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Nonlinear differential equations rarely admit
closed-form solutions, thus requiring numerical
time-stepping algorithms to approximate solutions.
Further, many systems characterized by multiscale
physics exhibit dynamics over a vast range of
timescales, making numerical integration expensive.
In this work, we develop a hierarchy of deep neural
network time-steppers to approximate the dynamical
system flow map over a range of time-scales. The
model is purely data-driven, enabling accurate
and efficient numerical integration and forecasting.
Similar ideas can be used to couple neural network-
based models with classical numerical time-steppers.
Our hierarchical time-stepping scheme provides
advantages over current time-stepping algorithms,
including (i) capturing a range of timescales,
(ii) improved accuracy in comparison with leading
neural network architectures, (iii) efficiency in
long-time forecasting due to explicit training
of slow time-scale dynamics, and (iv) a flexible
framework that is parallelizable and may be
integrated with standard numerical time-stepping
algorithms. The method is demonstrated on
numerous nonlinear dynamical systems, including
the Van der Pol oscillator, the Lorenz system,
the Kuramoto–Sivashinsky equation, and fluid
flow pass a cylinder; audio and video signals
are also explored. On the sequence generation
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examples, we benchmark our algorithm against state-of-the-art methods, such as LSTM,
reservoir computing and clockwork RNN.

This article is part of the theme issue ‘Data-driven prediction in dynamical systems’.

1. Introduction
Scientific computing has revolutionized nearly every scientific discipline, allowing for the ability
to model, simulate, engineer and optimize a complex system’s design and performance. This
capability has been especially important in nonlinear, multiscale systems where recourse to
analytic and perturbation methods are limited. For instance, modern high-fidelity simulations
enable researchers to design aircraft, simulate the evolution of galaxies, quantify atmospheric
and ocean interactions for weather forecasting, and model high-dimensional neuronal networks
of the brain. Thus, given a set of governing equations, typically spatio-temporal partial differential
equations (PDEs), discretization in time and space form the foundational algorithmic structure of
scientific computing [1–3]. Discretization is required to accurately resolve all relevant spatial and
temporal scales in order to produce a high-fidelity representation of the dynamics. Such resolution
can be prohibitively expensive, as resolving physics on fast time scales limits simulation times and
the ability to model slow timescale processes [4,5]. Time-stepping schemes are typically based on
Taylor series expansions, which are local in time and have a numerical accuracy determined by
the step size �t. However, there is a growing effort to develop deep neural networks (DNNs) to
learn time-stepping schemes unrestricted by local Taylor series constraints [6–9]. We build on
the flow map viewpoint of dynamical systems [8,10,11] in order to learn hierarchical time-steppers
(HiTSs) that explicitly exploit the multiscale flow map structure of a dynamical system over a
disparate range of time-scales. In leveraging features at different timescales, we can produce an
accurate and efficient computational scheme that can provide exceptional efficiency in long-time
simulation/forecasting and that can be integrated with classical time-stepping algorithms.

Numerical discretization has been extensively studied since the earliest days of scientific
computing. Numerical analysis has provided rigorous estimates of error bounds for the diversity
of discretization schemes developed over the past few decades [1–3]. Spatial discretization
predominantly involves finite element, finite difference or spectral methods. Multigrid methods
have been extensively developed in physics-based simulations where coarse-grained models
must be progressively refined in order to achieve a required numerical precision while remaining
tractable [12,13]. The resulting discretized dynamics may be generically represented as a
nonlinear dynamical system of the form

d
dt

x(t) = f (x(t), t), (1.1)

in terms of a state x ∈ R
D (typically D � 1). The dynamics are then integrated with a time-stepping

algorithm. As with spatial discretization, there is a wide range of techniques developed for time-
stepping, including explicit and implicit schemes, which have varying degrees of stability and
accuracy. These schemes approximate the discrete-time flow map [14,15]

x(t + �t) = F(x(t), �t) �
∫ t+�t

t
f (x(τ ), τ ) dτ , (1.2)

often through a Taylor-series expansion. Runge–Kutta, for which the Euler method is a subset, is
one of the standard time-stepping schemes used in practice. Generically, it takes the form

xn+1 ≈ F̃�t(xn) � xn + �t
k∑

j=1

bjhj, (1.3)
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where

hj = f

⎛
⎝xn + g

⎛
⎝

j−1∑
k=1

αj,khk

⎞
⎠ , tn + cj�t

⎞
⎠ (1.4)

and xn = x(tn) = x(n�t). Note that the contributions hj are hierarchically computed in the Runge–
Kutta scheme. The weightings bj, cj and αj,k are derived from Taylor series expansions in order to
minimize error. For instance, the classic fourth-order Runge–Kutta scheme, for which k = 4 above,
has a local truncation error of O(�t5), which leads to a global time-stepping error of O(�t4).
Euler stepping, for which k = 1, has local and global time-stepping errors of O(�t) and O(�t2),
respectively. Importantly, the error is explicitly related to the time-step �t, making such time-
discretization schemes local in nature.

In contrast to schemes such as Runge–Kutta, that approximate the flow map with a local Taylor
series, it is possible to directly construct an approximate flow map F̂ using DNN architectures.
There are several approaches to modelling flow-map time-steppers using neural networks, which
will be reviewed below. The approach taken in this work is to develop a hierarchy of approximate
flow maps F̂j(x, �tj) to facilitate the accurate and efficient simulation of multiscale systems over a
range of time-scales; similar flow map composition schemes have been demonstrated to be highly
effective for simulating differential equations without neural networks [10,11,16]. Flow maps also
provide a robust framework for model discovery of multiscale physics [17,18]. Various existing
DNN architectures can be integrated into this hierarchical framework. Flow map approximations
based on the Taylor series are typically only valid for small time steps, as the flow map becomes
arbitrarily complex for large time steps in chaotic systems. However, DNN architectures are not
limited by this small time step constraint, as they may be sufficiently descriptive to approximate
exceedingly complex flow map functions [19].

Neural networks have been used to model dynamical systems for decades [20,21]. They are
computational models that are composed of multiple layers and are used to learn representations
of data [22,23]. Owing to their remarkable performance on many data-driven tasks [24–29],
various new architectures that favour interpretability and promote physical insight have been
recently proposed, leading to many successful applications. In particular, it has been shown that
neural networks may be used in conjunction with classical methods in numerical analysis to
obtain discrete time-steppers [6–8,30–33]. Other applications include reduced order modelling
[34,35], multiscale modelling [36–39], scientific computing [40–43], coordinate transformations
[44,45], attractor reconstructions [46,47], operator learning [48,49] and forecasting [50–53]. Neural
network models are increasingly popular for two reasons. First, the universal approximation
theorem guarantees that arbitrary continuous functions can be approximated by neural networks
with sufficiently many hidden units [54]. Second, neural networks themselves can be viewed as
discretizations of continuous dynamical systems [55–61], which makes them suitable for studying
dynamics. Among all architectures, recurrent neural networks (RNNs) are natural candidates for
temporal sequence modelling; however, training has proven to be especially difficult due to
the notorious exploding/vanishing gradient problem [62,63]. To alleviate this problem, new
architectures have been proposed [64–66], for example, augmenting the network with explicit
memory using gating mechanism, resulting in the long short term memory (LSTM) algorithm [64],
or adding skipped connections to the network, leading to residual networks (ResNet) [67].

In this work, we expand on [8] and employ a deep residual network (ResNet) as the basic
building block for modelling the flow-map dynamics (1.2). Unconstrained by the typical form of
a Taylor-series based time-stepping scheme (1.3), a multiscale modelling perspective is taken to
strengthen the performance of our proposed multiscale, flow-map models. Our multiscale HiTS
algorithm consists of ResNet models trained to perform hierarchical time-stepping tasks. The
contributions of this work are summarized as follows:

— We propose a novel method to couple neural network HiTSs trained across different time
scales, shown in figure 1, resulting in more accurate future state forecasts without losing
computational efficiency.
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F̂1(∙; t1) F̂2(∙; t2) F̂3(∙; t3)

t3 t2 t1x0 xt

Figure 1. Multiscale hierarchical time-stepping scheme. Here, we employ neural network time-steppers over three time scales.
The red model takes large steps, leaving the finer time-stepping to the yellow and blue models. The dark path shows the
sequence of maps from x0 to xt .

— Neural network HiTSs may be coupled with classical numerical time-steppers. This
hybrid time-stepping scheme can be naturally parallelized, accelerating classical
numerical simulation algorithms.

— By coupling models across different scales, each individual model only needs to be
trained over a short period without being exposed to the exploding/vanishing gradient
problem, enabling faster training.

— Despite the structural simplicity, the coupled model can still be used to capture long-term
dependencies, achieving state-of-the-art performance on sequence generation.

The paper is organized as follows. We motivate the proposed approach and present the
methodology in §2. Our approach is then tested on several benchmark problems in §3. In §4,
we conclude and discuss future directions. Our code is publicly available at https://github.com/
luckystarufo/multiscale_HiTS.

2. Multiscale time-stepping with deep learning
Here we outline our multiscale hierarchical time-stepping based on deep learning, illustrated
in figure 1. Our approach constructs a hierarchy of flow maps, F̂j(x, �tj), each approximated
with a deep neural network. This enables accurate and efficient simulations with fine temporal
resolution over long time scales, as compared in figure 2. We begin with a motivating example,
followed by a summary of notation and description of the training data. Then we will introduce
our multiscale hierarchical time-stepping scheme, including descriptions on how to vectorize
operations and create hybrid time-steppers by combining with classical numerical methods.

(a) Motivating example
To explore the effect of time step size on simulation performance, we consider the following
simple linear differential equation for a harmonic oscillator

ẋ = y (2.1a)

and
ẏ = −x. (2.1b)

We individually train eight neural networks with step sizes �t of 0.008, 0.016, 0.032, 0.064, 0.128,
0.256, 0.512 and 1.024 on 500 sampled trajectories and test them on 100 new trajectories. Linear
interpolation is used to estimate the state at time steps that are not directly obtained from the

https://github.com/luckystarufo/multiscale_HiTS
https://github.com/luckystarufo/multiscale_HiTS
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Figure 2. Performance of multiscale HiTS on harmonic oscillator example. This figure shows the time-stepping performance
of different neural network time-steppers. One hundred testing trajectories are used for benchmarking each time-stepper and
the mean squared errors at each step are plotted in the base-10 logarithmic scale. The black curve represents our proposed
multiscale scheme, whereas other colours represent time-steppers at particular scales. (Online version in colour.)

neural network time-stepping scheme. To evaluate the forecasting performance, we calculate the
averaged error at each time step against the ground truth analytical solution. In this experiment,
training and testing data are both sampled from the region {(x, y)| x2 + y2 ≤ 1}, and we only train
one step forward for each neural network time-stepper.

Results are plotted in figure 2, where it is clear that the proposed multiscale time-stepper
outperforms all fixed step models. Networks equipped with small time steps offer accurate short-
term predictions, although error accumulates at each step and quickly dominates. Networks with
large time steps can handle long-term predictions, although they fail to provide information
between steps. Time-steppers with some intermediate step sizes (e.g. �t = 0.064) perform well
in general as they balance these two factors. However, by leveraging all time steppers across each
scale, it is possible to create a multiscale HiTS, given by the black curve, that is both accurate and
efficient over long time scales and with fine temporal resolution. Details of the methodology will
be presented in the remainder of this section.

(b) Notation and training data
For training data, we collect n trajectories sampled at p instances with time step �t:

S(i) = {(x(i)
t , x(i)

t+�t, x(i)
t+2�t, . . . , x(i)

t+p�t)}, (2.2)

for i = 0, 1, . . . , n − 1. This data is used to train neural network flow map approximations,
F̂j(x, �tj), for j = 1, 2, . . . , m.

We follow [8] and employ the residual network as the fundamental building block of our deep
learning architecture. Residual networks were first proposed in [67] and have gained considerable
prominence since. Specifically, our network only models the difference between time steps xn+1
and xn, so that it is technically the flow map minus the identity:

x̂t+�tj = xt + F̂j(x, �tj), (2.3)

where

F̂j(x, �tj) = σM(AM−1(· · · σ1(A0) · · · )) (2.4)

is a feed-forward neural network. The network is parametrized by the linear operators Aj, and
σj are nonlinear activation functions that are chosen to be rectified linear units (ReLU). The extra
addition creates a skipped connection from the inputs to the outputs. Here, the architecture F̂j
learns the increment in states between each �tj step. It is possible to compose the networks to take
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multiple steps forward in time: F̂
(k)
j = F̂j ◦ F̂j ◦ · · · ◦ F̂j︸ ︷︷ ︸

k times

. Finally, we formulate our training objective

function as

MSE = 1
np

n∑
i=1

p∑
k=1

(
x̂(i)

t+k�tj
− x(i)

t+k�tj

)2, (2.5)

which is the classical mean squared loss function.

(c) Multiscale hierarchical time-stepping scheme
Multiscale modelling is ubiquitous in modern physics-based simulation models. Computational
challenges arise in these simulations since coarse-grained macroscale models are usually not
accurate enough and microscale models are too expensive to be used in practice [68]. By coupling
macroscopic and microscopic models, we hope to take advantage of the simplicity and efficiency
of the macroscopic models, as well as the accuracy of the microscopic models [69]. Many
efforts have been made towards this goal, resulting in many algorithms that exploit multiscale
structure in space and time, including the multi-grid method [70], the fast multipole method
[71], adaptive mesh refinement [72], domain decomposition [73], multi-resolution representation
[74], multi-resolution dynamic mode decomposition [75], etc. Mathematical algorithms such
as heterogeneous multiscale modelling (HMM) [76,77] and the equation-free approach [78]
attempt to develop general guidelines and provide principled methods for this field. In this
work, however, we develop data-driven models using neural networks, which have different
considerations than physics-based simulation models. Regardless, the goal is still to produce
accurate and efficient computational models.

Coupling neural network time-steppers across different time scales is rather straightforward,
as shown in figure 1. One can clearly see the time-steppers with small �t are responsible for
the accurate time-stepping results over short periods, while the models with larger �t steps
are used to ‘reset’ the predictions over longer periods, preventing error accumulations from
the short-time models. Mathematically, suppose we have F̂j(·; �tj) approximating the true flow
map of time step size �tj = 2m−j�t (j = 1, 2, . . . , m) where �t represents the unit step size. To
forecast the state, for example after a time period of q�t (q < 2m), we would need to step forward
qj times with model j for j = 1, 2, . . . , m, where q = 2m−1q1 + 2m−2q2 + · · · + 20qm is the binary
representation of q. All other intermediate time steps will be obtained via linear interpolation.
So instead of stepping forward in a sequential manner (i.e. using the smallest scaled model to
step forward for q steps), we have reduced the total number of steps to order O(log2 q). There
are additional benefits of this multiscale coupling in time. First, training each individual network
is simpler, as it is possible to use trajectories with small p so that each model may focus on its
own range of interest, circumventing the problem of exploding/vanishing gradients. Second,
the framework is flexible, so that for forecasting it is possible to vectorize the computations or
utilize parallel computing technologies, enabling fast time-stepping schemes. Moreover, it can be
easily combined with classical numerical time-steppers, resulting in hybrid schemes, boosting the
performance of simulation algorithms.

The proposed multiscale coupling procedure may resemble those used in multiscale
simulations (e.g. HMM). However, the data-driven microscopic cannot provide accurate long-
time forecasts on its own, so the coupling here is not only for efficiency but also to improve
the long-time fidelity of the model. It should also be noted that before coupling neural network
time-steppers across different time scales, cross validation is used to filter the models. This is
practically helpful because qualities of different models may vary and we want to couple the best
set of models. Specifically, suppose we have m neural network models {F̂1, F̂2, . . . , F̂m}, ordered
by their associated step sizes. We first determine the upper bound index u so that ensembling
{F̂1, F̂2, . . . , F̂u} has the best time-stepping performance among {F̂1, F̂2, . . . , F̂k} for all k. Next, we
seek a lower bound index l so that {F̂l, F̂l+1, . . . , F̂u} performs best among {F̂k, F̂k+1, . . . , F̂u} for
all k.
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Algorithm 1 . Vectorized multiscale hierarchical time-stepping.

Input: a set of neural network time-steppers F̂s
Output: a list of predicted states Xs sorted in chronological order
1: function VECTORIZEDMULTISCALETIMESTEPPING(F̂s)
2: Sort(F̂s); � models are ordered with decreasing step sizes
3: Xs=List(); � create an empty list
4: Append(x0, Xs); � append initial state to the list
5: for i in 1, 2, . . . , m: do
6: Ki := the number of steps forward with F̂i;
7: Xcur=Stack(Xs); � stack together all states in Xs
8: Xnext=F̂i.Forward(Xcur, Ki); � step forward Ki steps with F̂i and Xcur

9: Append(Xnext, Xs); � update the list with new states
10: end for
11: Rearrange(Xs);
12: Interpolate(Xs); return Xs
13: end function

Algorithm 2 . Hybrid time-stepping scheme.

Input: a set of neural network time-steppers F̂s
Output: a list of predicted states Xs sorted in chronological order
1: function HYBRIDTIMESTEPPING(F̂s)
2: Sort(F̂s); (models are ordered with decreasing step sizes)
3: Xs=List(); � create an empty list
4: // Use neural network time-steppers for large steps
5: Append(x0, Xs); � append initial state to the list
6: for i in 1, 2, . . . , u: do � u is the number of HiTSs to use
7: Ki := the number of steps forward with F̂i;
8: Xcur=Stack(Xs); � stack together all states in Xs
9: Xnext=F̂i.Forward(Xcur, F̂i); � step forward Ki steps with F̂i and Xcur

10: Append(Xnext, Xs); � update the list with new states
11: end for
12: // Use classic numerical time-steppers for fine steps
13: K := the number of steps forward with Runge-Kutta time stepper;
14: Xcur=Stack(Xs); (stack together all states in Xs)
15: Xnext=RK4(Xcur, K); � step forward K steps with Runge-Kutta time-stepper and Xcur

16: Append(Xnext, Xs); � update the list with new states
17: Rearrange(Xs); return Xs
18: end function

(i) Vectorization

The diagram for vectorized computations is illustrated in figure 3. The basic idea is to start by
using the time-steppers with the largest �t step and generate the future states corresponding
with this stepper. We then stack the new states with the original states and feed them to the next-
level neural network time-stepper. After we proceed through all time-steppers, we rearrange the
states and use interpolation to fill in the state at all intermediate time steps. Details are given in
algorithm 1.
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time

F̂1(∙; Dt1)

F̂2(∙; Dt2)

F̂3(∙; Dt3)

step 1:

step 2:

step 3:

step 4:

(rearrange and interpolate)

Figure 3. Vectorized computation. The three neural networks in this diagram are used sequentially, ordered by their associated
step sizes from large to small. For each network, we stack all currently existing states and step forward (in the beginning,
we only use the initial state), resulting in vectorized computations. These newly generated states are further fed to the next
neural network in queue. Once we finish using all networks, the states will be rearranged in terms of chronological order and
intermediate time steps will be obtained via interpolation. (Online version in colour.)

(ii) Hybrid time-steppers

The flexibility of our multiscale coupling approach makes it possible to combine these time-
steppers with classical numerical time-stepping algorithms. The algorithm is detailed in
algorithm 2 and the concept is illustrated in figure 4. This approach provides an innovation in the
computational paradigm of numerical simulations. If one were to use classical numerical time-
steppers (e.g. Runge-Kutta method) alone, opportunities for vectorized computations or parallel
computations are limited due to the serialized nature: one cannot march forward to the future
without knowledge about the past. Our hybrid scheme, on the other hand, bypasses the difficulty
by using large scaled neural network time-steppers, enabling vectorized computations (or parallel
computations) at the bottom level where we use classical numerical time-steppers for accurate
simulations.

3. Numerical experiments
We will now provide a thorough exploration of our proposed multiscale hierarchical time-
steppers. We begin by comparing against single time-scale neural network time-steppers and
Runge–Kutta algorithms on simple dynamical systems. We then explore this approach on more
sophisticated examples in spatio-temporal physics and sequence generation.

(a) Benchmark on time-stepping
We first benchmark the multiscale neural network HiTS against the single time-scale neural
network time-steppers on five simple nonlinear dynamical systems: a nonlinear system with a
hyperbolic fixed point, a damped cubic oscillator, the Van der Pol oscillator, a Hopf normal form
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time

RK45 time-stepper (h = Dt2)

x(t)

(t1, x1)

F̂1(∙; Dt1)

step 1:

step 2:

step 3:

(rearrange and interpolate)

t0 t0 + h/2

x0 + hk3

x0 + hk2/2
x0 + hk1/2

x0

t0 + h

k2k1

k3

Figure4. Hybrid time-stepper. A hierarchy of coarse neural network time-steppers generate states that are fed to a fourth order
Runge–Kutta solver for fine-scale time-stepping. (Online version in colour.)

and the Lorenz system. For each example, we train 11 single time-scale neural network time-
steppers with separate time steps, and then combine them into a multiscale neural network HiTS
with the methods described in §c. More details about these numerical experiments can be found
in electronic supplementary material, appendix A(a).

Figure 6 shows that the multiscale scheme outperforms all single time-scale schemes in terms
of accuracy, as shown by the black curve in the last column. On the sampled testing trajectory, in
the third column, our multiscale scheme achieves nearly perfect time-stepping for a time period of
51.20 for the first four nonlinear systems. For the Lorenz system, discrepancy occurs in the forecast
after about five time units, when the trajectory switches lobes. Indeed, the error plot suggests
the time-stepper becomes unreliable even after a single time unit, due to the intrinsic chaotic
dynamics. The challenges of chaos are exacerbated by measurement noise on the data, as shown
in the electronic supplementary material, appendix, although there are many applications where
low noise make this a viable approach, even for chaotic dynamics. Many works have shown
success in predicting the Lorenz system; however, the tasks considered are different from that
explored in this work, and they usually fall into the following categories:

— The model is trained with data from a single trajectory and then tested with the same
initial state [30,31].

— The resulting model offers accurate short-term predictions while generating similar
dynamical statistics for long times [46,79].

— The model predicts the Lorenz system with regular adjustments or intermittent external
forcing or under a data assimilation framework [51,80].

By contrast, we train the model with batches of trajectories and test with unseen initial conditions;
we also test long-term predictions without any external inputs. In fact, almost all previous models
belong to single-scaled models in our discussion.

The trade-off between computational accuracy and efficiency are visualized in figure 5a. Here,
we report the L2 error, averaged over all time steps and test trajectories. The single time-scale
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note: dt represents the unit time step size for each example, it is set to 0.0005 for Lorenz and 0.01 for others
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Figure 5. Performance of multiscale HiTSs on nonlinear systems. In the first two columns, systems of equations and phase
portraits are visualized. In the third column, we visualize the predictions of multiscale time-steppers on a testing trajectory. In
the last column, mean squared errors at each step are visualized in the base-10 logarithmic scale for different time-steppers.
(Online version in colour.)

scheme curves have a ‘U’ shape for each example, indicating that accuracy first improves and then
deteriorates as we spend more time in the computation. This finding is consistent with [30], which
states that there is a problem-dependent sweet-spot for the hyperparameter �t. Our multiscale
HiTS always achieves the best accuracy, usually with a reasonable computational efficiency, due to
the vectorized computations of array programming. For the cubic oscillator, Van der Pol oscillator,
and Lorenz system, there seems to exist a single-scale neural network time-stepper with higher
efficiency and competitive accuracy compared to our multiscale scheme. This is due to the greedy
method we use for the cross validation process: we always prefer models with higher accuracy
at the cost of efficiency. However, one can adjust the balance between accuracy and efficiency
depending on the objective. The hyperparameter tuning of �t is implicitly conducted in the cross
validation process before coupling the various scales.

Though the multiscale scheme improves the computational efficiency of neural network time-
steppers, they still cannot easily match the efficiency of most classic numerical algorithms (see
electronic supplementary material, appendix B(c) for more details). Indeed, evaluating a neural
network model (forward propagation) typically requires more computational effort than applying
a classic discretization scheme that only involves a few evaluations of the known vector field. A
hybrid time-stepper, on the other hand, may break this bottleneck by combining large-scale neural
network time-steppers with classic numerical time-steppers to make the computations inherently
parallelizable. Therefore, we benchmark the hybrid time-steppers against the classic numerical
time-steppers in figure 5b. In particular, we use a fourth-order Runge–Kutta integrator, with seven
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Figure 6. Accuracy versus computational efficiency plot. (a) Comparison between multiscale neural network time-stepper
and all single time-scale neural network time-steppers. (b) Comparison between hybrid time-stepper and Runge–Kutta time-
steppers with uniform step sizes. In both plots, horizontal and vertical axes represent time and integratedL2 error respectively,
visualized in the base-10 logarithmic scale. (Online version in colour.)

different sizes of uniform time step. For simplicity, the hybrid time-steppers are constructed from
the same fourth-order Runge–Kutta (RK4) time-steppers with one large-scale neural network
time-stepper at the highest level. More details can be found in electronic supplementary material,
appendix A(b).

Figure 5b shows the trade-off between accuracy and efficiency for our hybrid time-stepper and
the classic RK4 scheme. Our hybrid time-stepper offers an efficiency gain over the Runge–Kutta
time-stepper with the same minimal step size. This suggests the marginal benefits of enabling
vectorized computation are potentially greater than the costs of evaluating a neural network
time-stepper. But the accuracy of hybrid time-steppers are usually slightly lower than the purely
numerical time-steppers with rare exceptions (e.g. the Hopf normal form example), as the global
error is usually dominated by the error of neural network time-steppers, which are model agnostic
and purely data-driven, limiting their ability to produce high-fidelity simulations.

(b) Benchmark on sequence generation
In addition to integrating simple low-dimensional dynamical systems, here we show that it
is possible to forecast the state of more complex, high-dimensional dynamical systems. In the
field of machine learning, this is often termed sequence generation. Importantly, we benchmark
our architecture against state-of-the-art networks, including long short-term memory networks
(LSTMs) [64], echo state networks (ESNs) [46], and clockwork recurrent neural networks (CW-
RNNs). Here, our goal is to train different architectures that can generate the target sequence as
accurately as possible. The sequences we explore include a simulated solution of the Kuramoto–
Sivashinsky (KS) equation, a music excerpt from Bach’s Fugue No. 1 In C Major, BWV 846, a
simulation of fluid flow past a circular cylinder at Reynolds number 100 [81,82], and a video
frame of blooming flowers. Within each individual experiment, the various architectures have
nearly the same number of parameters; more details about the data preprocessing and choice of
parameters are described in electronic supplementary material, appendix A(c).

From figure 7, one can visually see that the multiscale HiTS provides the best sequence
generation results, and these results are confirmed by the integrated L2 errors shown in table 1.
We also see that the LSTM and CW-RNN can learn the first few steps accurately, whereas the ESN
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Figure 7. Outputs of different network architectures (column) on each training sequence (row). We use different visualization
schemes to show the results: for the KS equation and themusic excerpt, we plot the time series evolution, that is, the horizontal
axes represent time; for the cylinder flowand the video frame, since each state is a two-dimensional array,we choose to visualize
the last frame of our reconstruction, however, we also visualize the time evolution of some states averaged over a small patch
of pixel values. For a video that shows the performance, visit: https://youtu.be/2psX5efLhCE. (Online version in colour.)

Table 1. The integratedL2 error between the generated sequence and the exact sequence.

sequences HiTS LSTM ESN CW-RNN

fluid flow 1.23 × 10−7 9.20 × 10−8 2.22 × 10−8 6.79 × 10−7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

video frame 7.09 × 10−5 1.44 × 10−2 1.62 × 10−3 8.05 × 10−2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

music data 8.59 × 10−7 4.65 × 10−5 2.69 × 10−4 4.70 × 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

KS equation 1.04 × 10−3 3.50 × 10−0 3.51 × 10−0 3.59 × 10−0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

tends to smooth the signals. It should be noted that our sequence generation task are very different
from the tasks considered in [83], where they use observations of the system’s past evolution to
predict future states. An ESN is usually trained by finding a set of output weights through linear
regression, if the reservoir is large enough, it can in principle reproduce the observed dynamics
perfectly, which would make it an inappropriate benchmark. An ESN with the same number of
parameters as the other architectures often cannot fully describe the dynamics, resulting in coarse
or smoothed approximations.

In a nutshell, the competing architectures fail to capture the long-time behaviours, as error
accumulation is inevitable for serialized computations. However, our proposed framework
should not be viewed as a replacement for these state-of-the-art methods, as they take a different
approach and philosophy for sequence generation. RNNs tend to uncover the full dynamics with
the help of memory in their internal states, whereas our scheme performs reconstruction using
the time-stepping schemes learned at different time scales, though these schemes may only be
accurate for a few steps. Instead, our multiscale framework should be used to strengthen these
existing approaches, as it can use data-driven models across different scales, avoiding local error
accumulations and potentially boosting the accuracy and efficiency.

https://youtu.be/2psX5efLhCE
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4. Conclusion and discussion
In this work, we have demonstrated an effective and general data-driven time-stepper framework
based on synthesizing multiple deep neural networks for hierarchical time-steppers (HiTSs)
trained at multiple temporal scales. Our approach outperforms neural networks trained at a
single scale, providing an accurate and flexible approach for integrating nonlinear dynamical
systems. We have carefully explored this multiscale HiTS approach on several illustrative
dynamical systems as well as for a number of challenging high-dimensional problems in
sequence generation. In the sequence generation examples, our approach outperforms state-
of-the-art neural network architectures, including LSTMs, ESNs and CW-RNNs. Our method
explicitly takes advantage of dynamics on different scales by learning flow-maps for those
different scales. The coupled model still maintains computational efficiency thanks to the
vectorized computations of array programming. Moreover, exactly due to this coupling
scheme, each individual network can focus on their intrinsic ranges of interest, bypassing
the exploding/vanishing gradient problem for training recurrent neural networks. In addition,
we demonstrate the joint use of our neural network time-steppers with the classical time-
steppers, resulting in a new computational paradigm: numerical simulation algorithms are now
parallelizable rather than serialized in nature, leading to performance boosts in computational
speed.

This work highlights fundamental differences between physics-based simulation models and
data-driven models. In the former, the errors of the time-stepping constraints are determined
strictly by Taylor series expansions which are local in nature and limit the time-step �t. The
latter is a more general flow-map construction that can be trained for any time step �t. Thus,
the error is not limited by a local Taylor expansion, but rather by pairs of training data mapping
the solution to a future �t. In the end, we show our proposed scheme is capable of learning
long-term dependencies on some more realistic datasets, achieving state-of-the-art performance.

However, some cautionary remarks are warranted: as with all DNN architectures, obtaining
reliable large scaled time-steppers comes at the cost of significant training because of the
increasing complexity (see electronic supplementary material, appendix B(d)). Specifically, one
usually needs to acquire large enough data sets to train the appropriate deep NN architecture.
Deriving a rigorous a priori error bound using neural networks is rather involved compared to
traditional time-stepping algorithms [84]. Deriving error bounds requires a rigorous formulation
of the function space and introduction of an appropriate norm. One remedy for this is to
evaluate the trained model on some unseen test trajectories so that the generalization error
can be empirically controlled before putting into practical use. Lastly, we have assumed full
observation of the system states, although full-state measurements are often unavailable in real-
world applications. When the system states are partially observed, techniques such as time-delay
embedding [80,85–87] may be applied as a preprocessing step to address the presence of latent
variables, which is related to the closure problem.

This work also suggests a number of open questions that motivate further investigation.
In particular, nearly every sub-field within numerical integration can be revisited from this
perspective. For example, bringing the idea of adaptive step sizes into this framework may
potentially lead to even more efficient and accurate time-stepping schemes. Although this
important element may be naturally addressed, it is not yet built in to the proposed methodology
in its present form. In addition, as mentioned in electronic supplementary material, appendix
B(d), the increments of the flow maps mostly exhibit obvious multiscale features. Since deep
learning is essentially an interpolation method [88], to leverage more effective training, new
sampling strategies may be proposed to address this problem [18,89]. This is of crucial importance
for deep learning, as neural networks are data-hungry and the curse of dimensionality makes it
impossible to generate largely enough datasets for high-dimensional systems. It is also important
to introduce principled approaches to deal with uncertainty quantification within this framework,
as real-world systems may be stochastically forced. Similarly, models at different scales may have
different associated levels of confidence, which the current multiscale modelling approach does
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not address. These are both important areas of ongoing research. Bayesian statistical techniques
provide one potential approach to enhance the functionality of these methods, by making
distribution, rather than point, forecasts.

Data accessibility. All code used to produce the results in this paper is open source at https://github.com/
luckystarufo/multiscale_HiTS.
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