Skip to main content
. Author manuscript; available in PMC: 2022 Jun 19.
Published in final edited form as: Chemphyschem. 2018 Sep 3;20(2):178–196. doi: 10.1002/cphc.201800602

Table 1.

Experiments used for measurement of MQ CCR rates

first mechanism second mechanism MQ coherence (I1-S1) intervening angles type of experimenta,b reference
dipole-dipole dipole-dipole
HNi - Ni Hαi - Cαi Ni / Cαi φ 3D HNCA: DIAI; 3D TROSY-HNCA; 3D HNCA: DIAI; 3D HNCA: ACE; 2D HNCA: DIAI; 3D HNCA: MMQ 45, 46, 47, 48, 49, 50
HNi - Ni Hβi – Cβi (Ile, Thr, Val) Ni / Cβi φ, χ1 3D HN(CA)CB: MMQ 27
HNi - Ni Cγi – Cβi (aromatic, ASX) Ni / Cβi φ, χ1 3D HN(CA)CB: ACE 26
HNi - Ni HNi+1 - Ni+1 Ni / Ni+1 φ, ω, ψ 2D HN(CACO)N: DIAI; 3D HN(CA)CON: DIAI; 3D HNCA(CO)N: DIAI 17, 50, 50
Hαi - Cαi Hβ(2,3)i - Cβi Cαi / Cβi χ1 3D HBHA(CBCACO)NH: DIAI 25
Hαi - Cαi HNi+1 - Ni+1 Cαi / Ni+1 ψ, ω 3D HN(CO)CA: ACE, MMQ; 2D HN(CO)CA: DIAI; 3D HNCA: DIAI; 3D TROSY-HNCA; 3D HN(CO)CA: DIAI 4/48/51, 52, 53, 45, 54, 46, 47
Hαi - Cαi Hαi+1 - Cαi+1 Cαi / Cαi+1 ψ, ω, φ 2D HNCA/CA: DIAI; 3D HNCA(CO)CA 55, 50
Hαi - Cαi Hαj - Cαj Hαi / Hαj N/A 2D HACACAHA: DIAI 23
Hβi – Cβi (Ile, Thr, Val) HNi+1 - Ni+1 Cβi / Ni+1 ω, ψ, χ1 3D HN(CA)CB: MMQ 27
Cγi – Cβi (aromatic, ASX) HNi+1 - Ni+1 Cβi / Ni+1 ω, ψ, χ1 3D HN(COCA)CB: ACE 26
Cαi - C’i + Cαi - Ni+1 HNi+1 - Ni+1 + HNi+1 - C’i C’i / Ni+1 ω 2D H(N)CO: MMQ; 3D HNCO: MMQ; 3D HNCO: ACE, MMQ 56, 56, 57/57
dipole-dipole CSA
HNi - Ni C’i Ni / C’i φ, ψ 3D HN(CA)CO: MMQ 58
Hαi - Cαi Ni Ni / Cαi φ 3D TROSY-ZQ/DQ-HNCA 46
Hαi - Cαi C’i Cαi / C’i ψ 3D HN(CO)CA: ACE, MMQ, DIAI; 2D HN(CO)CA: ACE 59, 60, 61, 54
Hαi - Cαi Ni+1 Cαi / Ni+1 ψ, ω 3D HN(CO)CA: ACE; 3D TROSY-ZQ/DQ-HNCA 51, 46
HNi+1 - Ni+1 C’i C’i / Ni+1 ω 2D HNCO: ACE; 2D H(N)CO: MMQ; 3D HNCO: MMQ 62, 56, 56
Hαi+1 - Cαi+1 C’i C’i / Cαi+1 ω, φ 3D HNCA/CO: ACE; 2D HNCA: DIAI 63, 49
CSA CSA
HNi Ni HNi / Ni N/A 2D HN-HMQC: DIAI; 1D HN: ACE 64, 65
Ni Ni+1 Ni / Ni+1 φ, ψ, ω 2D HN(COCA)N: DIAI 17
Ni+1 C’i C’i / Ni+1 ω 2D HNCO: ACE 66
C’i C’i+1 C’i / C’i+1 ω, φ, ψ 3D HNCO/(CA)CO: ACE 22
C’i C’j C’i / C’j across hydrogen bond 3D HNCO/CO: ACE 22
CSM CSM
HNi Ni HNi / Ni 2D HN-HMQC; DIAI 41/42/64/67
Cαi Cβi Cαi / Cβi χ1 3D HN(CO)CACB 24
Cαi C’i Cαi / C’i ψ 2D TROSY-HNCOCA: DIAI 68
Cαi Ni+1 Cαi / Ni+1 ψ, ω 2D TROSY-HN(CO)CA: DIAI 68
Cαi Cαi+1 Cαi / Cαi+1 ψ, ω, φ 2D TROSY-HNCA 68/69
C’i Ni+1 C’i / Ni+1 ω 2D HNCO: DIAI; 2D TROSY-HNCO: DIAI; 2D CON: DIAI 43/44, 68, 69
a

ACE (all component evolution) and MMQ (mixed multiple-quantum evolution) experiments employ a JI1I2- and JS1S2-resolved constant time evolution period of separate and mixed zero- and double-quantum coherences, respectively; DIAI (double inphase-antiphase inversion) experiments are quantitative Γ experiments, where ‘reference’ and ‘transfer’ subspectra are recorded

b

In principle, DD(I1I2)/CSA(S1), CSA(I1)/DD(S1S2), CSA(I1)/CSA(S1) and CSM(I1)/CSM(S1) can also be extracted from an ACE-type experiment designed to measure DD(I1I2)/DD(S1S2). Similarly, CSM/CSM cannot be separated spectroscopically from CSA/CSA and vice versa, and neither from DD(I1K)/(S1K) with any spin KI1, S1. If not explicitly demonstrated in the according publications, these experiments are not listed.