of spins I1 and S1, δωI1(t) and δωS1(t). The equivalent to equation 8 is[24,84]

J(0)CSM(I1)/CSM(S1) = ∫
−∞

∞

δωI1(t)δωS1(t − τ) dτ (26)

or, when the amplitudes can be clearly defined with means ΔωI1 and ΔωS1

J(0)CSM(I1)/CSM(S1) = ΔωI1ΔωS1 ∫
−∞

∞

CCSM/CSM(τ) dτ (27)

Here, CCSM/CSM is the correlation function of the chemical shift fluctuations. As opposed 

to cross-correlation between DD and/or CSA, the correlation function and therefore also 

the spectral density function do not depend on the Larmor frequency, and thus we use zero 

instead of ω (note that in the special case of MQ coherence CCR only the J(0) terms give 

rise to CCR, although other terms also contribute in other relaxation types).

Explicit expressions can be derived for two-site exchange with populations p1 and p2 and the 

correlation time of exchange τex = 1/(k1 + k-1):[93]
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RCSM(I1)/CSM(S1) = 1 2 J(0)CSM(I1)/CSM(S1) + J(0)CSM(S1)/CSM(I1) =

1
8

1
τex2 − ΔωI1 − ΔωS1

2 + 1
τex2 + ΔωI1 − ΔωS1

2 2
− 16p1p2 ΔωI1 − ΔωS1

2

τex2

1/2 1/2

− 1
8

1
τex2 − ΔωI1 + ΔωS1

2 + 1
τex2 + ΔωI1 + ΔωS1

2 2
− 16p1p2 ΔωI1 + ΔωS1

2

τex2

1/2 1/2
(28)

In the fast exchange limit this reduces to:[67,93]

RCSM(I1)/CSM(S1) = 2p1p2ΔωI1ΔωS1τex (29)

3. Applications

3.1. Dynamics from DD/DD, DD/CSA, CSA/CSA CCR

3.1.1. First attempts: Gaussian fluctuation models—The first study that examined 

the impact of motion on MQ CCR rates between DD and/or CSA was a simulation of 

the effect of Gaussian Axial Fluctuation (GAF) motion[94,95] of the peptide plane on 

DD(HN
iNi)/CSA(C’i-1) and CSA(Ni)/CSA(C’i-1) CCR.[62,66] In the GAF approach, motions 

are modeled as angular fluctuations with Gaussian distributed amplitudes around one axis 

or three orthogonal axes (Theoretical considerations of GAF in the context of CCR can 

also be found in reference 84). Dynamics was treated according to equation 24, with the 

fast order parameters set to 1, effectively assuming that all motion takes place on the 

slow time scale. In the first of the few attempts to obtain dynamical information from 

measured MQ CCR rates, sums of dipolar HNN/C’Cα and HNCα/C’N CCR rates and 

sums of dipolar/CSA HNN/C’ and HNC’/N CCR rates have been combined with sums of 

dipolar/CSA N-Cα/N and C’- Cα/C’ CCR rates and compared to a GAF model, but their 

small size and uncertainty of the CSA tensors prevented a sound interpretation.[56] Later, 

five CCR rate types were combined to fit a GAF model to ubiquitin.[47]

3.1.2. Fitting staggered conformations—The first clear deduction of motion was 

achieved from four dipolar HC/HC CCR rates in a CH2-CH2 group of a aminoethoxy side 

chain in a ribose:[30] Carlomagno et al. fitted populations of all three possible staggered 

conformations and two associated order parameters. Again, no time scales of the motions 

were modeled, assuming only slow motion in equation 24. A similar approach was then 

applied to ubiquitin, where order parameters S2 were obtained from best fits of the dipolar 

HαCα/HβCβ CCR rates to χ1 angles when only one Hβ was present.[25] Typical values 

were 0.7–1 but those for a few residues were less than 0.5. When two Hβ protons were 

present (Hβ2 and Hβ3) fits to static χ1 angles failed. Instead, the authors assumed GAF 

around the Cα-Cβ axis and fitted χ1 and the amplitudes of the fluctuations of individual 

staggered conformations simultaneously. These amplitudes ranged from 4 to 30 degrees. 

Some residues could not be fitted due to conformational averaging. On the other hand, other 

residues were fitted with three staggered conformations.
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3.1.3. Overall heuristic order parameters—A simpler approach than those 

mentioned above makes use of equation 18. A heuristic CCR order parameter S2
CCR may 

be determined from the ratio of the experimental CCR rate and the value predicted from a 

known structure assuming a rigid molecule. S2
CCR of dipolar HN

iNi/HN
i+1Ni+1 CCR rates 

measured on ubiquitin were found to be ca. 0.75 on average, but with a large variation.
[17] Similar values were obtained for the chicken villin headpiece subdomain, again with 

large spread of values.[89] Inspired by equation 24, a slow motion CCR order parameter 

S2
CCR,slow was then defined as S2

CCR/(Si,fast)/(Si+1,fast) and extracted by using relaxation 

HNN order parameters for Sfast.[89] It was shown that slow motion is present in that protein 

but the degree of correlation is not encoded in S2
CCR,slow. S2

CCR,slow dropped on average 

from 0.90 to 0.82 when the temperature was raised from 22 to 32 °C. The same technique 

was applied to the isolated dematin headpiece domain (DHP), where the three helices had 

S2
CCR,slow averages of 0.57, 0.71 and 0.77.[96] A mutation having an additional salt bridge 

was less flexible and raised the figures to 0.80, 0.77 and 0.78.

Measurements of dipolar Hα
iCα

i/Hα
i+1Cα

i+1 CCR rates have been reported for ubiquitin 

in reference 55. With an effective Hα-Cα bond length of 1.12 Å, the heuristic CCR order 

parameter seems frequently to lie outside the range from 0.76 to 1.

As mentioned above, many experiments have been proposed to measure dipolar HNN/HαCα 

CCR rates. In most publications, it is not clear what effective bond lengths have been used 

and how accurate the overall correlation time has been. As a consequence, averaged CCR 

order parameters are generally spread over a range of 0.75–0.95. For the sequential CCR 

rates (mostly depending on the ψ angle) in ubiquitin and CheY, Yang and Kay appear to 

have values of 0.95 for less mobile residues.[52] Other experiments on ubiquitin yielded 

lower values, either in the range of 0.8–0.9[45,53] or 0.76[54]. For intraresidual rates (mostly 

depending on the φ angle) obtained from ubiquitin, the values are ca. 0.9[45] or 0.8[49]. A 

CCR order parameter relating bonds in different peptide planes in the SH3 domain from 

spectrin has also been estimated from CSA(C’)/CSA(C’) CCR rates.[22] The order parameter 

takes values between 0.47 and 0.92, but the uncertainty in the assumed CSA tensor may be 

substantial.

In a recent study, we measured sequential HNN/HNN, HαCα/HαCα and intraresidual and 

sequential HNN/HαCα dipolar CCR rates at high accuracy and precision on GB3.[50] We 

measured all CCR rates with at least two methods as different as possible to obtain insight 

into systematic errors. The overall standard deviations of the averages of the different 

methods were 0.19, 1.37, 0.20 and 0.26 s−1. Considering ranges of the measured values of 

6.73, 43.9, 12.4 and 12.7 s−1, the errors correspond to 2.8, 3.1, 1.6 and 2.1 %. These data 

sets were then used for comparison to predicted values based on a highly accurate structure. 

To absorb effects from radial but not spherical fluctuations, we chose values of 1.02 and 1.09 

Å for the effective HN–N and Hα–Cα bond lengths, respectively.[71,72] A uniform, overall 

value of the heuristic order parameter S2
CCR introduced in equation 18 is then obtained from 

the slope of a linear regression in a plot relating the predicted to the experimental CCR rates 

(Figure 2). As shown in Table 2, the uniform S2
CCR values are 0.72, 0.76, 075 and 0.76 

for HNN/HNN, HαCα/HαCα, intraresidual and sequential HNN/HαCα dipolar CCR rates. In 
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order to focus on dynamics corrected for librational motion, effective bond lengths are often 

set to 1.041 and 1.117 Å.[71,72] In that case, the order parameters are 0.81, 0.88, 0.86, 0.87.

The overall heuristic HNN/HNN CCR order parameter S2
CCR of GB3 is in good agreement 

with the one found for ubiquitin[17] and for the chicken villin headpiece subdomain[89]. 

The HNN/HNN S2
CCR are considerably smaller than the Lipari-Szabo relaxation order 

parameters of a single HN-N bond (ubiquitin 0.85[97], GB3 0.83[98]), suggesting additional 

motion on the supra-τc time scale.

3.1.4. Correlated motion—The first interpretation of correlated motion between the 

two interaction axes was based on the above mentioned four dipolar HC/HC CCR rates in a 

CH2-CH2 group of an aminoethoxy side chain in a ribose.[30] As the CCR order parameter 

was approximately as large as the H-C autocorrelated order parameter, it was concluded that 

the two internal motions are correlated. Similarly, correlated motion between consecutive 

peptide planes in ubiquitin has been suggested on the basis of dipolar HNN/HNN CCR rates.
[17] The corresponding heuristic CCR order parameters are on average 0.75 (with a large 

dispersion) and in general smaller than HN-N relaxation order parameters (average 0.85).

It is clear that for a detailed assessment of the degree of correlation between the motions 

of the two interaction axes, these motions have to be quantified individually with a probe 

that is also sensitive to the slow time scale (μs-ms). Building on the idea to relate CCR 

rates to residual dipolar couplings (RDCs) of the individual bonds as given in equation 

25,[48,89] we have recently mapped out slow correlated motion along the backbone among 

and between consecutive HN–N and Hα–Cα bonds of the protein GB3.[101] For that study, 

we used the highly accurate and precise HNN/HNN, HαCα/HαCα and intraresidual and 

sequential HNN/HαCα dipolar CCR rates mentioned above.[50] In Figure 3, we modified the 

plot shown in Figure 2 by multiplying the predicted CCR rates for a rigid GB3 model by 

order parameters derived from RDCs of the individual interaction axes[72,100]. As explained 

in the derivation of equation 25, this procedure models a dynamic molecule, where the 

individual interaction axes are not dynamically correlated (and the motions are approximated 

as symmetric). In order to correct for libration motions that are not present in static 

structures, we scaled the linear regressions obtained from the correlation plots in Figure 3 to 

correspond to 1.041 and 1.117 Å bond lengths of HN–N and Hα–Cα, respectively.[71,72] The 

original and corrected slopes are reported in Table 1. Partial correlation of the interaction 

axes would cause inequality in equation 25, and consequently deviations of the corrected 

slopes from a value of 1. To quantify the degree of correlation, we introduced a correlation 

factor

Fcorr,A/B =
JA/B

exp (0)
SA,RDCSB,RDCJA/B

rigid(0)
, (30)

which can be obtained from 
RA/B

exp

SA,RDCSB,RDCRA/B
predict  and is plotted in Figure 4. All four types 

of CCR rates yield on average slopes larger than one, which are indicative of syn-correlated 

motion (as opposed to anti-correlated motion). The residue-specific correlations are very 
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similar to those observed for a structural ensemble calculated from the same CCR rates, and 

thus will be further discussed in the ‘Ensemble calculation using CCR restraints’ section. We 

note that these values critically depend on an overall scaling of the RDC order paramters, 

which is not a trivial task. The same RDC data set has been used in another study to derive 

a similar residue-by-residue pattern as the one of the order parameters employed above, 

but with lower overall values.[102] These values produce even larger Fcorr,A/B factors, which 

correspond to even stronger correlation of motion (see Figure 4).

3.1.5. Validation of structural ensembles—Another way to identify signatures of 

dynamics in measured CCR rates is the comparison of the measured rates with rates 

back-predicted from structural ensembles. The easiest and only approach used so far is 

based on equation 24 with Sfast set to 1 (or equation 11 with Cint(t,0) at t = 0 in the case 

of anisotropic overall tumbling). Then, P2 is simply averaged over each member of the 

ensemble with equal weight. If there is motional correlation present in the ensemble, it 

will also be inherent to the back-predicted CCR rate. The first example of this approach 

was a study of DD(HNN)/DD(CβCγ) CCR rates in aromatic side chains of ubiquitin and 

GB3.[26] Although the measured rates are relatively small and therefore have a large relative 

error, back-prediction from the ubiquitin ensemble agrees better with the experimental rates 

than from a single-state bundle. For GB3, the two rates involving the side chain of residue 

40 indicate correlated motion between the side-chain and backbone torsion angles. The 

same approach with DD(HNN)/DD(CαC’) CCR rates did not result in better agreement 

when a structural ensemble was used instead of a single structure.[57] The reason for this 

failure is that the intervening dihedral angle is the highly rigid ω angle and that these 

rates are extremely small (−0.2 to 0.2 s−1) because the HN-N/Cα-C’ projection angle is 

close to the magic angle. However, the data confirms previous findings demonstrating that 

the HN proton often lies outside the idealized peptide plane. The backbone CCR data set 

mentioned above (HNN/HNN, HαCα/HαCα, and intraresidual and sequential HNN/HαCα)
[50] also agrees better with an ensemble generated from RDCs, J couplings, 15N relaxation 

order parameters and crystallographic B-factors[103] than with single static structures[101]. In 

addition, we have used this CCR data set[50] to cross-validate a structural bundle of GB3 

constructed by a physical force field minimally biased by RDCs.[104]

DD(HNN)/DD(HβCβ) CCR depends on two or three intervening dihedral angles, which 

offers a way to probe the motional correlation between the side-chain χ1 and the backbone 

dihedral angles. We have recently measured the associated CCR rates for Ile, Thr and Val 

Hβ-Cβ bonds in GB3 and compared them to various high-resolution single-state structures 

and ensembles of structures (Figure 5).[27] Many of these structures were calculated using 

χ1 angle restraints from the same X-ray structure[105]. There are many outliers, most 

notably both CCR rates of residues 42 and 55, but also the ψ-dependent ones of residues 11 

and 21, which are dominated by angles that appear to be different in the X-ray crystals than 

in solution. Indeed, the agreement became much better even when we compared the CCR 

rates to a single-state bundle[106] obtained from an accurate data set of unparalleled diversity 

including exact NOEs (eNOEs), RDCs and J couplings.[107] Τhe correlation is high (r = 

0.93), having only minor outliers like the φ-angle dependent rate of residue 11. A four-state 

ensemble calculated from the same data set[106] improves the agreement again substantially 
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with no major outlier. While r only improves slightly to 0.96, the general overestimation 

of the experimental rates when using the single-state model is substantially reduced. These 

findings indicate that the single-state model is already a very accurate average structure 

with a high correlation with the experimental rates. On the other hand, these results also 

demonstrate that the CCR rates are sensitive to motion as demonstrated by a generally better 

agreement with the lower rates predicted from the model featuring dynamics.

Next, we tested if the CCR rates are sensitive to the correlation between dihedral angle 

fluctuations.[27] We predicted the rates under the assumption that the ϕ and χ1 or ψ and 

χ1 angles in the four-state ensemble were not correlated by combining all sampled values 

of the first angle with those of the second. We found relevant differences in the rates as 

compared to the correlated model for both the ϕ- and ψ-dependent rates of residues 39 and 

49, and the ψ-dependent rates of residues 11, 21 and 49. Almost all rates based on the 

correlated model are in closer agreement with the measured values than those based on the 

uncorrelated values (Figure 6). The ϕ-dependent rate of residue 39 has the largest difference 

of all (−1.35 s−1) and the correlated model agrees very well with the experimental value.

Two studies went beyond straight-forward validation of structural ensembles and used 

dipolar CCR rates as a selection criterion for realistic NOE-, J coupling-, and RDC-

restrained ensembles.[23,108] In the first study, HNN/HNN and HNN/HαCα dipolar CCR 

rates were used to generate a realistic subensemble of NOE- and RDC-restrained molecular 

dynamics (MD) ensembles of ubiquitin.[108] Subsequently, a similar approach has been used 

with long-range HαCα/HαCα CCR (lrCCR) rates between opposing antiparallel β strands 

in GB3.[23] The measurement required through-space relaxation allowed coherence transfer 

(RACT), which resulted in relatively low sensitivity and only five lrCCR rate constants 

were obtained. Nevertheless, this represents an interesting methodological advance. First, 

various single-state structures and structural ensembles were cross-validated using RDCs 

and backbone CCR rates (excluding lrCCR) involving the relevant Hα-Cα bonds (Figure 

7). Particularly good agreement was observed for the 640-member ERMD ensemble,[109] 

and single-state structures and the CCR16 ensemble, both of which have been restrained 

with these RDCs (and in the case of CCR16 also with the CCRs, under exclusion of the 

lrCCR; for details on CCR16 see ‘Ensemble calculation using CCR restraints’ section). 

Typically, these structures are also those that agree well with the lrCCR rates. Surprisingly, 

X-ray structures[105] that were in poorer agreement in the local validation of the Hα-Cα 

bonds showed the best agreement with the lrCCR rates among all structures. Apparently, 

the relative geometry is properly represented despite of inaccuracies of the individual 

bond vectors that are necessarily introduced by adding protons to X-ray structures at 

idealized positions. Finally, new subensembles were generated by selecting two-structure 

subensembles from the original ensembles that agreed best with the lrCCR rates and 

adding them one by one to a target subensemble. Those subensembles that reached the 

best agreement with the RDCs and CCR rates other than the lrCCR were reached at ca. 10% 

of the original ensemble sizes (white symbols in Figure 7).

3.1.6. Ensemble calculation using CCR restraints—Using the high-accuracy 

HNN/HNN, HNN/HαCα and HαCα/HαCα dipolar CCR rates mentioned above, [50] we 
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generated structural models of GB3 and obtained a complex H-X bond motion correlation 

map.[101] To that purpose, we introduced a harmonic Xplor-NIH[110] CCR restraint:

Ecorr = wCCR(RA/B
calc − RA/B

restrained) (31)

where the weighting factor for the potential term wCCR is set to 0.4, 0.8, 0.8, and 2.0 kcal/

mol·s2 for HN
iNi/HN

i+1Ni+1, HN
iNi/Hα

iCα
i, HN

iNi/Hα
i+1Cα

i+1, and Hα
iCα

i/Hα
i+1Cα

i+1, 

respectively. The restraint assumes isotropic overall tumbling. The error introduced by 

this approximation was reduced by correcting the measured rate for the contribution from 

anisotropy estimated from a high-resolution structure.

First, we calculated a single-state structure ‘CCR1’ from combined CCR and RDC 

restraints (Table 3) using Xplor-NIH.[101,103,110] This structure was able to reduce the 

root-mean-square deviation from the measured CCR values when compared to a previously 

calculated high-resolution structure (PDB accession code 2OED[99]). However, independent 

cross-validation with J couplings that depend on similar angles as the CCR rates were 

similar (Table 3). As mentioned above, the ensemble generated from RDCs, J couplings, 
15N relaxation order parameters and crystallographic B-factors (‘ENS8’),[103] is in better 

agreement with the CCR rates than the single-state structure 2OED, and even better than 

our CCR-restrained single state structure CCR1 in the case of HαCα/HαCα. This indicates 

that the CCR rates can not sufficiently well be represented with static structures. Therefore, 

we calculated ensemble structures of GB3 restrained by the six sets of both HN-N and 

Hα-Cα RDCs[72,100] and the four sets of CCR rates[50] mentioned above. The ensemble was 

determined using Xplor-NIH with the same general protocol previously used to generate 

ENS8,[103] but with the CCR restraints added. An optimum ensemble size of 16 members 

was determined through independent validation with the 3J couplings.

Finally, we also calculated Fcorr,A/B correlation factors for the CCR16 ensemble. Generally, 

the values are similar to those calculated in the ‘model-free’ approach described in the 

‘Correlated motion’ section, and generally between the two extremes obtained from the 

different RDC scalings (Figure 4). The Fcorr,A/B values derived from CC16 are plotted on the 

backbone representation of GB3 in Figure 8. In general, we find that the bond motions are 

on average slightly correlated, and that the local environment dominates many observations. 

Despite this, some patterns are typical over entire secondary structure elements. In 

the β sheet, nearly all bonds are weakly correlated and there is an approximately 

binary alternation in correlation intensity corresponding to the solvent exposure/shielding 

alternation of the side chains. The average Fcorr,A/B value for the consecutive HN-N bond 

vectors quantifies the average correlation between neighboring peptide planes and is that 

closest to 1, indicating that the average degree of correlation between these probes is the 

weakest. Nevertheless, the HN-N correlation is also seen in the α helix. The correlation 

between the side chains probed by the HαCα/HαCα CCR rates are of intermediate strength 

as is the sequential HNN/HαCα correlation serving as measure of correlation between the ith 

side chain and its i+1 peptide plane. The intraresidue HNN/HαCα correlation has the most 

correlated behavior of all probes. Loops show complex and non-uniform behavior for all 

four types of CCR rates.
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4. Dynamics from CSM/CSM CCR

Cross-correlated chemical shift modulation (CSM/CSM) is a manifestation of correlation 

between the local electronic environments of two spins.[24,69,70] The zero- and double-

quantum coherences between the two spins relax at different rates partially due to correlated 

modulation of the isotropic chemical shifts. The effect is sensitive to motion on the μs-

ms time scale, caused by formation and disruption of hydrogen bonds, changes in local 

geometry by alteration of dihedral angles or changes in local chemical environment by 

repositioning of neighboring aromtic rings. From the multitude of the applications using 

CSM/CSM CCR measurements (references 24, 43, 44, 66–69, 93, 96, 114–117), we choose 

several examples that demonstrate dynamical changes upon mutation, upon interaction 

with a ligand, as well as changes caused by deuteration of non-exchangeable sites. In 

general, CSM/CSM experiments are expected to provide complementary information to their 

more common SQ chemical exchange counterpart, especially for cases in which dynamical 

changes of interest are anticipated to affect multiple motional modes and be dispersed 

throughout the protein side-chains and backbone sites.

From a methodological stand-point it is important to note that i) the use of multiple magnetic 

field strengths enables to pin-point the time scale of the exchange processes, ii) probing the 

temperature dependence of rates potentially allows for the separation of the rate constant 

from the static terms, such as p1p2 and ΔωI1ΔωS1 (especially in the fast limit given by 

equation 29), and iii) the comparison between the single-quantum (SQ) and MQ analogs 

of chemical exchange contributions helps to identify and characterize underlying motional 

processes.

Insightful work by Wang and Palmer provides theoretical background for the extraction of 

the chemical exchange time scale of CSM/CSM interactions based on the field dependence 

of the rates.[93] Furthermore, the study describes an important comparison of the relative 

effectiveness of CSM/CSM and SQ chemical exchange measurements in probing motional 

processes based on the relative values of the chemical shift differences of the two nuclei 

(Figure 9).

4.1. CSM/CSM changes upon ligand binding

One exemplary protein studied by CSM/CSM CCR is the major urinary protein (MUP), 

a pheromone-carrying protein of the lipocalin family.[115] Isothermal titration calorimetry 

(ITC) has shown that the affinity of MUP for the pheromone 2-methoxy-3-isobutylpyrazine 

(IBMP) is primarily driven by enthalpy. However, there is a minor unfavourable contribution 

from entropy, which can be attributed in part to changes in internal motions of the protein 

upon binding. Perrazolo et al. have measured CSM(C’)/CSM(N) rates as a function of 

temperature in MUP with and without IBMP.[115] Significant dynamical changes were 

observed upon binding even for residues that were far from the ligand binding sites.

4.2. CSM/CSM changes upon mutation

CSM(Cα
i)/CSM(Cα

i+1) and CSM(15N)/CSM(1HN) experiments on a E140Q mutant of 

the C-terminal domain of calmodulin have been combined with rotating frame R1ρ 
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relaxation dispersion measurements of SQ coherences of 15N, 13Cα, and 1HN nuclei.
[69,114] Quantitative analysis demonstrated that the mutant protein exchanges between the 

functionally relevant open (calcium-loaded) and close states of the wild-type variant.

The CSM(15N)/CSM(1HN) CCR rates were measured at three static magnetic field strength 

values (11.7, 14.1 and 18.8 T).[114] These rates cannot be spectroscopically separated from 

CSA(15N)/CSA(1HN) CCR rates and dipolar CCR rates between I1-K and S1-K, where K 
is a neighboring spin. The linear dependence of the effective rates on the squared magnetic 

field strength indicated that the time scale of exchange is fast on the chemical shift time 

scales for the majority of the residues. This also means that the dipolar contributions can 

be separated from the CSM and CSA contributions a posteriori. Furthermore, the 15N 

and 1HN CSA values were determined separately, and CSA/CSA estimates based on these 

values were subtracted from the measured rates to obtain the CSM(15N)/CSM(1HN) CCR 

rates (Figure 10A and B). Using the previously determined residue-specific τex with an 

average of ca. 20 μs and an average population estimate from 15N relaxation dispersion R1ρ 
measurements, the products of the chemical shift differences could be calculated (Figure 

10D, given in units of δσNδσHN). For comparison the chemical shift differences between 

the free and the calcium-saturated wild type is shown, which indicates good agreement 

for large values of δσNδσHN. However, there is disagreement in the calcium binding sites 

comprising residues 93–104 and 129–140, indicating that the hydrogen bonding pattern in 

the calcium-binding loops of the mutant remains intact during the exchange process.

Interestingly, the CSM(Cα
i)/CSM(Cα

i+1) CCR rates are in disagreement with the two-state 

open-closed transition, as concluded from comparison to wild-type shifts (Figure F).[69] 

Instead they suggests that an entire α-helix (helix F) transiently unravels in a cooperative 

fashion (Figure 10). This notion is supported by 1HN exchange measurements (Figure E). 

Importantly, these motions could not be detected by 1HN and 15N relaxation dispersion R1ρ 
measurements.

Vugmeyster and McKnight investigated changes in the dematin headpiece upon S74E 

mutation, which closely mimics phosphorylation responsible for reversible regulation of 

actin bundling activity.[96,116] The results indicated a reduction in mobility upon the 

mutation in several regions of the protein. The additional salt bridge formed in DHPS74E 

that links the N- and C-terminal subdomains is likely to be responsible for these changes.

4.3. Effect of deuteration at non-exchangeable sites

In a recent study, Vugmeyster et al. analyzed time scales of chemical exchange in GB3 

using CSM/CSM rates in C’-N and Cα-Cβ pairs in protonated and deuterated GB3 proteins 

at two values of static magnetic field strengths.[118] Significant mobility was observed in 

the backbone in selected regions of the protein that was obscured in the SQ measurements, 

especially in the α-helical region. Backbone C’-N dynamics fell into the fast-to-intermediate 

regime on the chemical shift time scales, whereas Cα-Cβ dynamics were determined to be in 

the intermediate-to-slow time regime. Further, CSM(Cα)/CSM(Cβ) measurements indicated 

that the dynamics at these sites are significantly reduced when non-exchangeable protons are 

replaced by deuterons (Figure 11).
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5. Summary and Outlook

In summary, we have reviewed the potential of cross-correlated relaxation between two 

interactions that do not share a common spin for dynamics studies of proteins. Their 

measurement offers a type of information that is underexplored in structural and dynamics 

studies, the correlation in time and space of these two interactions. The rates fall into two 

main categories: CCR rates between rank-two interactions (DD, CSA, CSR) and rank-zero 

contributions (CSM). DD and CSR report directly on exact atom positions, while CSA 

and CSM depend on the electronic environment. However, CSM is a very strong probe of 

temporal aspects.

Although there have been attempts to use CCR rates as structural restraints,[101,119] they are 

clearly less explored than other NMR restraints. We foresee two developments that would 

give multiple-quantum CCR rates novel significance in structure calculation, dynamics 

studies and molecular dynamics (MD) force field improvement. First, successful modeling 

of the CCR correlation function from MD trajectories would offer a direct comparison 

to measured CCR rates that incorporates also temporal properties of correlated motions. 

Second, reconstruction of CSM/CSM rates from MD trajectories would introduce an 

unprecedented probe of time correlation. Promising progress has been made in predicting 

exchange contributions to single-quantum relaxation rates from MD simulations.[120] 

Further improvement of the method would open the door to the prediction of correlations 

between chemical shift fluctuations as well. As opposed to analysis based on NOEs, scalar 

couplings and RDCs, there is still a need for the development of analytical CCR tools for 

non-experts.

Another attractive prospect is to probe CCR rates between interactions that are separated 

by more than 5 Å. This requires the establishment of MQ coherences between spins that 

are connected be more than three covalent bonds (or separated through space). At least 

on the GB3 sample that has been used for many of the studies presented here, further 

INEPT transfer steps are not prohibitive in terms of relaxation. However, many spins in the 

chain connecting the target spins would have similar chemical shifts to which pulses could 

not be applied selectively. This may complicate the design of appropriate pulse sequences. 

Generally, however, there are some limitations to the systems on which CCR rates can be 

measured with high accuracy. These include solubility at near-mM concentration, protein 

stability over days and relatively small protein size (even for those CCR rates that are easiest 

to measure the protein size above 200 residues is problematic).

Finally, we note that almost all studies have focused on the protein backbone. There is no 

fundamental reason that would prevent further studies on protein side chains, many of which 

feature more pronounced motions than the backbone, including highly correlated ones.
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Figure 1. 
Measured cross-correlated relaxation and isotropic chemical shift modulation. The colored 

lines connect atoms or atom pairs which are involved in the mechansims giving rise to the 

interferences. Arrow heads, squares and spheres indicate dipolar interaction (dipole/dipole, 

DD), chemical shift anisotropy (CSA) and isotropic chemical shift modulation (CSM), 

respectively. The types of experiment used for measurement and references are given in 

Table 1.
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Figure 2. 
Correlation plots of experimental and predicted dipolar CCR rates based on a rigid 

GB3 model. RDD(I1I2)/DD(S1S2) + RDD(I1S2)/DD(S1I2) is abbreviated by R. HNN/HNN and 

HαCα/HαCα rates are shown on the top left and right, respectively, and intraresidual and 

sequential HNN/HαCα rates at the bottom left and right. The theoretical rates are calculated 

under the assumption of anisotropic overall tumbling. The effective HN–N and Hα–Cα bond 

lengths are 1.02 and 1.09 Å, respectively. Linear regressions shown in red are uniform 

heuristic order parameters as given in equation 18. The most extreme outliers are indicated 

in red. The black lines indicate a slope of 1. Reprinted by permission from Springer 

Nature: B. Vögeli, Cross-correlated relaxation rates between protein backbone H-X dipolar 

interactions, J. Biomol. NMR 2017, 67, 211–232, copyright 2017.
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Figure 3. 
Correlation plots of experimental and predicted dipolar CCR rates based on a dynamic 

GB3 model. RDD(I1I2)/DD(S1S2) + RDD(I1S2)/DD(S1I2) is abbreviated by R. HNN/HNN and 

HαCα/HαCα rates are shown on the top left and right, respectively, and intraresidual and 

sequential HNN/HαCα rates at the bottom left and right. The theoretical rates are calculated 

under the assumption of uncorrelated motion and anisotropic overall tumbling. The effective 

HN–N and Hα–Cα bond lengths are 1.02 and 1.09 Å, respectively. The most extreme outliers 

are indicated in red. The black lines indicates a slope of 1. Adapted with permission from 

R.B. Fenwick, C.D. Schwieters, B. Vögeli, Direct investigation of slow correlated dynamics 

in proteins via dipolar interactions. J. Am. Chem. Soc., 2016, 138, 8412–8421, copyright 

2016 American Chemical Society.
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Figure 4. 
Residue-specific motional correlation factors Fcorr,A/B from GB3 versus residue numbers. 

A/B is HN
iNi/HN

i+1Ni+1 and Hα
iCα

i/Hα
i-1Cα

i-1 on the top left and right, respectively, and 

HN
iNi/Hα

iCα
i and HN

iNi/Hα
i-1Cα

i-1 on the bottom left and right. Black thick bars connect 

the lower Fcorr,A/B estimate from the RDC order parameters from references 72 and 100 

with the higher estimate derived from reference 102. The error bars indicate the propagated 

errors from the CCR rates and order parameters. The white points indicate the Fcorr,A/B 

values calculated from an ensemble that was restrained with the same CCR and RDC data. 

Errors for these Fcorr,A/B are the r.m.s.d. values from 20 independent ensembles. Reprinted 

with permission from R.B. Fenwick, C.D. Schwieters, B. Vögeli, Direct investigation of 

slow correlated dynamics in proteins via dipolar interactions. J. Am. Chem. Soc., 2016, 138, 

8412–8421, copyright 2016 American Chemical Society.
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Figure 5. 
Correlation plots of experimental and back-predicted dipolar CCR rates based on four GB3 

models. RDD(HNN)/DD(CβHβ) + RDD(HNCβ)/DD(NHβ) is abbreviated by R. The theoretical 

rates are calculated under the assumption of isotropic (red squares) and anisotropic 

overall tumbling (blue diamonds). The structural models are: RDC-refined X-ray structure 

2OED[99], where the HN and Hα proton positions were subsequently re-optimized with 

RDCs[72,100] (top left); an eight-state ensemble calculated from RDCs, J couplings, 
15N relaxation order parameters and crystallographic B-factors[103] (bottom left); single-

state structures (top right) and four-state ensembles both from eNOEs, RDCs and J 
couplings[106,107] (bottom right). The most extreme outliers are indicated with red residue 

numbers, where i/j designate the residues of the HN-N and Hβ-Cβ vectors. The black lines 

indicate a slope of 1. Reprinted by permission from John Wiley and Sons: R.B. Fenwick, 

B. Vögeli, Detection of correlated protein backbone and side-chain angle fluctuations, 

ChemBioChem, 2017, 18, 2016–2021, copyright 2017.
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Figure 6. 
Impact of correlated motion between the ϕ and χ1 or ψ and χ1 angles on CCR. 

Left panel, correlation plots of experimental and predicted R = RDD(HNN)/DD(CβHβ) + 

RDD(HNCβ)/DD(NHβ) rates based on ensembles derived from eNOEs, RDCs, and J couplings 

from GB3.[106,107] Only rates with changes larger than the experimental error (> 0.59 s−1) 

are shown. Predicted rates assuming correlated motion are shown in red squares, and those 

assuming uncorrelated fluctuation in blue diamonds and labeled with the residue number of 

the involved side-chain and amide bond. Right panel, correlation plots of HN
i-Ni-Cα

i-Cβ
i 

(≈ϕ+60°) and Ni-Cα
i-Cβ

i-Hβ
i (≈χ1+120° for Ile, and ≈χ1–120° for Val, Thr) dihedral 

angles (red squares) and Ni+1-C’i-Cα
i-Cβ

i (≈ψ−240°) and C’i-Cα
i-Cβ

i-Hβ
i (≈χ1 for Ile, 

and ≈χ1–240° for Val, Thr) dihedral angles (blue diamonds). The angles are indicated on 

the four-state ensembles with red (ϕ), blue (ψ) and grey arrows (χ1). Ensemble states 

were grouped around residue 9. Reprinted by permission from John Wiley and Sons: 

R.B. Fenwick, B. Vögeli, Detection of correlated protein backbone and side-chain angle 

fluctuations, ChemBioChem, 2017, 18, 2016–2021, copyright 2017.
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Figure 7. 
Long-range HαCα/HαCα dipolar CCR rates compared to Hα-Cα bond vector representations 

in NMR ensembles, single NMR and X-ray structures and sub-selected ensembles of GB3. 

The angles between the Hα-Cα bond vectors are depicted by circle symbols (left y-axis), 

while the quality with which every Hα-Cα bond pair reproduces the measured observables 

is expressed in terms of Q values (right y-axis). The following Q values were calculated: 

One Q value for the lrCCR rates for every Hα-Cα bond vector pair (square), two Q values – 

one for each Hα-Cα bond vector – for the RDCs measured in 17 alignment media (up/down 

triangle), two Q values for the backbone intra-residue HNN/HαCα, sequential HNN/HαCα 

and HαCα/HαCα CCR rates (left/right triangle). The lines in the figure mark the level of the 

lowest Q value for the lrCCR rate and the inter-vector angle corresponding to that structure 

or ensemble with the lowest lrCCR Q value. White symbols denote the calculations for 

the sub-selected ensembles based on the lrCCR rates. Reprinted from M. Sabo, V. Gapsys, 

K.F.A. Walter, R.B. Fenwick, S. Becker, X. Salvatella, B.L. de Groot, D. Lee, C. Griesinger, 

Utilizing dipole-dipole cross-correlated relaxation for the measurement of angles between 

pairs of opposing CαHα-CαHα bonds in anti-parallel β-sheets, Methods, 2018, 138–139, 

85–92, with permission from Elsevier.
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Figure 8. 
Residue-specific Fcorr,A/B values for GB3 from ensemble structure calculation. HNN/HNN, 

HαCα/HαCα, and intraresidual and sequential HNN/HαCα Fcorr,A/B are mapped on 3D 

ribbon representations of GB3. The β sheet is in the front in the top row, and the α helix in 

the bottom row. Reprinted with permission from R.B. Fenwick, C.D. Schwieters, B. Vögeli, 

Direct investigation of slow correlated dynamics in proteins via dipolar interactions. J. Am. 

Chem. Soc., 2016, 138, 8412–8421, copyright 2016 American Chemical Society.
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Figure 9. 
Comparison of MQ CSM(15N)/CSM(1H) CCR rates and SQ 15N exchange contribution. The 

dependence of ΔRMQ(exchange) = 2RCSM(15N)/CSM(1H) rates upon the exchange time scale, 

kex = 1/τex, and the 1H and 15N chemical shift modulations, ΔωH and ΔωN, respectively, 

is shown with the thin curves calculated from equation 8 in the study by Wang and 

Palmer[93] (ΔωN = 2 ppm at 600 MHz, p1 = 0.9 and ΔωH/ΔωN ratios equal to 0.2, 0.5, 

1,2, 5). The plotted results would be multiplied by −1 if ΔωH and ΔωN had opposite 

signs. The bold curve shows the exchange contribution to SQ 15N relaxation, Rex plotted 

versus log(kex/ΔωN). Reprinted by permission from Springer Nature: C. Wang, A.G. Palmer 

III, Differential multiple quantum relaxation caused by chemical exchange outside the fast 

exchange limit. J. Biomol. NMR, 2002, 24, 263–268, copyright 2002.
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Figure 10. 
Location of residues exhibiting significant correlated conformational exchange contributions 

to CSM/CSM CCR rates in the E140Q mutant of the C-terminal domain of calmodulin. 

A) Residue pairs exhibiting dynamics sensed by CSM(15N)/CSM(1HN) CCR rates in apo 

wild type are highlighted from yellow to red, for increasing contributions. Residues for 

which MQ rates could not be measured are shown in gray. B) Same as A) for calcium-

loaded wild type. C) Residue pairs exhibiting dynamics sensed by CSM(Cα
i)/CSM(Cα

i+1) 

CCR rates in calcium-loaded E140Q mutant are highlighted in red or blue, depending 

on whether the CSM/CSM of the two residues are correlated or anticorrelated. Residues 

for which MQ rates could not be measured or without significant dynamics are shown in 

white and gray, respectively. D) δσNδσHN values for the of the E140Q mutant extracted 

from CSM(15N)/CSM(1HN) CCR rates plotted in A) and B) (black dots). The magenta 

line shows δσNδσHN calculated from the chemical shifts of the apo and calcium-loaded 

wild type (δσ = Δω/γ/Βο.). The blue line shows values calculated from δσHN ring-current 

contributions and δσN measurements on the mutant. E) Measured differences between DQ- 

and ZQ-coherence relaxation rates, which are dominated by CSM(Cα
i)/CSM(Cα

i+1) CCR 

and used for C). For comparison, exchange rates of HN with the solvent are shown (solid 

continuous line). F) Secondary 13Cα chemical shifts for calcium-loaded E140Q mutant 

are shown in white bars, and chemical shift differences between apo and calcium-loaded 

wild type in black bars. C), E) and F) P. Lundström, F.A.A. Mulder, M. Akke, Correlated 
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dynamics of consecutive residues reveal transient and cooperative unfolding of secondary 

structure in proteins. Proc. Natl. Acad. Sci. USA, 2005, 102, 16984–16989, copyright 

2005 National Academy of Sciences. A), B) and D) Reprinted with permission from P. 

Lundström, M. Akke, Quantitative analysis of conformational exchange contributions to 
1H-15N multiple-quantum relaxation using field-dependent measurements. Time scale and 

structural characterization of exchange in a calmodulin C-terminal domain mutant. J. Am. 

Chem. Soc., 2004, 126, 928–935, copyright 2004 American Chemical Society.
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Figure 11. 
CSM(13Cα)/CSM(13Cβ) interference in GB3. Shown are Cα−Cβ ΔR=1/2(RDQ-RZQ) rates 

with dipolar contributions RDD/DD subtracted (calculated from structural coordinates) for 

protonated (blue circles) and deuterated at non-exchangeable sites (red circles) at 25oC at 

900 MHz magnetic field strength. In the deuterated protein the rates are close to zero, 

indicating a significant reduction in mobility.
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Table 1.

Experiments used for measurement of MQ CCR rates

first mechanism second 
mechanism

MQ coherence (I1-
S1)

intervening 
angles type of experiment

a,b reference

dipole-dipole dipole-dipole

HN
i - Ni Hα

i - Cα
i Ni / Cα

i φ

3D HNCA: DIAI; 3D TROSY-
HNCA; 3D HNCA: DIAI; 3D 

HNCA: ACE; 2D HNCA: DIAI; 
3D HNCA: MMQ

45, 46, 47, 48, 
49, 50

HN
i - Ni

Hβ
i – Cβ

i (Ile, 
Thr, Val)

Ni / Cβ
i φ, χ1 3D HN(CA)CB: MMQ 27

HN
i - Ni

Cγ
i – Cβ

i 

(aromatic, ASX)
Ni / Cβ

i φ, χ1 3D HN(CA)CB: ACE 26

HN
i - Ni HN

i+1 - Ni+1 Ni / Ni+1 φ, ω, ψ
2D HN(CACO)N: DIAI; 3D 

HN(CA)CON: DIAI; 3D 
HNCA(CO)N: DIAI

17, 50, 50

Hα
i - Cα

i Hβ(2,3)
i - Cβ

i Cα
i / Cβ

i χ1 3D HBHA(CBCACO)NH: DIAI 25

Hα
i - Cα

i HN
i+1 - Ni+1 Cα

i / Ni+1 ψ, ω

3D HN(CO)CA: ACE, MMQ; 2D 
HN(CO)CA: DIAI; 3D HNCA: 
DIAI; 3D TROSY-HNCA; 3D 

HN(CO)CA: DIAI

4/48/51, 52, 53, 
45, 54, 46, 47

Hα
i - Cα

i Hα
i+1 - Cα

i+1 Cα
i / Cα

i+1 ψ, ω, φ 2D HNCA/CA: DIAI; 3D 
HNCA(CO)CA 55, 50

Hα
i - Cα

i Hα
j - Cα

j Hα
i / Hα

j N/A 2D HACACAHA: DIAI 23

Hβ
i – Cβ

i (Ile, Thr, 
Val)

HN
i+1 - Ni+1 Cβ

i / Ni+1 ω, ψ, χ1 3D HN(CA)CB: MMQ 27

Cγ
i – Cβ

i (aromatic, 
ASX)

HN
i+1 - Ni+1 Cβ

i / Ni+1 ω, ψ, χ1 3D HN(COCA)CB: ACE 26

Cα
i - C’i + Cα

i - 
Ni+1

HN
i+1 - Ni+1 + 

HN
i+1 - C’i

C’i / Ni+1 ω 2D H(N)CO: MMQ; 3D HNCO: 
MMQ; 3D HNCO: ACE, MMQ 56, 56, 57/57

dipole-dipole CSA

HN
i - Ni C’i Ni / C’i φ, ψ 3D HN(CA)CO: MMQ 58

Hα
i - Cα

i Ni Ni / Cα
i φ 3D TROSY-ZQ/DQ-HNCA 46

Hα
i - Cα

i C’i Cα
i / C’i ψ 3D HN(CO)CA: ACE, MMQ, 

DIAI; 2D HN(CO)CA: ACE 59, 60, 61, 54

Hα
i - Cα

i Ni+1 Cα
i / Ni+1 ψ, ω 3D HN(CO)CA: ACE; 3D 

TROSY-ZQ/DQ-HNCA 51, 46

HN
i+1 - Ni+1 C’i C’i / Ni+1 ω 2D HNCO: ACE; 2D H(N)CO: 

MMQ; 3D HNCO: MMQ 62, 56, 56

Hα
i+1 - Cα

i+1 C’i C’i / Cα
i+1 ω, φ 3D HNCA/CO: ACE; 2D HNCA: 

DIAI 63, 49

CSA CSA

HN
i Ni HN

i / Ni N/A 2D HN-HMQC: DIAI; 1D HN: 
ACE 64, 65

Ni Ni+1 Ni / Ni+1 φ, ψ, ω 2D HN(COCA)N: DIAI 17

Ni+1 C’i C’i / Ni+1 ω 2D HNCO: ACE 66

C’i C’i+1 C’i / C’i+1 ω, φ, ψ 3D HNCO/(CA)CO: ACE 22
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first mechanism second 
mechanism

MQ coherence (I1-
S1)

intervening 
angles type of experiment

a,b reference

C’i C’j C’i / C’j
across 

hydrogen bond 3D HNCO/CO: ACE 22

CSM CSM

HN
i Ni HN

i / Ni 2D HN-HMQC; DIAI 41/42/64/67

Cα
i Cβ

i Cα
i / Cβ

i χ1 3D HN(CO)CACB 24

Cα
i C’i Cα

i / C’i ψ 2D TROSY-HNCOCA: DIAI 68

Cα
i Ni+1 Cα

i / Ni+1 ψ, ω 2D TROSY-HN(CO)CA: DIAI 68

Cα
i Cα

i+1 Cα
i / Cα

i+1 ψ, ω, φ 2D TROSY-HNCA 68/69

C’i Ni+1 C’i / Ni+1 ω 2D HNCO: DIAI; 2D TROSY-
HNCO: DIAI; 2D CON: DIAI 43/44, 68, 69

a
ACE (all component evolution) and MMQ (mixed multiple-quantum evolution) experiments employ a JI1I2- and JS1S2-resolved constant time 

evolution period of separate and mixed zero- and double-quantum coherences, respectively; DIAI (double inphase-antiphase inversion) experiments 
are quantitative Γ experiments, where ‘reference’ and ‘transfer’ subspectra are recorded

b
In principle, DD(I1I2)/CSA(S1), CSA(I1)/DD(S1S2), CSA(I1)/CSA(S1) and CSM(I1)/CSM(S1) can also be extracted from an ACE-type 

experiment designed to measure DD(I1I2)/DD(S1S2). Similarly, CSM/CSM cannot be separated spectroscopically from CSA/CSA and vice versa, 

and neither from DD(I1K)/(S1K) with any spin K ≠ I1, S1. If not explicitly demonstrated in the according publications, these experiments are not 

listed.
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Table 2.

Slope s and Pearson’s correlation coefficient r between experimental and predicted R = RDD(I1I2)/DD(S1S2) + 

RDD(I1S2)/DD(S1I2) CCR rates obtained from rigid and dynamic GB3 models.

CCR rate model s * 
† r *

RDD(HNiNi/HNi+1Ni+1) + RDD(HNiNi+1/HNi+1Ni)

2OED-DIDC, rigid, pairs i = 40, 41 excluded 0.72/0.81 0.96

2OED-DIDC, S2 §, pairs i = 40, 41 excluded 0.89/1.01 0.97

RDD(HAiCAi/HAi-1CAi-1) + RDD(HAiCAi-1/HAi-1CAi)

2OED-DIDC, rigid, pairs i = 11, 40 excluded 0.76/0.88 0.97

2OED-DIDC, S2 §, pairs i = 11, 24, 40 excluded 0.90/1.03 0.97

RDD(HNiNi/HAiCAi) + RDD(HAiNi/HNiCAi)

2OED-DIDC, rigid 0.75/0.86 0.98

2OED-DIDC, S2 §, pairs i = 12, 40 excluded 0.92/1.05 0.98

RDD(HNiNi/HAi-1CAi-1) + RDD(HAi-1Ni/HNiCAi-1)

2OED-DIDC, rigid, pairs i = 12, 41 excluded 0.76/0.87 0.99

2OED-DIDC, S2 § 0.90/1.03 0.98

*
x axis is the predicted and y axis the experimental rate; coordinates were taken from RDC-refined X-ray structure 2OED[99], whose HN and Hα 

proton positions were subsequently re-optimized with RDCs[72,100]

†
The first and second entries are calculated with rHN = 1.02 Å/rHαCα = 1.09 Å and rHN = 1.041 Å/rHαCα= 1.117 Å, respectively.

§
Theoretical CCR rates calculated with rHN = 1.02 Å and rHαCα = 1.09 Å are scaled with RDC order parameters, [72,100] uncorrelated motion 

is assumed.
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Table 3.

Validation of ensembles and single structures with CCR and 3J coupling data.

structure CCR rate r.m.s.d. [s−1] 
a 3J coupling r.m.s.d. [s−1] 

b

HNN/HNN CαHα/CαHα HNN/CαHα CαHα/HNN HN-Hα C’-C’ HN-C’ HN-Cβ

Single structures

2OED
c 1.12 4.71 1.68 1.67 0.98 0.41 0.44 1.07

CCR1
d 0.65 4.11 0.98 1.23 0.87 0.62 0.63 1.12

Ensembles

ENS8
e 0.78 3.99 1.61 1.28 0.75 0.33 0.40 1.02

CCR16
d 0.15 2.02 0.25 0.29 0.55 0.25 0.39 0.72

a
Bond lengths of 1.041 and 1.117 Å were used to calculate CCRs from structures to account for libration motions not present in static structures

b
Karplus parameters used were those for the fits to Ace-Ala-NMe,[111] experimental data[112,113]

c
Coordinates from RDC-refined X-ray structure,[99] where HN and Hα proton positions were subsequently optimized with RDCs[72,100]

d
Ensemble generated using the CCR data and both 6 sets of HN-N and Hα-Cα RDCs[72,100]

e
Previously determined dynamic ensemble[103]
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