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Abstract

Background: To develop computer-aided detection (CADe) of ORL abnormalities in the retinal 

pigmented epithelium (RPE), interdigitation zone (IZ), and ellipsoid zone (EZ) via optical 

coherence tomography (OCT).

Methods: In this retrospective study, healthy participants with normal ORL, and patients 

with abnormality of ORL including choroidal neovascularization (CNV) or retinitis pigmentosa 

(RP) were included. First, an automatic segmentation deep learning (DL) algorithm, CADe, 

was developed for the three outer retinal layers using 120 handcraft masks of ORL. This 

automatic segmentation algorithm generated 4000 segmentations, which included 2000 images 

with normal ORL and 2000 (1000 CNV and 1000 RP) images with focal or wide defects in ORL. 

Second, based on the automatically generated segmentation images, a binary classifier (normal 

versus abnormal) was developed. Results were evaluated by area under the receiver operating 

characteristic curve (AUC).

Results: The DL algorithm achieved an AUC of 0.987 (95% Confidence Interval [CI], 

0.980-0.994) for individual image evaluation in the internal test set of 800 images. In addition, 

performance analysis of a publicly available external test set (n=968) had an AUC of 0.952 (95% 

CI, 0.938-0.966), and a second clinical external test set (n=1,146) had an AUC of 0.971 (95% CI, 

0.962-0.980). Moreover, the CADe highlighted well normal parts of ORL and omitted highlights 

in abnormal ORLs of CNV and RP.

Conclusion: The CADe can use OCT images to segment ORL and differentiate between normal 

ORL and abnormal ORL. The CADe classifier also performs visualization and may aid future 

physician diagnosis and clinical applications.

Keywords
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retinal pigmented epithelium; interdigitation zone; ellipsoid zone; choroidal neovascularization; 
retinitis pigmentosa; drusen; diabetic macular edema

Introduction

Deep Learning (DL) is a novel artificial intelligence (AI) technology in which convoluted 

neural networks (CNNs) are programmed to optimize a specific performance criterion using 

large datasets with a known outcome.1-3 Robust performance using these algorithms has 

been reported for outcomes as varied as identifying candidate patients for corneal refractive 

surgery,4 5 to classification of retinal diseases like diabetic retinopathy (DR) and age-related 

macular degeneration (AMD),6-9 as well as detection of glaucoma10 and retinopathy of 

prematurity.11 12

Optical coherence tomography is a well-established diagnostic imaging technique for 

retinal disease. Correlations between pathophysiological markers seen in OCT images and 

visual function have been investigated in several retinal diseases.13-16 In particular, the 

photoreceptor layer integrity in OCT was found to robustly correlate with visual acuity 

compared to retinal thickness alone. As such, photoreceptor layer continuity as a predictive 
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indicator of visual acuity in various macular diseases have been studied.17 The currently 

agreed upon signs of photoreceptor damage or disruption in OCT are loss of integrity of 

the ellipsoid zone (EZ) and interdigitation zone (IZ) bands.18 Attenuation, discontinuity 

or disruption of these bands have been reported as likely hallmarks of photoreceptor 

dysfunction or damage in a variety of retinal diseases.17 19 20 In response to these new 

markers, OCT segmentation is quickly becoming a key evaluation tool.21 While existing 

research mainly focused on the pathogenesis and changes to subretinal fluid (SRF) in retinal 

diseases, there is a void of studies that examine ORL.

Considering the declining cost of OCT instruments and increasing accessibility, we believe 

that OCT will supplement general eye screening with retinal photography in the near future. 

Once OCTs become prevalent in the primary care setting, because the automated system 

helps healthcare professionals overtly visualize the ORL integrity, the operation is suitable 

for non-retinal specialists and novice ORL graders, with the greatest support advantage in 

cases of subtle ORL abnormality, especially in mass screening setting.

Therefore, to address this, we developed a DL algorithm that automatically analyzes ORL 

from OCT images. The algorithm is a multi-step build comprised of an automatic computer-

aided detection (CADe) segmentation visualizer, which differentiates the retinal pigment 

epithelial (RPE) layer, EZ, and IZ, and a binary classifier, which further sorts the dataset into 

normal vs abnormal ORLs. We hypothesize that this automated OCT CADe will ultimately 

make primary screening that currently depend only on retinal photography more efficient in 

the near future.

Methods

Study Design

This was a retrospective cross-sectional study. The study was approved by the local 

ethical committee of Yonsei University (4-2019-0442). The ethics committee waived written 

informed consent in view of image and clinical data de-identification. This study adhered to 

the tenets of the Declaration of Helsinki.

Participants and Image database

For algorithm development, we obtained OCT images and clinical data of all participants 

at Severance Hospital, Yonsei University between 2005 and 2017.22 We extracted 

patients’ clinical information from electronic medical records and the physician’s order 

communication system that was stored in the clinical data repository and data warehousing 

in Severance Hospital.23 Optical coherence tomography images included 5 images centered 

on the fovea per participant. Original Images were extracted from the database in 

PNG (Portable Network Graphics) format then underwent noise removal and contrast 

enhancement.22 Initial extraction yielded images of two sizes; 768 X 496 (9 mm scan) 

and 512 X 496 (6 mm scan). For balanced processing, we transformed 512 X 496 images to 

768 X 496 size by assigning a blank area outside of the scanned area.
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Normal Outer Retinal Layer

Based on the international panel of OCT experts consensus in Figure 1, a normal ORL 

includes three different layers - 1) RPE layer including the RPE and Bruch’s membrane, 2) 

the IZ, and 3) the EZ band.18 24 25 To be qualified as a normal ORL, all three layers must 

be absent of any abnormality, and pathologic elevation or depression. Normal ORL OCT 

images were manually selected by a retinal specialist (T.H.R.) from the pooled OCT images, 

which were extracted from those who underwent OCT at first visit without further OCT 

examinations during the follow-up period in ophthalmology clinics up to 2017.

Abnormal Outer Retinal Layer

To construct the representative abnormal ORL dataset, we used two representative retinal 

diseases; CNV and pigmented retinitis (RP). The information on the preliminary database 

of two retinal diseases of CNV26 and RP27 was provided in Supplementary Document 1. 

Abnormal ORL was defined as any absence, attenuation, discontinuity, disruption, elevation 

or depression of the RPE, EZ, or IZ layer within OCT image.17 19 20 We selected OCT 

images with abnormal ORL manually (T.H.R.) from CNV database and RP database 

because some images did not include ORL abnormality. We manually excluded normal 

ORLs with underlying retinal disease and poor quality of images.

Development of segmentation model, Model 1

The overall DL algorithm development process is provided in Figure 1. We developed 

Model 1 for segmentation of normal ORL. 120 normal OCT images were used as 

representatives to manually set the ground truth of the region of interest (ROI). We used 

hand-crafted 100 ROI masks for the training set and 20 ROI masks for internal test set. 

To reduce overfitting, data augmentation techniques were applied. Each and every training 

sample image underwent the following transformations: random flip left-right, random 

rotation from −20 to 20 degree angle, random brightness enhancement with max delta 0.5, 

and Gaussian Blur with kernel size 3. We constructed a CNN based on U-Net,28 and every 

CNN block in U-Net was followed by batch normalizations for regularization of the model. 

Adam Optimizer with fixed weight decay and a learning rate of 1e-5 during 140 epochs was 

used to train Model 1.

Development of classification model, Model 2

Model 2 was developed to further classify OCT images into normal and abnormal ORL 

(Figure 1). 4000 segmentation masks (2000 normal vs 1000 CNV and 1000 RP) were 

generated from DL Model 1 (3200 masks for training set and 800 masks for test set). 

Given the binary classification, data augmentation techniques were not applied, and VGG16 

was used. Adam Optimizer with fixed weight decay and a learning rate of 1e-4 during 

100 epochs was used to train Model 2. The abnormality score, a representation of the 

probability prediction score that ranged from zero to one, was outputted by the algorithm. 

The abnormality score of zero indicated a normal ORL, and the abnormality score of 

one indicated an abnormal ORL. A binary screening cutoff value was necessary, and thus 

determined based on the highest Youden Index (the highest sensitivity + specificity). Results 

were color-coded with indicators; a green circle is normal and a red circle is abnormal.
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External test sets

Two different external test sets were prepared to assess Model 2 performance. The first 

set is a publicly available OCT database29 consisting of four categories; normal, drusen, 

CNV, and DME. Each category contained 242 B-scans for a total of 968 images. Since 

this is a publicly available dataset, no further manual selection was done. The second set 

is comprised of clinical data from the Singapore Epidemiology of Eye Diseases (SEED) 

study,30 and Asahikawa University, Japan. We selected OCT images with abnormal ORL 

manually from the mixed retinal disease [drusen, CNV, Geographic atrophy, macular hole, 

and laser scar], CNV, and RP, because some images did not have ORL abnormality. These 

clinical data included 232 images of mixed retinal disease from SEED and 370 images of 

CNV and 302 images of RP from Asahikawa University.

Statistical Analysis

TensorFlow (http://tensorflow.org), an open-source software library for machine intelligence, 

was used in the training and evaluation of the models. Tools including NumPy, SciPy, 

matplotlib, scikit-learn was used to process the data and analyze the Receiver Operating 

Characteristic (ROC) curve.31 We estimated intersection of union (IoU), accuracy, and 

boundary F1 (BF) score for segmentation, and receiver operating characteristic (ROC) 

curves, and area under the ROC curves for classification. The output performance per 

each individual image was evaluated with a 95% Confidential Interval (CI). Sensitivity and 

specificity were determined from the Youden Index.

Results

The performance of Model 1 is shown in Supplementary Table 1. In RPE, IZ, and EZ, 

IoUs were 0.83 (0.80-0.86), 0.78 (0.74-0.82), and 0.85 (0.83-0.86), respectively. For binary 

classification of normal versus abnormal ORL (Model 2), we achieved good performance 

with AUC of 0.978 (95% CI, 0.980-0.994) at the image level in internal testing. Sensitivity 

and specificity with optimal cutoffs based on the highest Youden Index was 97.8% and 

95.1%. Supplementary Figure 1 provides the ROC curve in internal test set.

Based on this binary classification, the distribution of the abnormality score is provided 

in Supplementary Figure 2. Mean abnormality score was 0.080 (standard deviation [SD], 

0.208) in normal ORL group and 0.963 (SD, 0.142) in abnormal ORL group (0.937 [SD, 

0.192] for CNV and 0.982 [SD, 0.085] for retinitis pigmentosa), and the optimal cutoff value 

was determined as 0.658 based on Youden method. Overall, the distribution of abnormality 

scores for RP is closer to 1.00 (100% abnormality) than that for CNV. This distribution 

is consistent with the higher performance in retinitis pigmentosa than in CNV shown in 

Supplementary Figure 1.

In the publicly available external test set of 986 OCT images (242 normal, 242, drusen, 242 

CVN, and 242 DME images), binary classifier for normal vs abnormal ORL demonstrated 

good performance with AUC of 0.952 (95% CI, 0.938-0.966) at the image level (Figure 2A, 

1st curve). In disease-specific performance, AUCs for drusen, CNV, and DME were 0.959 

(95% CI, 0.943-0.976), 0.991 (95% CI, 0.984-0.997), and 0.906 (95% CI, 0.878-0.934), 

Rim et al. Page 5

Br J Ophthalmol. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://tensorflow.org


respectively (Figure 2A, 2nd to 4th curves). In the clinical external test set of 1,446 images 

(242 normal ORL, 232 abnormal ORL from mixed disease, and 370, and 302 abnormal 

ORL from CNV, and RP, respectively), AUC was 0.971 (95% CI, 0.962-0.980) for normal 

vs abnormal ORL (Figure 2B, 1st curve). The performance from the SEED data showed 

AUC of 0.918 (95% CI, 0.891-0.945) for any abnormal ORL from mixed retinal disease. In 

the clinical data from Asahikawa University, the AUCs were 0.987 (95% CI, 0.980-0.995) 

in abnormal ORL images with CNV, and 0.991 (95% CI, 0.986-0.996) in abnormal ORL 

images with RP.

Representative images of CADe with an abnormality score is provided in Figure 3. Figure 

3A shows a normal ORL with an abnormality score of 0%, a green circle indicator, and well 

demarcated, continuous predicted segmentation highlights for all three layers of a normal 

ORL. Figure 3B shows a severe RP case with an abnormality score of 100%, a red circle 

indicator, and CADe segmentation with sparse, staccato highlights that represent the intact 

areas of EZ and IZ. Meanwhile, the mild RP case in Figure 3C with an abnormality score 

of 0.69 shows a relatively small area of absent EZ and IZ layers along the right corner. 

Supplementary Figure 3 provides more cases akin to Figure 3C with relatively minimal 

abnormal ORL in RP OCT images with an abnormality score of <100%. Figure 4 shows the 

CNV images in the internal test set and Figure 5 shows the CADe on external test set.

Discussion

Our study demonstrates a system for assessing the integrity of the ORL and detecting 

ORL abnormality in a number of clinical conditions. The output results of CADe utilize 

highlighted visualizations for each ORL, which may support rapid screening, especially in 

settings not supported by clinical experts. Furthermore, our binary classifier demonstrated 

good performance in sorting abnormal ORL and normal ORL with an AUC of 0.952 in the 

publicly available external data set, and 0.971 in the clinical data set from two different 

institutions.

As prevalent and routine as OCT images have become, there is a conjunct necessity to 

efficiently assess retinal segmentation in order to decipher and extract the most clinical 

utility.21 Prior studies designed automated algorithms that detect or quantify intraretinal 

and subretinal fluid in OCT images of CNV, diabetic macular edema, and retinal vein 

occlusion with high accuracy.32-34 The clinician may potentially work with state of the art 

AI with real-time fluid detection and quantification in a not so distant time. A combined 

system based on 3-dimensional tissue-segmentation map and classification was previously 

developed for providing one of four referral suggestions (e.g. urgent) and diagnosis.35 

However, complex algorithm is more likely to cause errors with limited generalization in a 

real-world setting.36 Therefore, simple approach is not necessarily a disadvantage because 

it is easy for the user to understand and the errors can be reduced. An additional feature 

that prospective AI-aided clinician support systems will require for OCT image analysis is 

assessment of ORL integrity, a crucial biomarker for vision.17 19 20 ORL integrity may serve 

as an intuitive biomarker of visual function that is applicable to most retinal diseases and a 

more discernable anatomical structure than the intraretinal cyst or hyperreflective material.
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A two tiered system build of DL-based segmentation and classification was necessary to 

streamline output data into a clinically approachable form for healthcare professionals. 

The user friendly interface and result dispensation of clinical support systems are often 

overlooked. One such DL-system visualization technique is the heatmap.22 Heatmaps 

show how the machine learns the classification and how the algorithm determines 

important features for the classification. However, while some heatmaps feature clear 

pathophysiological structures, others highlight structures of no known clinical correlation 

(e.g. black parts in OCT behind the choroid) that render physician interpretation moot.22 

Therefore, a pathophysiological approach grounded in clinically relevant anatomical 

structures of interest, such as the ORL, is necessary. Our system attempts to deliver on these 

points by clearly visualized, automated ORL segmentation and screening of abnormalities.

It is important to differentiate that the binary classifier (Model 2) is not a classifier for 

retinal diseases but a classifier for ORL abnormalities as not all retinal diseases present 

with ORL abnormalities. The internal test set was manually selected only when there was 

an ORL abnormality, and the performance was good with AUC of 0.987. The external test 

set included retinal diseases but some images, specifically the DME images, do not have 

ORL abnormalities, as shown in Figure 5D. Correspondingly, the DME cases had the lowest 

performance (Figure 2A).

Because the CADe system helps healthcare professionals overtly visualize the ORL 

integrity, the operation is suitable for non-retinal specialists and novice ORL graders, with 

the greatest support advantage in cases of subtle ORL abnormality such as mild RP cases 

described in Supplementary Figure 3, which contain slight aberrations that are difficult to 

pick up to the untrained eye. Moreover, considering the declining cost of OCT instruments 

and increasing accessibility, we believe that OCT will supplement general eye screening 

with retinal photography in the near future. Once OCTs become prevalent in the primary 

care setting, CADe will embolden the general practitioner.

The abnormality score, which is the binary classification probability prediction score in 

Model 2, requires further clarification. This score is an indicator of ORL normality. As 

such, the score no linear relation to abnormal length of ORL. For example, abnormality 

score of 0.8 does not translate to damage or omission of 80% of the ORL on OCT scan. 

We stress that the abnormality score should be interpreted as the probability of having an 

abnormal ORL compared to a normal ORL. The abnormality score is a broadly accepted 

unit in medical artificial intelligence applications including detection of lung nodules in 

chest X-rays,37 breast cancer in mammography,38 and DL-based triage score generation in 

the emergency department.39 Additionally, further verification must be done to ascertain 

how the abnormality score translates in the clinical setting. For example, this score may be 

associated with treatment response after intravitreal injection in AMD.

Our study has several limitations. First, our segmentation algorithm was developed upon 

ground truth defined by only normal ORLs and not from abnormal ORLs. As such, the 

accuracy is limited in abnormal ORLs. Accurate ORL segmentation for all ORLs requires 

further development of model 1 with the correct ground truth for abnormal ORL. However, 

our CADe was shown to be applicable to the abnormal ORL even though model 1 was 

Rim et al. Page 7

Br J Ophthalmol. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



developed only on normal ORLs. Moreover, the performance of the binary classifier, 

which was developed based on these segmented masks demonstrated good performance 

in screening abnormal ORLs. Second, our DL algorithm was trained on a very specific set 

of images with extremes in phenotypes. The performance of this model may be degraded 

in the real-world setting when other ocular pathology confounders are present. Third, 

this model may not apply to images acquired from different OCT platforms. However, 

performing an extensive external test is beyond our scope, and the primary purpose of this 

study was to develop a CADe that visualized and labeled intact ORL as a proof of concept 

clinical decision support system. Future studies would include images from different OCT 

manufacturers for further generalizability.

In conclusion, we developed a DL algorithm capable of automated segmentation for normal 

ORLs. The CADe successfully highlighted normal ORLs when we applied it to abnormal 

ORLs. Furthermore, we developed a DL-based ORL classifier with a computed abnormality 

score that demonstrated good performance in both public and clinical external test sets. 

As AI and DL permeates healthcare, we envisage a CADe system that aids inexperienced 

healthcare professionals as well as retinal specialists in OCT image interpretation and 

patient care delivery.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Synopsis

We aimed to develop computer-aided detection (CADe) of outer retinal layer (ORL) 

abnormalities via optical coherence tomography (OCT). The results of CADe utilize 

highlighted visualizations for ORL and our binary classifier demonstrated excellent 

performance.
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Figure 1. Outer retina layer (ORL) and handcraft mask and Study design
EZ = ellipsoid zone; IZ = interdigitation zone; RPE=retinal pigment epithelium and Bruch’s 

membrane.
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Figure 2. ROC curves for external test sets.
AbNL=abnormal; CNV=choroidal neovascularization; DME=diabetic retinopathy; 

NL=normal; RP=retinitis pigmentosa.

Mixed = abnormal outer retinal layer from mixed retinal disease.
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Figure 3. Representative examples of computer aided detection system.
(A) Computer aided detection (CADe) system highlights of the normal outer retina 

including ellipsoid zone (EZ, pink), interdigitation zone (IZ, sky blue), and retinal 

pigment epithelium and Bruch’s membrane (RPE, yellow) are clearly demarcated with zero 

abnormality score and green circle.(B) A severe case of widespread disruption of EZ and IZ 

in an OCT image of retinitis pigmentosa (RP) with 1.00 (100%) abnormality score. CADe 

well-highlighted the remaining EZ and IZ. This will aid the physician in recognizing ORL 

disruption. (C) In a mild case of RP, the EZ and IZ disruption is limited to the right corner, 

which is discernable on CADe rendered ORL with an intact RPE layer with prematurely 

tapered pink and blue highlights. The abnormality score of 0.69 is marginally higher than 

our cutoff value of 0.66 (see results section)
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Figure 4. Representative examples of computer aided detection system for choroidal 
neovascularization.
Computer aided detection (CADe) system clearly highlighted the normal outer retina 

including ellipsoid zone (EZ, pink), interdigitation zone (IZ, sky blue), and retinal pigment 

epithelium and Bruch’s membrane (RPE, yellow) in the intact ORL regions of the OCT 

image from a patient with age-related macular degeneration (AMD). There is small amount 

of subretinal fluid (A and B). Partial disruption of the pink EZ is noted in the mild case (A), 

and both pink and sky-blue EZ and IZ are disrupted in more severe cases (B). The mild case 

of AMD (A) has a lower abnormality score of 0.70 compared to the 0.88 score of the severe 

case of AMD (B). There is a thick epiretinal membrane in (B) that CADe incorrectly did 

not recognize as an ORL. In contrast, the disruption of IZ on the left half and normal IZ on 

the right half was correctly denoted by CADe and a 1.00 abnormality score was reported in 

severe AMD case (C).

Rim et al. Page 15

Br J Ophthalmol. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Representative examples of computer aided detection system for publicly available 
external test set.
Computer aided detection (CADe) system correctly discerned with well-defined highlights 

in the normal outer retina (A) of an intact ORL in external test set. Our segmentation 

algorithm was developed by training only on normal ORLs, but it was capable of 

segmenting drusen with an intact but curved ORL (B). There is a small amount of subretinal 

fluid and shadowing due to intraretinal cyst in the case of the diabetic retinopathy (C) 

and the corresponding area has weakened highlight signals. Additionally, the abnormality 

score was zero (0.00) in a DME with a very small amount of intraretinal cyst without ORL 

abnormality (D). Because of such cases, the performance of the binary classifier for DME is 

rather low (results, Figure 2).
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