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Central nervous system effects 
of 5‑HT7 receptors: a potential target 
for neurodegenerative diseases
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Abstract 

5-HT7 receptors (5-HT7R) are the most recently identified among the family of serotonin receptors. Their role in health 
and disease, particularly as mediators of, and druggable targets for, neurodegenerative diseases, is incompletely 
understood. Unlike other serotonin receptors, for which abundant preclinical and clinical data evaluating their effect 
on neurodegenerative conditions exist, the available information on the role of the 5-HT7R receptor is limited. In this 
review, we describe the signaling pathways and cellular mechanisms implicated in the activation of the 5-HT7R; also, 
we analyze different mechanisms of neurodegeneration and the potential therapeutic implications of pharmacologi‑
cal interventions for 5-HT7R signaling.
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Introduction
5-hydroxytryptamine (serotonin) 7 receptors (5-HT7R) 
are members of the family of 5-HT receptors identified in 
1993, but their functional and pathological implications 
are incompletely understood (Bard et al. 1993; Lovenberg 
et al. 1993; Ruat et al. 1993). Like other serotonin recep-
tors, their activation is mediated by G-protein-coupled 
receptor (GPCR) signaling pathways. 5-HT7R is broadly 
expressed in the central nervous system (CNS), gastro-
intestinal tract, and other organs, where they potentially 
regulate different physiological functions including the 
sleep–wake cycle, body temperature, nociception, and 
gastrointestinal motility, to name a few (Sanger 2008; 
Ciranna and Catania 2014; Chang-Chien et  al. 2015). 
The 5-HT7R gene is located in the chromosome 10 (q21-
124), which contains 3 introns in the coding region, 
(Gellynck et al. 2013) moreover, 5-HT7R is expressed in 

four different isoforms, being 5-HT7R(A), 5-HT7R(B) and 
5-HT7R(D) the ones isolated in humans, and 5-HT7R(A), 
5-HT7R(B) and 5-HT7R(C) in rats, with no apparent func-
tional distinction between each isoform (Heidmann 
et  al. 1997). Of interest, 5-HT7R presents high homol-
ogy between species (90%) but little homology with other 
5-HT receptors (as low as 50%) (Hannon and Hoyer 
2008).

Experimental data suggest that 5-HT7R may be an 
amenable therapeutic target in neurodegenerative dis-
orders. However, no clinical studies have evaluated the 
role of 5-HT7R in neurodegenerative processes, although 
targeting other serotonin receptors (with drugs such as 
selective serotonin reuptake inhibitors) has shown lit-
tle clinical benefit in neurodegenerative conditions (Hüll 
et al. 2006; Lalut et al. 2017). Here, we aimed to review 
the potential role of 5-HT7R in neurodegeneration and 
their potential therapeutic implications, based on differ-
ent in vivo and in vitro pre-clinical studies (Table 1).
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Methods
We performed a comprehensive search of the Pub-
Med database English language literature to identify all 
original research and review articles regarding 5-HT7R 
localization, signaling pathways, effectors, its role in 
health in the central nervous system, and the pathology 
of selected neurodegenerative diseases. For that pur-
pose, we included the following Medical Subject Head-
ings (MeSH) and main keywords for searches: 5-HT7, 
LP-211, LP-44, LP-21, AS-19, SB-269970, SB-656104-A, 
5-HT7R mechanism of action, 5-HT7R signaling path-
way, 5-HT7R effect, 5-HT7R distribution, 5-HT7R neu-
roprotection, excitotoxicity, oxidative stress, apoptosis, 
necrosis, unfolded protein response, endoplasmic reticle 
stress, amyloid β, tau tangles, tau oligomers, α-synuclein, 
inflammation, Alzheimer’s, Parkinson’s, Huntington’s, 
Frontotemporal dementia, dementia, and neurodegen-
eration. We also reviewed the articles cited in the refer-
ence lists of the articles identified during the search. The 
authors independently reviewed the selected articles. The 
search included articles available from 1993 (when the 
receptor was originally cloned) to March 2022.

Distribution in the CNS
5-HT7R is broadly expressed in different cell types in 
the CNS, including neurons, astrocytes, and micro-
glia (Shimizu et al. 1998; Mahé et al. 2005; Guseva et al. 
2014). CNS expression of 5-HT7R is not homogene-
ous; the highest expression occurs in the hippocampus, 

amygdala, and hypothalamus (Thomas and Hagan 2004), 
and comparatively lower density occurs in the dorsal 
raphe, caudate nucleus, putamen, and substantia nigra 
(Martín-Cora and Pazos 2004). In the amygdala, 5-HT7R 
are present primordially in GABAergic interneurons; 
in other structures, their expression in specific neurons 
is not clear, hence of critical importance for therapeutic 
purposes (Kusek et  al. 2021). Of biological and clinical 
relevance, the regional expression of 5-HT7R is evolu-
tionarily conserved in mammals (Martín-Cora and Pazos 
2004). 5-HT7R are also expressed in the digestive tract, 
aorta, and other tissues, exerting immunomodulatory 
effects as well as other organ-specific effects (Quintero-
Villegas and Valdés-Ferrer 2019).

Cellular mechanisms and signaling pathways
Like other GPCR, 5-HT7R are found in the cell mem-
brane, where they form homodimers and homoligomers, 
with no known relevant differences between their biolog-
ical functions (Smith et al. 2011; Guseva et al. 2014). In 
addition, 5-HT7R can form heterodimers and heterooli-
gomers with 5-HT1A receptors (5-HT1AR), which in turn 
lead to diminished activity and increased internaliza-
tion of 5-HT1A receptors without a discernible effect on 
5-HT7R signaling or activity (Renner et al. 2005; Prasad 
et al. 2019). This is of biological relevance, as activation 
of 5-HT1AR results in activation of Gαi and reducing 
levels of cyclic adenosine monophosphate (cAMP) and 
mitogen-activated protein kinase (MAPK), also known 
as an extracellular signal-regulated kinase (ERK), hence 

Table 1  Common agonists and antagonists of 5-HT7R used in preclinical studies

Name Action mechanism Administration route (dose) References

AS-19 Selective full agonist s.c (5 mg/kg), i.t. (5 µL at 100 µM), i.p. 
(10 mg/kg)

McDaid et al. (2020), Fields et al. (2015), 
Albayrak et al. (2013)

LP-12 Selective full agonist i.t. (10µL at 0.02–0.2 nM), cultures 
(300 nM)

Godínez-Chaparro et al. (2012), Samara‑
jeewa et al. (2014)

LP-44 Selective full agonist i.p. (1,5 and 10 mg/kg) Demirkaya et al. (2016)

LP-211 Selective full agonist i.p. (1,5 and 10 mg/kg), i.p. (0.25 mg/
kg), i.p. (0.003–0.3 mg/kg),i.c.v. (0.2 µL at 
2–6 mM)

Demirkaya et al. (2016), Liu et al. (2021), 
Norouzi-Javidan et al. (2016), (Monti et al. 
2014)

Methiothepin maleate Non-specific 5-HT1/6/7R agonist Culture (10 µM) Soga et al. (2007)

8-OH-DPAT Non-specific 5-HT1A/7R agonist i.p. (02–0.4 mg/kg and 1.0 mg/kg) Cassaday and Thur (2019), Odland et al. 
(2019)

SB-269970 Competitive selective antagonist, quasi-
full inverse agonist

i.p. (10 mg/kg) Perez-García and Meneses (2005), Liu et al. 
(2021)

SB-258741 Competitive selective antagonist, partial 
inverse agonist

s.c. (2.3 mg/kg and 3.5 mg/kg) Pouzet (2002)

SB-258719 Competitive selective antagonist i.p. (5 mg/kg) Brenchat et al. (2011)

HBK-15 Competitive non-selective
5-HT1A/3/7R antagonist

i.p. (1.25 mg/kg) i.v. (1.25 mg/kg) Pytka et al. (2018)

Lurasidone Competitive non-selective 5-HT2A/7R 
antagonist

Microdialsis (3 mg/kg/d) Okada et al. (2021)
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antagonizing the effects of the 5-HT7R-Gαs signaling 
cascade (Zhou et al. 2019).

The activation of 5-HT7R leads to the initiation of two 
possible signaling pathways: the canonical one, described 
when the receptor was originally cloned (Lovenberg et al. 
1983) acts via Gαs (Fig. 1). The activation of this pathway, 
like in other GPCRs results in the phosphorylation of 
different adenylyl cyclases (AC) (Baker et al. 1998). This 
leads to cAMP production, activation of protein kinase 
A, and, finally, phosphorylation of different proteins, like 
ERK 1 and ERK 2, Akt, and tropomyosin-related kinase 
B (Trkb) (Errico et  al. 2001; Johnson-Farley et  al. 2005; 
Samarajeewa et al. 2014).

The Non-canonical signaling pathway of 5-HT7R acts 
via Gα12 (Guseva et al. 2014). This leads to the activation 
of Rho, Rac, and cell division control protein 42 (Cdc42) 
all part of the Rho family of small GTPases, which in neu-
rons promote dendrite sprouting, formation of filopodia, 
and synaptogenesis (Hart, et al. xxxx; Kobe et al. 2012a; 
Speranza et  al. 2013; Speranza et  al. 2015; Marin and 
Dityatev 2017). Of relevance, Trkb expression (a brain-
derived neurotrophic factor [BDNF] receptor) appears 
to be enhanced by both Gαs and Gα12 (Fig.  1) (Sama-
rajeewa et  al. 2014). These signaling pathways may be 

of therapeutic relevance for neurodegenerative diseases, 
although few studies have so far evaluated these effects 
(Hashemi-Firouzi et al. 2017; Costa et al. 2018; Quintero-
Villegas et al. 2019).

Biopathology of neurodegeneration
The biological mechanisms leading to neurodegeneration 
include many neuronal and glial molecular pathways that 
result in neuronal damage. Below, we briefly summarize 
the most common mechanisms involved in neurodegen-
eration and how they might associate with the known 
5-HT7R effects (Fig. 2; Table 2).

Amyloid β‑mediated neurodegeneration
Amyloid β (Aβ) is a key mediator of neurodegeneration 
in Alzheimer’s disease (AD), inducing damage through 
multiple pathways (Querfurth and Laferla 2018), some of 
which overlap with other mechanisms discussed below. 
Besides AD, Aβ may also play a role in diseases such as 
frontotemporal dementia (FTD), cerebral amyloid angi-
opathy, and cerebral amyloidosis (Miller-Thomas et  al. 
2016). Aβ is a critical source of reactive oxygen spe-
cies (ROS) and reactive nitrogen species in AD, caus-
ing neuronal lipoperoxidation in neurons and thus, 

Fig. 1  5-HT7 and 5-HT1A receptor signaling pathways and oligo/heterodimer formation. 5-HT7 receptor monomers (in yellow) can form 
homodimers or homoligomers, with the same signaling pathways and cellular effects. 5-HT7 can also form heterodimers or heteroligomers with 
5-HT1A (in teal), resulting in the inhibition of the 5-HT1A signaling pathway, with no net effect downstream of 5-HT7. When activated, 5-HT7 activates 
Gas (canonical pathway) with a subsequent signaling cascade that results in the activation of ERK (also known as MAPK) and Akt; in contrast, the 
activation of Ga12 activates mTOR and different Rho family small GTPases. As illustrated, the phosphorylation of Trkb is mediated by both G proteins. 
AC adenylate cyclase, cAMP cyclic adenosine monophosphate, Cdc42 cell division control protein 42 homolog, ERK extracellular signal-regulated 
kinases, MAPK mitogen-activated protein kinases, mTOR mammalian target of rapamycin, Trkb Tropomyosin receptor kinase B
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neurodegeneration (Bernal-Mondragón et al. 2013). Also, 
Aβ helps the formation of voltage-independent, cation 
channels in the lipid membranes, which could lead to 
excitotoxicity-mediated neurodegeneration (Arispe et al. 
1993).

Chronically Aβ-stimulated microglia releases mul-
tiple pro-inflammatory cytokines, such as interleukin 
(IL)-1, IL-6, and tumor necrosis factor (TNF)-α, which 

induces pathological changes in the CNS (Heppner 
et  al. 2015). Aβ-stimulated microglia increases neu-
ronal damage and further accumulation of Aβ, an 
effect mediated by receptors for advanced glycation 
end products (Fang et  al. 2010). Although not directly 
associated with neuronal death, Aβ impairs synaptic 
function and synaptogenesis and dysregulates neuro-
transmitter levels in the synaptic cleft, contributing to 

Fig. 2  Cellular and molecular effects of 5-HT7 receptors. Molecular effects of 5-HT7 activation. A When activated, 5-HT7 receptors modulate ion 
transmission through enhancing LTP and LTD (1); these receptors also increase the number of neurotrophins (especially BDNF) and the affinity 
of its receptor Trkb (2); through ERK and Akt, 5-HT7 decreases neuronal damage mediated by ROS (3); and reduces the excitotoxicity burden 
mediated by glutamate-NMDA-calcium. Cellular effects of 5-HT7 activation. B When stimulated by serotonin, 5-HT7 enhances dendritic sprouting 
and synaptogenesis, while regulating (often towards suppression) immune cells. LTD long-term depression, LTP long-term potentiation, NMDA 
(N-methyl-d-aspartate receptor, ROS reactive oxygen species, Trkb tropomyosin receptor kinase B
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the symptoms in AD (Querfurth and Laferla 2018; Cai 
2019; Ding et al. 2019).

5-HT7R agonism with LP-211 (a highly selective ago-
nist) reverts neuronal damage and cognitive impair-
ment induced by Aβ (Quintero-Villegas et  al. 2019). 
Aβ induces neurotoxicity through several mechanisms 
including apoptosis, excitotoxicity, and oxidative stress 
(Querfurth and Laferla 2018; Bernal-Mondragón et  al. 
2013). In a streptozotocin-mediated neurodegeneration 
murine model for AD, the intracerebroventricular (ICV) 
treatment of AS-19 (a 5-HT7R selective agonist) reduced 
long-term potentiation (LTP) impairment and apoptosis 
in hippocampal (Hashemi-Firouzi et al. 2017).

The exact mechanism of 5-HT7R-mediated neuropro-
tection in Aβ-induced neurodegeneration is currently 
under investigation, an effect that is likely to be mediated 
through multiple mechanisms.

Excitotoxicity
This is an important cause of neuronal damage in neu-
rodegenerative diseases, including AD, stroke, Hunting-
ton’s disease (HD), and Parkinson’s disease (PD) (Martire 
et al. 2013; Lai et al. 2014; Iovino et al. 2020). Persistent 
excitatory -mainly glutamatergic- stimuli lead to altered 
calcium homeostasis, resulting in oxidative stress, mito-
chondrial dysfunction, disturbances in protein turno-
ver, inflammation, and caspase-mediated apoptosis 
(Binvignat and Olloquequi 2020). In  vitro studies sug-
gest that the MAPK/ERK and phosphatidylinositol-3/

Akt/Glycogen synthase kinase 3b pathways are closely 
associated with protection against glutamate-induced 
damage (Jiang et  al. 2000; Pi et  al. 2004; Li et  al. 2005); 
modulation of these kinases via 5-HT7R Gαs could have 
therapeutic implications. 5-HT7R activation leads to a 
decrease in the NR2B and NR1 subunits of the N-methyl-
D-aspartate (NMDA) glutamate receptors, thus protect-
ing against glutamate-mediated excitotoxicity (Vasefi 
et  al. 2013a). Treatment with LP-44, a 5-HT7R-specific 
agonist, protects human neuroblastoma SH-SY5Y cells 
against glutamate-mediated damage in an in-vitro model, 
also increasing superoxide dismutase and glutathione 
while decreasing TNF-α, and caspase-3 and -9 (Yuksel 
et  al. 2019). Moreover, 5-HT7R modulate glutamate-
NMDA activity in a time-dependent manner; while the 
acute activation of 5-HT7R by LP-12, a selective agonist 
of 5-HT7R, enhances NMDA activity, the chronic activa-
tion inhibits its activity (Vasefi et al. 2013b).

Oxidative stress
This can lead to membrane damage and neuronal death. 
(Bernal-Mondragón et  al. 2013) Although, oxidative 
phosphorylation in mitochondria produces ROS, reac-
tive nitrogen species, carbon-centered radicals, and 
sulfur-centered radicals (Pero et al. 1990), and these by-
products are considered necessary for neuronal function 
and development (Salim 2017); increase of their levels, 
beyond a physiological threshold, are considered delete-
rious. Multiple in  vitro studies have demonstrated that 

Table 2  Mechanisms of neuronal damage, and possible beneficial effects of 5-HT7 receptors agonism

Neurodegeneration mechanism 5-HT7 possible role References

Excitotoxicity Activation of MAPK/ERK and PI3/Akt/GSK3b protects against 
glutamate-induced damage
Decreased expression of NR2B and NR1 subunits of NMDA gluta‑
mate receptors
Increased expression of superoxide dismutase and glutathione

Jiang et al. (2000); Pi et al. (2004); Li et al. (2005)
Vasefi et al. (2013a)
Yuksel et al. (2019)

Oxidative stress No study evaluated effect in the CNS
In a sepsis-induced lung injury, 5-HT7 receptor agonism 
decreased ROS burden
5-HT7 antagonism decreased oxidative burden in bleomycin-
induced pulmonary fibrosis
5-HT7 activation enhances microsome stability towards oxidative 
metabolism (Lacivita et al., 2016a)
ERK and Akt protect PC12 cells from oxidative damage

Cadirci et al. (2013)
Tawfik and Makary (2017)
Lacivita et al. (2016a)
Ong et al. (2016)

Apoptosis 5-HT7 receptor agonism reduces apoptosis in the streptozotocin-
induced AD model

Hashemi-Firouzi et al. (2017)

Long term depression/ potentia‑
tion impairment

5-HT7 KO mice display LTP impairment
5-HT7 agonism reduces mGluR-dependent LTD

Roberts et al. (2004)
Costa et al. (2012)

Synaptic impairment 5-HT7 agonism increases dendritic density and synaptogenesis in 
the cortical and striatal forebrain
5-HT7 agonism induces dendritic sprouting and neurite enlarge‑
ment

Speranza et  al. (2013, 2015, 2017)
Kvachnina et al. (2005); Canese et al. (2015)

Neurotrophin depletion 5-HT7 agonism increases PDGF-β
5-HT7 agonism increases the expression and affinity of trk-B

Vasefi et al. (2013b)
Samarajeewa et al. (2014)
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high levels of ROS reduce long-term potentiation, syn-
aptic signaling, and brain plasticity (Salim 2017; O’Dell 
et al. 1991; Stevens and Wang 1993). Moreover, oxidative 
stress damages macromolecules, mainly lipid-rich struc-
tures such as membranes, via lipoperoxidation (Salim 
2017).

Although no study so far has evaluated the potential 
effect of 5-HT7R in oxidative stress damage in the CNS, 
a study evaluating sepsis-induced lung injury demon-
strated that 5-HT7R agonism decreased ROS burden 
(Cadirci et  al. 2013). In contrast, the antagonism of the 
5-HT7R by SB-269970 decreased oxidative burden in ble-
omycin-induced pulmonary fibrosis (Tawfik and Makary 
2017). Also, 5-HT7R activation by LP-44 enhances micro-
some stability towards oxidative metabolism (Lacivita 
et al. 2016a). As mentioned before, 5-HT7R regulates the 
activation of ERK and Akt, and these kinases have biolog-
ical effects on oxidative stress injury protection in PC12 
cells (Ong et  al. 2016). Thus, 5-HT7R may have thera-
peutic implications in ROS-induced neurodegeneration, 
something that needs to be experimentally assessed.

Apoptosis
Neuronal cell death is a major pathological characteristic 
of every neurodegenerative disease, whether via apopto-
sis or necrosis. In AD, both phosphorylated tau protein 
and Aβ aggregates induce apoptosis in vitro studies, with 
contradictory effects in tissular studies. Other proteins, 
including α-Synuclein (in PD or Lewy body dementia), or 
mutant huntingtin protein (in HD) also induce neuronal 
cell death via multiple mechanisms, including apoptosis 
(Chi et al. 2018).

It is also important to note, that apoptosis is closely 
related to excitotoxicity and oxidative stress; thus, these 
pathological effects are somewhat overlapped (Yuk-
sel et al. 2019; Loh et al. 2006; Nicholls et al. 2007). The 
5-HT7R agonist AS-19 reduces apoptosis in the strepto-
zotocin-induced AD model (Hashemi-Firouzi et al. 2017). 
While no other study has yet evaluated this effect in the 
CNS, methiothepin maleate (a non-specific 5-HT1/6/7R 
agonist) prevents monocyte activation via ERK 1/2 and 
Nuclear factor-κB (Soga et al. 2007).

Long‑term potentiation and long‑term depression (LTD) 
impairment
Impairment in LTP and LTD have been extensively 
described in many types of dementia, such as AD (Skaper 
et  al. 2017), PD (Marinelli et  al. 2017), and HD (Filippo 
et al. 2007), to name a few, with a strong correlation with 
the cognitive symptoms in each disease. LTP and LTD are 
crucial for memory formation, and impairment in these 
are associated with amnesic and psychiatric symptoms 
(Loprinzi 2020).

Like other CNS effects, the role of 5-HT7R in LTP is 
controversial. Because chronically stimulated neurons 
by 5-HT7R agonists show a reduction in the expres-
sion of NMDA glutamate receptors, 5-HT7R has 
been associated with a reduction in LTP (Kobe et  al. 
2012b), however, 5-HT7R knock-out mice also display 
an impairment in LTP, suggesting that 5-HT7R recep-
tors at a baseline state are necessary for LTP (Roberts 
et al. 2004). Regarding LTD, 5-HT7R agonism by 8-OH-
DPAT (a 5-HT1A/7R agonist) reduced mGluR mediated 
LTD (Costa et  al. 2012). Finally, LP-211 induces LTD 
on the parallel fiber-Purkinje cell synapse via Protein 
kinase C-MAPK pathway while impairing LTP, and 
pharmacological antagonism with SB-269970 decreases 
LTD (Lippiello et al. 2016).

Synaptogenesis and brain plasticity reduction
In many neurodegenerative diseases, reductions in syn-
aptogenesis, brain plasticity, and dendritic sprouting are 
hallmarks of severity and progression (Querfurth and 
LaFerla 2010). So far, no treatment strategies have been 
shown to reverse that.

In vitro, activation of 5-HT7R in cortical and striatal 
forebrain neurons using LP-211 increases dendritic spine 
density and synaptogenesis, an effect that is abrogated 
by the genetical or pharmacological blockade of 5-HT7R 
(Speranza et al. 2013; Speranza et al. 2015; Speranza et al. 
2017). 5-HT7R stimulation induces dendritic sprouting 
and neurite enlargement (Kvachnina et  al. 2005; Rojas 
et al. 2014; Canese et al. 2015), an effect probably medi-
ated by effectors of both, Gas and Ga12 signaling path-
ways (Volpicelli et al. 2014).

Neurotrophin depletion
Neurotrophins like BDNF and platelet-derived growth 
factor (PDGF)-β are necessary for the development and 
correct function of the CNS. Depletion or altered signal-
ing occurs in neurodegenerative diseases (Kashyap et al. 
2018) AD, PD, HD, and FTD are associated with a reduc-
tion in the expression of BDNF and other neurotrophins, 
where the modulation of BDNF could have a potential 
therapeutic role (Palasz et  al. 2020; Schulte-Herbrüggen 
et al. 2008; Alberch et al. 2002; Huey et al. 2020). Inter-
estingly, 5-HT7R modulates both neurotrophins and 
their receptors. 5-HT7R activation by LP-12 leads to an 
increase in PDGF-β, with increased protection against 
glutamate-mediated excitotoxicity (Vasefi et  al. 2013a). 
In addition, 5-HT7R agonism by LP-12 increases the 
expression and affinity of the tropomyosin-related kinase 
B receptor, one of the receptors for BDNF (Samarajeewa 
et al. 2014).
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Immune‑mediated damage
The specific role of 5-HT7R as neuro-immune mediators 
is still debated. 5-HT7R is expressed broadly by different 
immune cells, including monocytes, lymphocytes, and 
dendritic cells, but its anti-inflammatory potential has 
been shown in some but not all studies (Quintero-Ville-
gas and Valdés-Ferrer 2019).

Potential disease‑specific role of 5‑HT7R 
in neuropsychiatric illness
Neuronal hyperexcitability and seizures
Epilepsy-induced neuronal damage shares pathophysi-
ological neurodegenerative features with dementias and 
other CNS diseases, such as increased inflammation and 
excitotoxicity (Nikiforuk 2015). Epilepsy is prevalent in 
sufferers of CNS diseases, including AD, PD, or HD, and, 
when present, indicates a higher burden of neurodegen-
eration (Cano et al. 2021).

5-HT7R manipulation has shown controversial results 
in pre-clinical studies of epilepsy. Non-specific pharma-
cological blockade of 5-HT7R reduces the prevalence of 
audiogenic seizures in a DBA/2J rat model (Bourson et al. 
1997).

Additionally, SB-258719, an antagonist of 5-HT7R 
showed a benefit in reducing spontaneous epileptic activ-
ity in a WAG/Rij rat model of absence seizures (Graf 
et  al. 2004). Finally, in a pilocarpine-induced rat model 
of temporal lobe epilepsy, AS-19 increased epileptic 
activity, whereas SB-269970, an antagonist of 5-HT7R 
reduced seizure activity. Interestingly, the expression 
of 5-HT7R was higher in the epilepsy group, compared 
to the control group (Yang et  al. 2012). However, in a 
pilocarpine-induced model of epilepsy, the density of 
5-HT7R decreased in the hippocampus, especially in the 
dentate gyrus (Núñez-Ochoa et al. 2021). Hence, the role 
of 5-HT7R in epilepsy is still unclear but avidly explored. 
The controversial finding may represent that 5-HT7R 
plays different roles in different models of epilepsy. Evalu-
ation of 5-HT7R tissue expression in specimens obtained 
from patients undergoing surgical excision of epileptic 
foci may help to clarify this controversy.

Mood disorders
The relationship between mood disorders and cognitive 
disorders is a topic of continuous research. The preva-
lence of depression and anxiety is higher among patients 
with dementia, and patients with depression have a 
higher prevalence of dementia (Lyketsos et al. 2002). Of 
therapeutic relevance, even mild levels of depression can 
impact substantially the functionality and quality of life 
of patients with dementia. Thus, treating these symptoms 
may be crucial in the management of dementia (Gutz-
mann and Qazi 2015).

In a rat model of stress using forced swim and tail 
suspension, pharmacological and genetic blockade of 
5-HT7R reduced depressive symptoms and improved 
REM sleep (Hedlund et  al. 2005). 5-HT7R KO mice 
show improved mobility in the Porsolt swim test; how-
ever, the pharmacological blockade by SB-258719 only 
had the same results when rats were tested in the dark 
(Guscott et al. 2005). Similar results were observed with 
SB-269970 in depression and anxiety, with an effect simi-
lar to the one observed with imipramine (Wesołowska 
et al. 2006). In experimental depression, pharmacological 
blockade of 5-HT7R seems to have a rapid effect in reduc-
ing depressive symptoms (Mnie-Filali et  al. 2011). Alto-
gether, while more data is needed before moving to the 
clinical trial setting, these experimental models suggest 
that 5-HT7R may be a druggable target for depression.

The calcium-binding protein S100B interacts with 
5-HT7R and negatively regulates inducible cAMP accu-
mulation; its overexpression in transgenic mice is associ-
ated with depressive-like symptoms, which are reversed 
by the administration of SB269970 (Stroth and Sven-
ningsson 2015).

The non-specific blockade of 5-HT7R with HBK-15 
(5-HT7R, 5-HT1AR, and 5-HT3R antagonist) (Pytka 
et al. 2018), aryl sulfonamide derivatives of dihydro ben-
zofuran oxy)ethyl piperidines (a2 and 5-HT7R antago-
nist) (Canale et  al. 2021), and lurasidone (5-HT2AR and 
5-HT7R antagonist) (Woo et  al. 2013), to name a few, 
have similar effects regarding depression and anxiety.

The contradictory memory effect of 5‑HT7R
Evidence about the effect of 5-HT7R on learning and 
memory is still contradictory. Systemic administration of 
LP-211 and AS-19 revert scopolamine-induced amnesia 
and enhanced auto-shaping training learning respectively 
in rats; whereas pharmacologic blockade with SB-269970 
has the opposite effect (Perez-García and Meneses 2005). 
Accordingly, LP-211 administrated intraperitoneally 
improves long-term memory, with conditioned responses 
up to 80%, compared to 20–30% in the control groups, 
with no effect on short-term memory, and reverts sco-
polamine-induced memory impairment, something 
associated with increased cAMP levels (Meneses et  al. 
2015). Moreover, 5-HT7R agonism appears to revert the 
memory impairment mediated by 5-HT1AR, based on the 
fact that the co-administration of SB-269970 and 8-OH-
DPAT (a 5-HT7R/5-HT1AR agonist) caused greater per-
formance impairment in contextual learning than the 
administration of 8-OH-DPAT alone (Eriksson et  al. 
2008).

On the other hand, SB-269970 improved reference 
memory in a radial arm maze task (Gasbarri et al. 2008). 
In agreement, the administration of SB-656104-A (a 
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5-HT7R-specific antagonist) reverses dizocilpine-induced 
memory impairment induced, with significant differ-
ences in thigmotaxic swimming in the Morris water 
maze test (Horisawa et al. 2011). We have observed that 
intracerebroventricular injection of LP-211 reverts mem-
ory impairment induced by Aβ without a discernible 
effect on healthy rats (Quintero-Villegas et al. 2019). The 
answer to this paradox is inconclusive with the current 
evidence (Meneses 2014; Stiedl et  al. 2015; Zareifopou-
los and Papatheodoropoulos 2016), suggesting a memory 
type-specific role of 5-HT7R.

Lack of clinical trial‑derived data
No clinical trials with 5-HT7R-specific modulation for 
neurodegenerative studies have been performed. How-
ever, the potential effect of non-specific serotonin acti-
vation in neurodegenerative diseases is a highly studied 
topic and the outflow of human data may start shortly. 
Interestingly, lurasidone, a 5-HT7R antagonist, with an 
effect on other serotonin receptors and D2 dopamine 
receptor (Meltzer et  al. 2020), has been FDA approved 
for the treatment of schizophrenia (Okubo et al. 2021).

Conclusion
At this point, no 5-HT7R-specific drugs have been evalu-
ated for neurodegenerative diseases, and few studies 
have experimentally evaluated their potential therapeu-
tic effects. Hence, elucidating the effect of 5-HT7R in 
health and (predominantly neurodegenerative) diseases 
may have vast translational and therapeutic implica-
tions. 5-HT7R agonists may be neuroprotective by acting 
at multiple levels, including the reduction of excitotox-
icity and oxidative stress, synaptic remodeling, regula-
tion of neurotrophic factors, or immunomodulation, to 
name a few. The need for more studies, both experi-
mental and clinical, before reaching conclusions about 
a therapeutic role for this serotonin receptor cannot be 
overemphasized.
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