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COMMENTARY

Towards a guideline for evaluation metrics 
in medical image segmentation
Dominik Müller1,2*   , Iñaki Soto‑Rey2 and Frank Kramer1 

Abstract 

In the last decade, research on artificial intelligence has seen rapid growth with deep learning models, especially in 
the field of medical image segmentation. Various studies demonstrated that these models have powerful prediction 
capabilities and achieved similar results as clinicians. However, recent studies revealed that the evaluation in image 
segmentation studies lacks reliable model performance assessment and showed statistical bias by incorrect metric 
implementation or usage. Thus, this work provides an overview and interpretation guide on the following metrics for 
medical image segmentation evaluation in binary as well as multi-class problems: Dice similarity coefficient, Jaccard, 
Sensitivity, Specificity, Rand index, ROC curves, Cohen’s Kappa, and Hausdorff distance. Furthermore, common issues 
like class imbalance and statistical as well as interpretation biases in evaluation are discussed. As a summary, we pro‑
pose a guideline for standardized medical image segmentation evaluation to improve evaluation quality, reproduc‑
ibility, and comparability in the research field.
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Introduction
In the last decade, research on artificial intelligence has 
seen rapid growth with deep learning models, by which 
various computer vision tasks got successfully automated 
through accurate neural network classifiers [1]. Evalu-
ation procedures or quality of model performance are 
highly distinctive in computer vision between different 
research fields and applications.

The subfield medical image segmentation (MIS) covers 
the automated identification and annotation of medical 
regions of interest (ROI) like organs or medical abnor-
malities (e.g. cancer or lesions) [2]. Various novel studies 
demonstrated that MIS models based on deep learning 
revealed powerful prediction capabilities and achieved 
similar results as radiologists regarding performance [1, 

2]. Clinicians, especially from radiology and pathology, 
strive to integrate deep learning based MIS methods as 
clinical decision support (CDS) systems in their clinical 
routine to aid in diagnosis, treatment, risk assessment, 
and reduction of time-consuming inspection processes 
[1, 2]. Throughout their direct impact on diagnosis and 
treatment decisions, correct and robust evaluation of 
MIS algorithms is crucial.

However, in the past years a strong trend of highlight-
ing or cherry-picking improper metrics to show particu-
larly high scores close to 100% was revealed in scientific 
publishing of MIS studies [3–7]. Studies showed that 
statistical bias in evaluation is caused by issues reaching 
from incorrect metric implementation or usage to miss-
ing hold-out set sampling for reliable validation [3–11]. 
This led to the current situation that various clinical 
research teams are reporting issues on model usabil-
ity outside of research environments [4, 7, 12–16]. The 
use of faulty metrics and missing evaluation standards 
in the scientific community for the assessment of model 
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performance on health-sensitive procedures is a large 
threat to the quality and reliability of CDS systems.

In this work, we want to provide an overview of appro-
priate metrics, discuss interpretation biases, and propose 
a guideline for properly evaluating medical image seg-
mentation performance in order to increase research reli-
ability and reproducibility in the field of medical image 
segmentation.

Main text
Evaluation metrics
Evaluation of semantic segmentation can be quite com-
plex because it is required to measure classification accu-
racy as well as localization correctness. The aim is to 
score the similarity between the predicted (prediction) 
and annotated segmentation (ground truth). Over the 
last 30 years, a large variety of evaluation metrics can be 
found in the MIS literature [10]. However, only a handful 
of scores have proven to be appropriate and are used in a 
standardized way [10]. This work demonstrates and dis-
cusses the behavior of the following common metrics for 
evaluation in MIS:

•	 F-measure based metrics like Dice Similarity Coeffi-
cient (DSC) and Intersection-over-Union (IoU)

•	 Sensitivity (Sens) and Specificity (Spec)
•	 Accuracy / Rand Index (Acc)
•	 Receiver Operating Characteristic (ROC) and the 

area under the ROC curve (AUC)
•	 Cohen’s Kappa (Kap)
•	 Average Hausdorff Distance (AHD)

In detail descriptions of these metrics are presented in 
the Appendix. The behavior of the metrics in this work 
is illustrated in Fig. 1 and Fig. 2 which demonstrate the 
metric application in multiple use cases.

Class imbalance in medical image segmentation
Medical images are infamous in the field of image seg-
mentation due to their extensive class imbalance [10, 
17]. Usually, an image in medicine contains a single ROI 
taking only a small percentage of pixels in the image, 
whereas the remaining image is all annotated as back-
ground. From a technical perspective for machine learn-
ing, this scenario entails that the model classifier must be 
trained on data composed of a very rare ROI class and a 
background class with often more than 90% or even close 
to 100% prevalence. This extreme inequality in class dis-
tribution affects all aspects of a computer vision pipeline 
for MIS, starting from the preprocessing, to the model 
architecture and training strategy up to the performance 
evaluation [18].

In MIS evaluation, class imbalance significantly affects 
metrics which include correct background classification. 
For metrics based on the confusion matrix, these cases 
are defined as true negatives. In a common medical image 
with a class distribution of 9:1 between background and 
ROI, the possible number of correct classifications is 
extensively higher for the background class compared 
to the ROI. Using a metric with equal true positive and 
true negative weighting results in a high-ranking scoring 
even if any pixel at all is classified as ROI and, thus, sig-
nificantly biases the interpretation value. This behavior 
can be seen in metrics like Accuracy or Specificity which 
present always significantly high scorings in any MIS 
context. Therefore, these metrics should be avoided for 
any interpretation of segmentation performance. Metrics 
that focus on only true positive classification without a 
true negative inclusion provide better performance rep-
resentation in a medical context. This is why the DSC and 
IoU are highly popular and recommended in the field of 
MIS.

Influence of the region‑of‑interest size on evaluation
The size of an ROI and the resulting class imbalance ratio 
in an image demonstrates an anti-correlation to evalu-
ation complexity for interpretation robustness. In the 
medical context, the ROI size is determined by the type 
in terms of the medical condition and the imaging modal-
ity. Various types of ROIs can be relevant to segment for 
clinicians. Whereas organ segmentation, cell detection, 
or a brain atlas take up a larger fraction of the image and, 
thereby, represent a more equal background-ROI class 
ratio, the segmentation of abnormal medical features 
like lesions commonly reflects the strong class imbal-
ance and can be characterized as more complex to evalu-
ate. Furthermore, the imaging modality highly influences 
the ratio between ROI and background. Modern high-
resolution imaging like whole-slide images in histopa-
thology provides resolutions of 0.25 μm with commonly 
80,000 × 60,000 pixels [19, 20] in which an anaplastic 
(poorly differentiated) cell region takes up only a mini-
malistic part of the image. In such a scenario, the result-
ing background-ROI class ratio could typically be around 
183:1 (estimated by a 512 × 512 ROI in an 803 × 603 slide). 
Another significant class ratio increase can be observed 
in 3D imaging from radiology and neurology. Com-
puter tomography or magnetic resonance imaging scans 
regularly provide image resolutions of 512 × 512 pix-
els with hundreds of slices (z-axis) resulting in a typical 
class ratio around 373:1 (estimated by a 52 × 52 ROI in a 
512 × 512x200 scan) [19]. In order to avoid such extreme 
imbalance bias, metrics that are distance-based like AHD 
or exclude true negative rewarding like DSC are recom-
mended. Besides that, patching techniques (splitting the 
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slide or scan into multiple smaller images) are often also 
applied to reduce complexity and class imbalance [2, 20].

Influence of the segmentation task on evaluation
For valid interpretation of a MIS performance, it is cru-
cial to understand metric behaviors and expected scores 
in different segmentation tasks. Depending on the ROI 
type like a lesion or organ segmentation, the complex-
ity of the segmentation task and the resulting expected 
score varies significantly [21]. In organ segmentation, 
the ROI should be located consistently at the same posi-
tion with low spatial variance between samples, whereas 
an ROI in lesion segmentation shows high spatial as well 
as morphological variance in its characteristics. Thereby, 
optimal performance metrics in organ segmentation are 
more likely to be possible, even though less realistic in 
lesion segmentation [22, 23]. This complexity variance 

implicates expected evaluation scores and should be fac-
tored in performance interpretation. Another important 
influencing factor in the segmentation task is the num-
ber of ROIs in an image. Multiple ROIs require additional 
attention for implementation and interpretation because 
not only high scoring metrics can be misleading and 
hiding undetected smaller ROIs between well predicted 
larger ROIs but also distance-based metrics are defined 
only on pairwise instance comparisons [21]. These risks 
should be considered in any evaluation of multiple ROIs.

Multi‑class evaluation
The previous evaluation metrics discussed are all defined 
for binary segmentation problems. It is needed to be 
aware that applying binary metrics to multi-class prob-
lems can result in highly biased results, especially in 
the presence of class imbalance [6]. This can often lead 

Fig. 1  Demonstration of metric behavior in the context of different-sized ROIs compared to the total image. The figure is showing the perks of 
F-measure based metrics like DSC as well as IoU and the inferiority of Rand index usage. Furthermore, the small ROI segmentation points out that 
metrics like accuracy have no value for interpretation in these scenarios, whereas the large ROI segmentation indicates that small percentage 
variance can lead to a risk of missing whole instances of ROIs. The analysis was performed in the following scenarios and common MIS use 
cases. Scenarios: No segmentation (no pixel is annotated as ROI), full segmentation (all pixels are annotated as ROI), random segmentation (full 
random-based annotation), untrained (after 1 epoch during training) and trained model (fully fitted model). Use cases: Small ROIs via brain tumor 
detection in magnetic resonance imaging and large ROIs via cell nuclei detection in pathology microscopy
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to a confirmation bias and promising-looking evalua-
tion results in scientific publications which, however, are 
actually quite weak [6]. In order to evaluate multi-class 
tasks, it is required to compute and analyze the metrics 
individually for each class. Distinct evaluation for each 
class is in the majority of cases the most informative and 
comparable method. Nevertheless, it is often necessary 
to combine the individual class scores to a single value 
for improving clarity or for further utilization, for exam-
ple as a loss function. This can be achieved by micro and 
macro averaging the individual class scores. Whereas 

macro-averaging computes the individual class metrics 
independently and just averages the results, micro-aver-
aging aggregates the contributions of each class for com-
puting the average score.

Evaluation guideline

•	 Use DSC as main metric for validation and perfor-
mance interpretation.

•	 Use AHD for interpretation of point position sensi-
tivity (contour) if needed.

Fig. 2  Demonstration of metric behavior for a trained segmentation model in the context of different medical imaging modalities. The figure is 
showing the differences between metrics based on distance like AHD, with true negatives like Accuracy, and without true negatives like DSC. Each 
subplot illustrates a violin plot which visualizes the resulting scoring distribution of all testing samples for the corresponding metric and modality. 
For visualization purposes, AHD was clipped to a maximum of 250 (affected number of samples per dataset: dermoscopy 2.0%, endoscopy 0.3%, 
fundus 0.0%, microscopy 0.0%, radiology 0.5%, and ultrasound 2.5%)



Page 5 of 8Müller et al. BMC Research Notes          (2022) 15:210 	

•	 Watch out for class imbalance and avoid interpreta-
tions based on high Accuracy.

•	 Provide next to DSC also IoU, Sensitivity, and Speci-
ficity for method comparability.

•	 Provide sample visualizations, comparing the anno-
tated and predicted segmentation, for visual evalua-
tion as well as to avoid statistical bias.

•	 Avoid cherry-picking high-scoring samples.
•	 Provide histograms or box plots showing the scoring 

distribution across the dataset.
•	 Keep in mind variable metric outcomes for different 

segmentation types.
•	 Be aware of interpretation risks by multiple ROIs.
•	 For multi-class problems, provide metric computa-

tions for each class individually.
•	 Avoid confirmation bias through macro-averaging 

classes which is pushing scores via background class 
inclusion.

•	 Provide access to evaluation scripts and results with 
journal data services or third-party services like 
GitHub [24] and Zenodo [25] for easier reproducibil-
ity.

Sample visualization
Besides the exact performance evaluation via metrics, it 
is strongly recommended to additionally visualize seg-
mentation results. Comparing annotated and predicted 
segmentation allows robust performance estimation by 
eye. Sample visualization can be achieved via binary visu-
alization of each class (black and white) or via utilizing 
transparent color application based on pixel classes on 
the original image. The strongest advantage of sample 
visualization is that statistical bias, overestimation of pre-
dictive power through unsuited or incorrect computed 
metrics, is avoided.

Experiments
We conducted multiple experiments for supporting the 
principles of our evaluation guideline as well as dem-
onstrate metric behaviors on various medical imaging 
modalities. Furthermore, the insights of this comment 
are based on the experience during the development and 
application of the popular framework MIScnn [18] as 
well as our contribution to currently running or already 
published clinical studies [2, 26–28].

The analysis utilized our medical image segmentation 
framework MIScnn [18] and was performed with the fol-
lowing parameters: Sampling in 64% training, 16% vali-
dation, and 20% testing sets; resizing into 512 × 512 pixel 
images; value intensity normalization via Z-score; exten-
sive online image augmentation during training, common 
U-Net architecture [29] as neural network with focal 

Tversky loss function [30] and a batch size of 24 samples; 
advanced training features like dynamic learning rate, 
early stopping and model checkpoints. The training was 
performed for a maximum of 1000 epochs (68 up to 173 
epochs after early stopping) and on 50 up to 75 randomly 
selected images per epoch. For metric computation and 
evaluation, we utilized our framework MISeval, which 
provides implementation and an open interface for all 
discussed evaluation metrics in a Python environment 
[31]. In order to cover a large spectrum of medical imag-
ing with our experiments, we integrated datasets from 
various medical fields: Radiology–brain tumor detection 
in magnetic resonance imaging from Cheng et  al. [32, 
33], ultrasound–breast cancer detection in ultrasound 
images [34], microscopy–cell nuclei detection in histopa-
thology from Caicedo et al. [35], endoscopy–endoscopic 
colonoscopy frames for polyp detection [36], fundus 
photography–vessel extraction in retinal images [37], 
dermoscopy–skin lesion segmentation for melanoma 
detection in dermoscopy images [38].

Outlook
This work focused on defining metrics, their recom-
mended usage and interpretation biases to establish a 
standardized medical image segmentation evaluation 
procedure. We hope that our guidelines will help improve 
evaluation quality, reproducibility, and comparability in 
future studies in the field of medical image segmenta-
tion. Furthermore, we noticed that there is no universal 
Python package for metric computations, which is why 
we are currently working on a package to compute met-
rics scores in a standardized way. In the future, we want 
to further contribute and expand our guidelines for reli-
able medical image segmentation evaluation.

Appendix
In the following chapters, each metric will be defined 
and discussed in terms of possible issues. Nearly all pre-
sented metrics, except Hausdorff distance, are based on 
the computation of a confusion matrix for a binary seg-
mentation task, which contains the number of true posi-
tive (TP), false positive (FP), true negative (TN), and false 
negative (FN) predictions. Except for Cohen’s Kappa and 
Hausdorff distance, the value ranges of all presented met-
rics span from zero (worst) to one (best).

F‑measure based metrics
F-measure, also called F-score, based metrics are one of 
the most widespread scores for performance measuring 
in computer vision as well as in the MIS scientific field 
[10, 11, 39, 40]. It is calculated from the sensitivity and 
precision of a prediction, by which it scores the overlap 
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between predicted segmentation and ground truth. Still, 
by including the precision, it also penalizes false posi-
tives, which is a common factor in highly class imbal-
anced datasets like MIS [10, 11]. Based on the F-measure, 
there are two popular utilized metrics in MIS: The Inter-
section-over-Union (IoU), also known as Jaccard index or 
Jaccard similarity coefficient, and the Dice similarity coef-
ficient (DSC), also known as F1 score or Sørensen-Dice 
index. Besides that, the DSC is defined as the harmonic 
mean between sensitivity and precision, the difference 
between the two metrics is that the IoU penalizes under- 
and over-segmentation more than the DSC. Even so, 
both scores are appropriate metrics, the DSC is the most 
used metric in the large majority of scientific publications 
for MIS evaluation [10, 11, 40].

Sensitivity and specificity
Especially in medicine, specificity and sensitivity are 
established standard metrics for performance evaluation 
[10, 11]. For pixel classification, the sensitivity (Sens), 
also known as recall or true positive rate, focuses on the 
true positive detection capabilities, whereas the specific-
ity (Spec), also known as true negative rate, evaluates the 
capabilities for correctly identifying true negative classes 
(like the background class). In MIS evaluation, the sen-
sitivity is a valid and popular metric, but still less sensi-
tive to F-score based metrics for exact evaluation and 
comparison of methods [10, 11]. However, the specificity 
can result in an improper segmentation metric if not cor-
rectly understood. In MIS tasks, the specificity indicates 
the model’s capability to detect the background class in 
an image. Due to the large fraction of pixels annotated 
as background compared to the ROI, specificity ranges 
close to 1 are standard and expected. Thus, specificity is 
a suited metric for ensuring model functionality, but less 
for model performance.

Accuracy/Rand index
Accuracy (Acc), also known as Rand index or pixel accu-
racy, is one or even the most known evaluation metric in 

(1)IoU =
TP

TP + FP + FN

(2)DSC =
2TP

2TP + FP + FN

(3)Sensitivity =
TP

TP + FN

(4)Specificity =
TN

TN + FP

statistics [10]. It is defined as the number of correct pre-
dictions, consisting of correct positive and negative pre-
dictions, compared to the total number of predictions. 
However, it is strongly discouraged to use accuracy due 
to the strong class imbalance in MIS. Because of the true 
negative inclusion, the accuracy metric will always result 
in an illegitimate high scoring. Even predicting the seg-
mentation of an entire image as background class, accu-
racy scores are often higher than 90% or even close to 
100%. Therefore, the misleading accuracy metric is not 
suited for MIS evaluation and using it is highly discour-
aged in scientific evaluations.

Receiver operating characteristic
The ROC curve, short for Receiver Operating Character-
istic, is a line plot of the diagnostic ability of a classifier 
by visualizing its performance with different discrimina-
tion thresholds [10]. The performance is shown through 
the true positive rate (TPR) against the false positive rate 
(FPR). In particular, ROC curves are widely established 
as a standard metric for comparing multiple classifiers 
and in the medical field for evaluating diagnostic tests as 
well as clinical trials [41]. As a single-value performance 
metric, the area under the ROC curve (AUC) was first 
introduced by Hanley and McNeil 1982 for diagnostic 
radiology [42]. Nowadays, the AUC metric is also a com-
mon method for the validation of machine learning clas-
sifiers. It has to be noted that an AUC value of 0.5 can 
be interpreted as a random classifier. The following AUC 
formula is defined as the area of the trapezoid according 
to David Powers [6]:

Cohen’s kappa
The metric Cohen’s Kappa (Kap), introduced by Cohen 
in 1960 in the field of psychology, is a change-corrected 
measure of agreement between annotated and predicted 
classifications [10, 43, 44]. For interpretation, Kap meas-
ures the agreement caused by chance like the AUC score 
and ranges from -1 (worst) to + 1 (best), whereas a Kap 
of 0 indicates a random classifier. Through its capability 
of application on imbalanced datasets, it has gained pop-
ularity in the field of machine learning [44]. However, a 
recent study demonstrated that it still correlates strongly 
to higher values on balanced datasets [44, 45]. Addition-
ally, it does not allow comparability on different sampled 
datasets or interpretation on prediction accuracy.

(5)Accuracy =
TP + TN

TP + TN + FN + FP

(6)AUC = 1−
1

2

(

FP

FP + TN
+

FN

FN + TP

)
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Average hausdorff distance
In contrast to other confusion matrix based metrics, the 
Hausdorff distance (HD) is a spatial distance based met-
ric [10]. The HD measures the distance between two sets 
of points, like ground truth and predicted segmentation, 
and allows scoring localization similarity by focusing 
on boundary delineation (contour) [10, 46, 47]. Espe-
cially in more complex and granular segmentation tasks, 
exact contour prediction is highly important which is 
why HD based evaluations have become popular in the 
field of MIS [10]. However, because the HD is sensitive 
to outliers, the symmetric Average Hausdorff Distance 
(AHD) is utilized in the majority of applications instead 
[10, 17, 46]. The symmetric AHD is defined by the maxi-
mum between the directed average Hausdorff distance 
d(A,B) and its reverse direction d(B,A) in which A and B 
represent the ground truth and predicted segmentation, 
respectively, and ||a-b|| represents a distance function 
like Euclidean distance [10]:

Other metrics
In the field of MIS, various other metrics exist and can be 
applied depending on the research question and interpre-
tation focus of the study. This work focused on the most 
suited metrics to establish a standardized MIS evaluation 
procedure and to increase reproducibility. For further 
insights on the theory of previously presented metrics or 
a large overview of all metrics for MIS, we refer to the 
excellent studies of Taha et al. [10]. Additionally, Nai et al. 
provided a high-quality demonstration of various metrics 
on a prostate MRI dataset [17].

Abbreviations
MIS: Medical image segmentation; ROI: Region of interest; CDS: Clinical deci‑
sion support; TP: True positive; FP: False positive; TN: True negative; FN: False 
negative; DSC: Dice similarity coefficient; IoU: Intersection-over-union; Sens: 
Sensitivity; Spec: Specificity; Acc: Accuracy; ROC: Receiver operating charac‑
teristic; TPR: True positive rate; FPR: False positive rate; Kap: Cohen’s kappa; HD: 
Hausdorff distance; AHD: Average hausdorff distance.

(7)

fc =
(TN + FN )(TN + FP)+ (FP + TP)(FN + TP)

TP + TN + FN + FP

(8)Kap =
(TP + TN )− fc

(TP + TN + FN + FP)− fc

(9)d(A, B) =
1

N

∑

a∈A

min
b∈B

|
∣

∣a− b
∣

∣ |

(10)AHD(A, B) = max(d(A,B), d(B,A))
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