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Changes in neurovascular coupling with
cerebral perfusion pressure indicate a
link to cerebral autoregulation
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Abstract

Cerebral autoregulation ensures a stable average blood supply to brain tissue across steady state cerebral perfusion

pressure (CPP) levels. Neurovascular coupling, in turn, relies on sufficient blood flow to meet neuronal demands during

activation. These mechanisms break down in pathologies where extreme levels of CPP can cause dysregulation in

cerebral blood flow. Here, we experimentally tested the influence of changes in CPP on neurovascular coupling in a

hydrocephalus-type non-human primate model (n¼ 3). We recorded local neural and vascular evoked responses to a

checkerboard visual stimulus, non-invasively, using electroencephalography and near-infrared spectroscopy respectively.

The evoked signals showed changes in various waveform features in the visual evoked potentials and the hemodynamic

responses, with CPP. We further used these signals to fit for a hemodynamic response function (HRF) to describe

neurovascular coupling. We estimated n¼ 26 distinct HRFs at a subset of CPP values ranging from 40–120mmHg across

all subjects. The HRFs, when compared to a subject dependent healthy baseline (CPP 70–90mmHg) HRF, showed

significant changes in shape with increasing CPP (qCPP¼�0.55, p-valueCPP¼ 0.0049). Our study provides preliminary

experimental evidence on the relationship between neurovascular coupling and CPP changes, especially when beyond

the limits of static autoregulation.
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Introduction

The total volume inside the skull remains constant.1,2 If

one of the cerebral constituents, namely, brain tissue,

cerebral blood volume, or cerebrospinal fluid changes,

the others compensate to maintain a constant intracra-

nial pressure (ICP). However, large ICP increases have

been linked to pathologies causing a disruption in cere-

bral blood inflow and outflow (ischemia/hyperemia),

imbalance in cerebrospinal fluid flow (hydrocephalus),

or cerebral mass changes (hemorrhage/edema). In these

situations, elevated ICP can lead to alterations in cere-

bral perfusion pressure (CPP), commonly estimated as

the difference between mean arterial blood pressure

(MAP) and ICP, i.e., CPP¼MAP-ICP. Changes in

CPP, in turn, have a strong influence on cerebral

blood flow (CBF), an inter-relationship first defined
by Niels Lassen as cerebral autoregulation.3 The
Lassen’s Curve was thus defined as a tri-phasic curve
depicting regions of autoregulation and dysregulation.
Cerebral autoregulation happens over a range of CPP,
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where CBF is maintained, and regions of dysregulation
occur below and above this range, where blood flow
changes drastically with CPP variations, greatly
increasing the risk of cerebral ischemia or hyperemia.

Evaluating autoregulatory health is beneficial in
cerebral pathologies. While the Lassen’s Curve has
been validated numerous times in animal studies and
clinical populations,4–7 accurate estimation of CBF and
CPP lies at the heart of it. Unfortunately, current clin-
ical standards for measuring autoregulation involve
either invasive ICP sensors or assume ICP to be con-
stant and use MAP as a surrogate for CPP. On the
other hand, measurements of CBF are limited to
expensive, sensitive to error, and single-time point
measures.8,9 While alternatives for CBF measurements
exist, such as diffuse correlation spectroscopy (DCS),10

their clinical translation for autoregulation assessment
has been limited so far. Another major caveat of cur-
rent techniques is the lack of a measure of neural activ-
ity or cerebral metabolism which can act as crucial
markers of cerebral dysregulation.4,11 There is a clinical
need for a non-invasive biomarker using neural and
cerebral vascular changes to assess CPP at the bedside.

Neurovascular coupling, or functional hyperemia is
a response to local neural activation, and known to
alter the surrounding cerebral tissue perfusion through
localized vasodilation.12 Additionally, vessels are
known to constrict or dilate in response to changing
CPP to maintain blood flow.13 Thus, a global change in
vasomotor tone (cerebral autoregulation/dysregula-
tion) can likely alter functional hyperemic
responses.14,15 Neurovascular coupling is known to
alter in some disease states, especially when vascular
integrity and cerebral autoregulation is impaired.16,17

A hemodynamic response function (HRF) is often
used to define neurovascular coupling. When con-
volved with a neural input, the HRF predicts the hemo-
dynamic response to a stimulus18,19 which can be local
CBF or blood volume changes. The HRF shape is
often described by a gamma variate function.20 The
fitting procedure for finding an HRF which best pre-
dicts the hemodynamic signal, allows for selection of
different shape parameters of this gamma function.
Changes in HRF magnitude, time to peak or response
duration are linked to changes in neural input (change
in response amplitude, latency, duration, etc.) as well as
changes in vascular output (amplitude, latency, under-
shoot, etc.).19

Here, we experimentally studied the relationship
between neurovascular coupling and CPP using a con-
trolled hydrocephalus-type non-human primate model.
We used non-invasive techniques to measure neural
(electroencephalogram (EEG)) and vascular (near-
infrared spectroscopy (NIRS)) signals at various
induced CPP values. We then evaluated an HRF

using these signals to study changes in neurovascular
coupling at different CPP levels.

Materials and methods

Subjects and procedures

All experimental procedures were approved by the
Institutional Animal Care and Use Committee
(IACUC) of the University of Pittsburgh and in com-
pliance with the National Institute of Health’s Guide
for the Care and Use of Laboratory Animals (2011).
The facilities at the University of Pittsburgh are
accredited by the Association for Assessment and
Accreditation of Laboratory Animal Care
International (AAALAC) and in compliance with the
Standards for Humane Care and Use of Laboratory
Animals of the Office of Laboratory Animal Welfare
(OLAW D16-00118). This manuscript is written in com-
pliance with the Animal Research: Reporting In Vivo
Experiments (ARRIVE) guidelines. Data reported here
was collected from three healthy male non-human pri-
mates (Macaca Mulatta; average weight 9.07� 0.25 kg
and average age 7.14� 0.08 years).

Non-human primates were initially sedated using
20mg/kg Ketamine and 0.04mg/kg Atropine. During
the experiment, the animals were maintained under a
combination of fentanyl (�25 lg/kg/hr) and isoflurane
gas (<1%) to avoid the deleterious effects of high con-
centrations of isoflurane on cerebral autoregula-
tion.21,22 Additionally, 0.1mg/kg/hr of Vecuronium
Bromide paralytic was administered throughout the
experiment to prevent slow shifts in eye position that
occur during anesthesia. After sedation, an arterial line
was surgically placed in the internal carotid artery to
measure MAP and the animals were ventilated at a
constant rate of 12 bpm. Two small craniotomies
were performed for placement of an ICP sensor
(Precision Pressure Catheter, Raumedic Helmbrechts,
Germany), placed about 1 cm into the parenchyma,
and a catheter (Lumbar catheter, Medtronic, USA)
connected to a saline reservoir, inserted about 2.5 cm
in the brain to reach the lateral ventricle to manipulate
ICP. The craniotomies were sealed using bone wax to
avoid cerebrospinal fluid leakage. The animal was
placed in the sphinx position in a stereotactic apparatus
to face the screen where stimuli were shown. The eyes
were held open using wire speculums and rigid gas-
permeable contact lenses applied. Regular saline irriga-
tion was used to maintain eye moisture.

Experimental and stimulus protocol

Multiple EEG electrodes (Ag/AgCl electrodes - Grass
Instruments, USA) and a NIRS probe were placed in

1248 Journal of Cerebral Blood Flow & Metabolism 42(7)



the occipital region over the visual cortex to record
visual evoked neural and hemodynamic responses,
respectively. EEG was recorded at 1000Hz
(Grapevine, Ripple Neuro, USA) and NIRS was
recorded at 50Hz at a source-detector distance of
�2 cm (Oxiplex TS, ISS Inc, USA). Additionally, a
DCS system built in-house was used to measure CBF
at the lateral frontal cortex (away from the region of
evoked responses) (Figure 1(a)). We recorded DCS
data at 50Hz at a source to detector fiber distance of
2 cm. (Excelitas Technologies, Canada). More details
on the DCS device design has been discussed in a pre-
vious paper.23 All probes and electrodes were placed
directly on the skull, after retracting the scalp to
avoid superficial hemodynamic signals from scalp
muscles.

ICP was altered in steps of �5mmHg, from 3 to
30mmHg, by changing the position of the reservoir

to manipulate the hydrostatic pressure and saline
flow in the catheter. After each increase, ICP was low-
ered to 9mmHg for a full measurement cycle to avoid
any additive effects of constantly increasing ICP
(Figure 1(b)). For each measurement cycle at every
ICP, at least 10minutes were allowed for pressure to
reach a steady state before stimulus presentation. Any
periods of data with sudden changes in ICP, MAP, or
isoflurane (>1%) were removed from analysis.

The visual stimulus protocol was selected to produce
robust responses. Given the temporal difference
between the neural and vascular signals, a blocked
stimulus protocol was used with inter-block off dura-
tion sufficient to ensure singular, non-additive, vascu-
lar responses to local neural activation. The
Psychtoolbox MATLAB extension24 was used to pre-
sent stimuli on a high refresh rate, high resolution mon-
itor (VPixx Technologies, Quebec, Canada) at 100%

Figure 1. Testing neurovascular coupling under altered CPP. (a) Schematic representation of the experimental setup. Visual stimulus
was presented on a screen in the form of a flashing radial checkerboard at 2Hz, in a block-design. ICP was altered by changing the
position of the reservoir relative to the head before the beginning of each stimulus set. ICP was measured using a parenchymal
pressure sensor, and evoked visual responses were recorded using NIRS and EEG. DCS was recorded in the frontal cortex to
measure microvascular blood flow changes. MAP was recorded from the carotid artery using an A-line (not shown). (b) Changes in
CPP were observed with ICP. ICP was altered in steps (black) and CPP (gray) was measured as the instantaneous difference between
MAP and ICP. (c) Average Lassen’s curve (n¼ 3) evaluated from changes in blood flow measured with DCS across all subjects. The
curve follows a typical tri-phasic Lassen’s Curve shape. Each point represents the mean, and the error bars show the s.e.m. in blood
flow estimation.
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contrast and 50% average luminance. At each ICP
baseline value, 80 blocks of stimuli were shown with
an inter-block duration varying randomly between 9.5
and 10.5 s when the screen was gray. Each block of
stimulus consisted of 10 counter-phased flashes of
radial checkerboards with a duration of 0.3 s for each
flash and a blank period between flashes chosen ran-
domly from 0.15 to 0.25 s. (Figure 1(a)). Each visual
stimulus protocol lasted �22min at the set ICP base-
line. CPP was evaluated as the linear difference
between the MAP and the ICP at each time point,
for the duration of the experiment (Figure 1(b)).

We analyzed evoked neural and hemodynamic
responses to over 430 blocks (4,300 flashes) of visual
stimulus presentation, per subject, with CPPs ranging
from 40 to 140mmHg. Further, 26 distinct epochs
(15 continuous blocks, �3.5min each) of EEG and
NIRS, across all three subjects, were found to produce
reliable HRFs. These were then used for further anal-
ysis on neurovascular coupling and spanned over a
CPP range of 40-120mmHg.

Neural and hemodynamic signal processing

All data streams were first time-aligned using an exter-
nal analog marker sent to all devices at the beginning
and end of each ICP measurement cycle. The recorded
EEG signal was filtered using a 3rd order Butterworth
bandpass filter between 0.5–30Hz with additional
notch filters to remove any remaining high frequency
noise peaks (“butter” and “iirnotch” respectively,
MATLAB2019b, MathWorks Inc.). The EEG data
was downsampled to 100Hz and segmented into
epochs corresponding to blocks of stimulus presenta-
tion. Any value of EEG voltage exceeding five standard
deviations from the mean (z-score> 5) was rejected
along with the data in the corresponding stimulus
block for EEG, NIRS and CPP. The remaining data
was then used for VEP, hemodynamic response and
HRF analysis.

A VEP was evaluated as the average voltage
response recorded by the occipital electrodes to a
flash of stimulus. Each VEP was first baseline corrected
by subtracting 0.1 s of pre-flash data and then averaged
across the 10 flashes in a block. Signal-to-noise ratio
(SNR) for VEPs was estimated as the ratio of the mean
amplitude of the N100 peak to the standard deviation at
that peak for every 10mmHg in the CPP range of 40 to
140mmHg.

NIRS data was recorded using two wavelengths, 690
and 830 nm. The modified Beer Lambert law was used
to convert the intensity variations into concentration
changes.25 Changes in oxyhemoglobin concentrations
(DHbO) were used for all evoked vascular response
analyses. All linear drifts in the signal were removed

by subtracting the first-order polynomial trend from
the data. The DHbO signal was filtered using a band-
pass elliptical filter between 0.05 and 0.2Hz with a
pass ripple of 0.5 dB and a stop band attenuation of
20 dB (“ellipord”, MATLAB2019b, MathWorks Inc.).
Additionally, a notch filter at 0.2Hz was used to
remove residual ventilation signal. This filtered signal
was then used for evoked and HRF analysis.

Each hemodynamic response (DHbO) spanned over
a block of stimulation (�5 s) and �10 s of subsequent
rest period. These responses were also baseline cor-
rected by subtracting the respective mean of 0.1 s of
pre-block-start data from each response. Neural and
vascular responses recorded for each block were then
sorted based on the average CPP for that block and
mean responses calculated at every 10mmHg in the
CPP range of 40 to 140mmHg. SNR for the evoked
hemodynamic responses was estimated as the ratio of
the mean amplitude of DHbO at the peak to the stan-
dard deviation at the peak for each CPP bin.

Lassen’s Curve: DCS was used to measure temporal
changes in CBF. The autocorrelation of light intensity
changes was used to estimate the scaled diffusion coef-
ficient, aDb, which has been correlated to CBF.10 The
aDb value was thus used as a proxy for blood flow.
The flow data was processed using a moving average
filter with a window of 10 s to remove physiological
artifacts. Epochs of laser instability were removed
from aDb using z-score rejection (z-score> 0.5) corre-
sponding to b-value changes. Here, b-value corre-
sponds to intensity autocorrelation at zero-time delay,
subtracted by 1. Additionally, other artifacts such as
motion or ambient light were also removed using z-
score rejection (z score> 2). The processed aDb value
was then averaged in CPP bins of 2mmHg, followed by
mean subtraction and mean division to report DCBF
per NHP. This was then averaged and plotted against
CPP to report the Lassen’s Curve3 (Figure 1(c)).

HRF estimation

Continuous time traces spanning 15 stimulation blocks
(�3.5min, 150 flashes) of processed EEG and NIRS
signals were used as inputs to a fitting function for
estimating an HRF. These epochs were selected
where all changes in CPP were within �5mmHg. The
fitting function employed a gradient-descent based
search algorithm (“fmincon”, MATLAB2019b,
MathWorks Inc.) to maximize the Pearson’s correla-
tion (r) between the recorded (DHbO using NIRS)
and estimated hemodynamic signal. The estimated
hemodynamic signal was calculated as the convolution
product of the square of the neural signal amplitude
(EEG),26 and a six-variable double gamma function
HRF given by-
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HRF tð Þ ¼ x1�ðtÞx2e� tð Þx3 � x4� tð Þx5e� tð Þx6

Here, t denotes time and variables x1; . . . ; x6 denote
the different shape parameters of the HRF, estimated
using a fitting function. The “best fit HRF” was select-
ed as the solution with the highest r corresponding to
lowest possible first-order optimality measure.
Robustness of the solution was checked by comparing
actual fits (rfit_evoked) to fits obtained by using the
evoked EEG with a set of NIRS data recorded at rest
(rfit_noise). Only HRFs with rfit_evoked above the 75th

percentile of the distribution of rfit_noise, were included
for further analysis (more details in the Supplementary
Text). Finally, this resulted in n¼ 26 HRFs estimated
at different CPPs between 40-120mmHg, which were
used for further analysis.

Estimation of trends

Changes in neural and hemodynamic responses were
quantitively analyzed by plotting the amplitude and
latency of the VEP N100 and the DHbO peak respec-
tively, as a function of CPP. The N100 feature was iden-
tified as the minimum amplitude and maximum slope
change in 0.07–0.13 s after stimulus onset. The DHbO
peak was evaluated as the maximum concentration
change within 10 s after stimulus onset. Each feature
was evaluated for the mean responses for every
10mmHg in the CPP range of 40 to 140mmHg.

For analyzing HRFs, we used normalized root mean
square error (NRMSE) defined by-

NRMSE ¼ 1� jjxref � xjj
jjxref � mean xrefð Þjj

Here, xref was taken as the healthy reference signal
(mean of HRFs evaluated at CPP 70–90mmHg) and x
as the HRF recorded at different CPP values. The
range for healthy responses was selected based on the
initial CPPs recorded from the subjects at the beginning
of the experiment as well as our autoregulation esti-
mates from the evaluated Lassen’s Curve. NRMSE
was used as it ranges between 1 and �1 and has the
benefit of showing semi-bounded errors (unlike mean
squared error or root mean square error) as well as
being insensitive to reference signal amplitude. An
NRMSE of 1 corresponds to “identical to reference”
and 0 to “no better than a straight line” and as fits get
worse, it tends to �1. It must be noted that all HRFs
were first converted into z-scores, by subtracting the
mean and dividing by the standard deviation of the
signal, before evaluating the NRMSE. This was done
so that remaining analysis only compared HRF shapes
and was not biased by amplitude differences (See

Supplementary Text). A Spearman’s correlation (q)
was then used to report trends in NRMSE values.

Results

Across 3 subjects, we evaluated changes in evoked
responses (VEP and hemodynamics) over a range of
CPP values from 40 to 140mmHg. Within these
ranges, we isolated epochs of EEG and NIRS time
traces with distinct CPP values to evaluate HRFs
(n¼ 26) for neurovascular coupling. The average
Lassen’s curve estimated using DCS across all three
subjects (Figure 1(c)) showed the typical tri-phasic
shape with a relatively negligible change in CBF from
�70�100mmHg. Regions below and above this range
showed greater changes in CBF, potentially indicating
impaired cerebral autoregulation.

Changes in evoked visual responses with CPP

We used the local responses to a visual stimulus as
indicators of increase in local neuronal activity (VEP)
and associated functional hyperemia (DHbO). A typi-
cal VEP has a distinct shape with prominent positive
peaks at �50ms (P50) and �150ms (P150), and a large
negative amplitude peak at �100ms (N100) after stim-
ulus onset.27 A robust VEP typically shows this P50-
N100-P150 complex, when recorded at the visual
cortex, as a response to external stimulus (Figure 2(a)
and Supplementary Figure 1). Hemodynamic responses
were characterized by an increase in DHbO peaking at
�6 s after the onset of the first flash and settling back
to baseline after �13 s. We observed an average change
in local DHbO of �0.2 mM, indicating a robust hemo-
dynamic response triggered by the stimulus (Figure 2
(b) and Supplementary Figure 1).

To quantify changes in the evoked responses as a
function of CPP, we isolated specific features and
examined their trends with CPP. In VEPs, the N100 is
an especially robust feature with generally consistent
latency which alters with pathology and hence used
for clinical diagnosis.27,28 In NHP1, we observed
changes in both the peak amplitude and latency of
the N100 feature in the VEPs with CPP. For a range
of CPP values between 70-100mmHg, where blood
flow was maintained (Figure 1(c)), the average latency
was �80ms and the average peak amplitude was
��20 mV (Figure 2(c)). At CPP values below
�70mmHg and above �100mmHg, the amplitude of
the N100 became more negative (��60 mV) and the
latency decreased to �75ms. While the VEP shape in
all the subjects were variable, the shape of the N100

amplitude and latency curves as a function of CPP
showed comparable trends, following an inverted
U-shape (Supplementary figure 1).
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For hemodynamic responses, the amplitude and

latency of the point of maximum change in oxy-

hemoglobin concentration were some of the most con-

sistent and prominently changing features with CPP,

across all subjects. Changes in hemodynamic responses

were thus quantified by plotting these against

the reported CPP. For CPP values in the range of

70–100mmHg, where blood flow was maintained

(Figure 1(c)), both the peak amplitude (�0.1 mM) and

time to peak (�4.5 s) stayed low for NHP 1 (Figure 2

(d)). However, at CPP values below �70mmHg and

above �100mmHg, both the peak amplitude

(�0.4 mM) and time to peak (�7 s) of DHbO increased.

(Figure 2(d)). Similar trends were also observed for the

other subjects as seen in Supplementary Figure 1.
In order to account for potential differences in noise

between different measurements of VEP and DHbO as

a function of CPP, we tested for changes in SNR of the

responses (VEP and DHbO) as a function of CPP

(Supplementary Figure 2). We found no significant

variation (p-value for all responses�0.05) in SNR.

While the trends were comparable between all sub-

jects, the selection of only two features (N100 for VEPs

and peak for DHbO) was not sufficient to fully quan-

tify all the differences seen in evoked waveforms across

subjects. Additionally, while individual subjects show

changes in VEP and DHbO, these changes alone do not

describe neurovascular coupling. To address this, we

evaluated HRFs using a semi-constrained mathemati-

cal model, to study changes in neurovascular coupling

across subjects.

Estimation of HRF

The HRF was used to define the relationship between

simultaneous neural activation and local hemodynamic

changes. The best fit HRF was picked as the one that

estimated a hemodynamic signal with highest correla-

tion with the recorded DHbO (Figure 3(a)).
To eliminate bad fits from further analysis, we

tested all our evoked EEG epochs against a noise

fit-distribution of rfit_noise that corresponded to “fitting

Figure 2. Changes in evoked neural and vascular responses with CPP. (a) Visual evoked potentials (VEP) were recorded using EEG in
the occipital lobe. Each flash of the checkerboard (gray bar from 0-0.3 s) evoked a VEP which was averaged for a block of stimulation
and reported as a single VEP. (b) Similarly, block averaged hemodynamic responses were recorded as changes in concentration of oxy-
hemoglobin (DHbO) using NIRS co-localized with EEG. Each response here, is for a block of stimulation (�5 s) with �10 s of rest. The
VEPs and DHbO responses were sorted by the recorded CPP for each block and binned in steps of 10mmHg from 40 to 140mmHg.
The figure shows the mean (bold line) and s.d. (shaded region) for each CPP bin. The common color bar for both the figures is
indicated on the right going from black (40mmHg) to light yellow (140mmHg). (c) The most negative peak closest to 0.1 s after
stimulus onset was selected as the N100 peak of the mean VEP at each CPP bin and the latency (gray open circles) and amplitude (black
filled circles) plotted as a function of CPP. d) Similarly, the amplitude (black filled circles) and latency (gray open circles) of the highest
peak of the DHbO response was plotted against CPP. Equivalent plots for all subjects can be found in Supplementary Figure 1.
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to noise” (see Supplementary Text and Methods and
Materials). Only HRFs that had rfit_evoked greater
than the 75th percentile of this noise fit-distribution
were considered for further analysis (Figure 3(b)).
Finally, to ensure there were no CPP related changes
in the fits, we tested for changes in rfit_evoked with
CPP. None of the subjects showed any significant
trends (p-value for all subjects� 0.05) (Figure 3(c)),
indicating that the fits were not affected by CPP.

Changes in neurovascular coupling with CPP

The HRFs were estimated using recorded neural (EEG)
and vascular (NIRS) signal epochs at different CPP levels
for every subject. The HRF typically mimicked the DHbO

response, peaking in amplitude �6 s after stimulus onset
and following a typical gamma shape. HRF shapes had a
consistent gamma shape, showing altered features above
and below the range of autoregulation (Figure 4(b)). An
“initial dip” at �2 s before the positive rise in the HRF, at
very low and very high CPP (Figure 4 and Supplementary
Figure 1) was seen across all three subjects.

When compared to a healthy baseline HRF (CPP
70–90mmHg), we observed a negative Spearman’s cor-
relation (q¼�0.50, p-value¼ 0.0097) in the NRMSE
values across all three subjects (Figure 4(c)). We had
only one data point below the lower limit of autoregu-
lation, hence all trends shown here are influenced by
autoregulation impairment caused at high CPP. For

Figure 3. Estimation of HRF from recorded neural and vascular data. (a) HRF was evaluated by iteratively fitting for a six-variable
double gamma function which when convolved with the EEG signal power gave the highest Pearson’s r with the NIRS recorded DHbO
time trace. EEG and NIRS data containing an equivalent of 15 blocks of stimulation (�3.5min) with CPP within 5mmHg range were
selected for HRF evaluation. The plot inset shows the evaluated “best fit” HRF (truncated to 15 s) for NHP1 at CPP of 83mmHg,
which was the average CPP across the 15 blocks. The gray dotted lines show the onset of each block of stimulation. All signals are
normalized by their z-scores for comparable visualization. (b) The rfit_evoked for each evaluated HRF was compared against a null
distribution (gray bars) formulated by fitting each evoked EEG epoch with a set of temporally unrelated rest data (rfit_noise). Only the
rfit_evoked (red vertical line) values which were greater than the 75th percentile (black vertical line) of the aforementioned distribution
were considered reliable fits. (c) The reliable rfit_evoked were also tested for trends with CPP to ensure the fits themselves were not
affected by any potential physiological confounds or SNR changes with CPP. All NHPs reported insignificant trends between rfit_evoked
and CPP (qNHP1¼�0.47, p-valueNHP1¼ 0.21; qNHP2¼�0.03, p-valueNHP2¼ 0.94; qNHP3¼�0.21, p-valueNHP3¼ 0.66). Here, qi
indicates the Spearman’s correlation for the respective subjects.
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further analysis, this singular point below the lower

limit of autoregulation (NHP1, CPP¼ 47mmHg) was

omitted.
To test the extent of CPP’s influence in altering

HRFs, we ran additional analyses to address con-

founding factors. We tested for trends in HRFs with

experimental factors such as time (affecting duration

under anesthesia) and fluctuations in ICP (given the

experimental model). We found that HRF changes

showed significantly negative trends with only CPP

(qCPP¼�0.55, p-valueCPP¼ 0.0049, p-valueICP and

p-valuetime>> 0.05) (Supplementary Figure 3a). CPP

was also significantly (90th percentile of the CPP distri-

bution>10th percentile of either ICP or time distribu-

tion) better at predicting changes in neurovascular

coupling than either ICP or time (Supplementary

Figure 3 b).

Discussion

In this study, we demonstrate that changes in CPP,

especially beyond the limits of static autoregulation,

are associated with changes in evoked neural and vas-

cular responses, and the coupling between them, as

evaluated with an HRF. Through a controlled experi-

mental setup, we altered CPP by inducing ICP changes

in a hydrocephalus-type non-human primate model.

We non-invasively recorded local responses using

EEG and NIRS, to a visual stimulus, and found

changes in VEP and DHbO waveforms with CPP

(Figure 2 and Supplementary Figure 1). We further

used these signals to estimate an HRF (Figure 3)

which showed significant alterations from its healthy

baseline shape, with increasing CPP (Figure 4).

Finally, we found that CPP was the best predictor of

changes in neurovascular coupling (Supplementary

Figure 3). Here, we highlight and contrast our results

to existing literature and discuss the implications of this

research.

Evoked responses to visual stimuli and neurovascular

coupling

Local simultaneous non-invasive recordings of neural

and vascular responses have been performed with

NIRS and EEG for over two decades.29 Using external

stimuli to evoke responses has the benefit of eliciting

robust, repeatable local activity, timed to the external

stimuli in a healthy brain. In that regard, the shape and

timescale of VEPs and local hemodynamic signals

measured in this study (Figure 2, for CPP between

70–100mmHg) are similar to what has been

reported.30–32 Using task evoked responses has the ben-

efit of contrasting a predictable healthy response to

those under pathophysiological conditions. This is

seen in our characterization of evoked responses as a

function of CPP (Figure 2, Supplementary Figure 1).

We see that the shape of VEPs and hemodynamic sig-

nals vary from the subject’s healthy normal at extreme

CPP values, without significant differences in the SNR

(Supplementary Figure 2). It must be noted that VEPs

for NHP 3, while following a general P50-N100-P150

shape, were different at healthy CPP compared to the

other two subjects (Supplementary Figure 1). This can

be explained by the slight variations in EEG electrode

placement or inter-subject variability.33,34 This, howev-

er, did not alter the HRF results as each subject was

compared to their respective healthy baseline response

or HRF.

Figure 4. Changes in HRF with CPP. a) The evaluated HRFs were z-score normalized and plotted as a function of CPP. The HRFs
were averaged in CPP bins of 10mmHg from 40–140mmHg. The figure shows the mean (bold line) and s.d. (shaded region) for HRF
waveforms for NHP1. The equivalent figures for the other two subjects are shown in Supplementary Figure 1. b) The mean Lassen’s
Curve from Figure 1(c) overlaid with HRFs. The plots inset show some selected HRFs for NHP1 in red, highlighting shape changes
with CPP. c) Each HRF shape across all three subjects were compared to their respective healthy mean HRF recorded at 70–90mmHg
and NRMSE evaluated. NRMSE shows a distinct downward trend (q¼�0.50, p-value¼ 0.0097) across all three subjects showing an
increasing deviation from the healthy response at higher CPP.
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The coupling between local neural and vascular
responses is often described with an HRF.19,20 Early
studies showed a strong relationship between local
field power and local hemodynamic changes which
enabled EEG-NIRS based studies to monitor neuro-
vascular coupling. It was noted in fMRI literature
that the power of the local neural activity closely
resembled the cellular metabolism of the local tissue
and hence matched with the consequent blood oxygen
level dependent (BOLD) response.26,35 Multi-modal
comparison studies further made it possible to replicate
the BOLD signal using NIRS concentration
changes.36,37 In our work, we thus use broadband
EEG signal power to convolve with a variable
gamma function (HRF) to predict the hemodynamic
signal that best matches the recorded DHbO using
NIRS (Figure 3). DHbO particularly has the benefit
of high SNR and robust responses (as compared to
DHbT and DHbR) and has also been shown to closely
resemble evoked BOLD responses.36,38

Changes in specific features of the HRF waveform
(time-to-peak, initial dip or undershoot, response
width, etc.) have been linked to cerebrovascular mal-
function in pathologies such as stroke and TBI or with
ageing16,39–41 which are known to alter neurovascular
coupling. However, most of these studies model the
HRF to represent solely the hemodynamic BOLD
signal, assuming no change in neural activity. This
has been a common point of criticism for previous
HRF literature.42,43 Hence, here, we attempted to
find HRFs by fitting using both recorded local hemo-
dynamic (NIRS) and local neural signals (EEG). Given
an estimation of a healthy HRF, alterations in its shape
can thus be linked to pathophysiological conditions.

Relationship between neurovascular coupling
and CPP

The cascade of events that underlie neurovascular cou-
pling or enable cerebral autoregulation with CPP
changes, are too complex to fully discuss in this
paper. However, their relationship has been modelled
in previous studies.14,15,44 These models discuss a
common cerebral perfusion regulatory mechanism
that alters vasomotor tone during CPP variations (cere-
bral autoregulatory mechanism) and during functional
hyperemia (neurovascular coupling). In situations of
extreme CPP where the vessel diameter cannot be fur-
ther altered (fully constricted or dilated), local vascular
changes in response to neural activity may be ham-
pered. This can in turn, affect the local oxygenated
blood supply and affect subsequent neural response
to external stimuli.45,46 This could explain changes in
our evoked neural and vascular responses, and conse-
quently HRFs, with CPP variations, especially at

extremes where cerebral autoregulation may be
impaired (Figure 2, Figure 4 and Supplementary
Figure 1).

One interesting shape feature we observed in HRFs
was an increased likelihood of an “initial dip” for CPP
outside the autoregulation plateau (Figure 4(a) and (b)
and Supplementary Figure 1). This has been modelled
before as a mismatch between the cerebral metabolic
oxygen need and the commensurate change in blood
volume47,48 which here, could signify a more sluggish
evoked hemodynamic change under autoregulatory
vasomotor constraints. This delay in volume changes
to the stimulus, is also seen in our results as an increase
in time-to-peak for the DHbO response (Figure 2(d)
and Supplementary Figure 1) at the extreme CPP
values, potentially corresponding to impaired cerebral
autoregulation.

Our experimental paradigm used ICP changes to
simulate a hydrocephalus-type model and induce CPP
variations. Additionally, we used a controlled level of
isoflurane anesthesia (<1%) in combination with fen-
tanyl to minimize the vasodilatory effects of isoflurane
in our experiment.7,22,49,50 A previous study from our
group has shown this anesthesia protocol to not impair
autoregulation, given the low percentages of isoflur-
ane.21 There are several other factors in addition to
CPP that could influence autoregulation (e.g., ICP,
end-tidal CO2 (EtCO2), time under anesthesia or
MAP). We measured changes in HRFs as a function
of ICP and time under anesthesia and found no signif-
icant trends (Supplementary Figure 3). Since changes in
blood gases can also affect cerebrovascular resis-
tance,51,52 we monitored EtCO2 and found that it did
not vary significantly over the duration of the experi-
ment (25–40mmHg) and was thus unlikely to substan-
tially affect autoregulation.53 Lastly, we evaluated
whether MAP could explain HRF changes, since CPP
is linearly related to MAP (CPP¼MAP-ICP). Similar
to CPP, HRFs also significantly changed with MAP,
albeit showing a slightly lower correlation
(qCPP¼�0.55, p-valueCPP¼ 0.0049; qMAP¼�0.49,
p-valueMAP¼ 0.0145). Taken together, these analyses
support our focus on the relationship between HRF
changes and CPP, but additional experiments will be
needed to untangle the individual role of ICP and
MAP. Overall, this finding aligns with our previous
work,21 where we found that CPP was better at distin-
guishing intact vs. impaired autoregulation, compared
to MAP or ICP.

Our work provides preliminary experimental evi-
dence on the relationship between neurovascular cou-
pling and CPP across three male non-human primates,
with HRFs estimated at 26 distinct CPP values.
Although a larger cohort clinical study with represen-
tation from all sexes will be important to extend our
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observations, our data acquired over a wide range of

CPP (40–120mmHg) provides a unique insight into

neurovascular coupling changes with CPP. Such a

wide range of CPP cannot be replicated in a clinical

setting. In a critical care setting, because it might not

be possible to engage subjects in a visual task, assess-

ment of HRF changes with resting state data could be

used as an alternative to task induced changes. Finally,

while an impairment in neurovascular coupling does

not imply altered cerebral autoregulation, in clinical

cases with a propensity to have increased CPP, our

work experimentally shows that there is a correlation

between neurovascular coupling and the state of static

autoregulation. Quantification of neurovascular cou-

pling via HRF changes may have potential as a non-

invasive biomarker for CPP changes and therefore

autoregulatory impairment.
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