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Introduction
Gastrointestinal  (GI) cancers collectively 
represent the most common cancer 
worldwide and the second leading cause of 
global cancer deaths.[1] In the USA alone, 
160,820 people died from GI cancers in 
2018, and for patients under 50  years 
of age, the incidence of GI cancers has 
increased by 22% between 1995 and 
2013.[1,2] Notably, colorectal cancer  (CRC) 
is the second leading cause of cancer 
deaths in the USA at present, while the 
incidence and mortality of hepatocellular 
carcinoma  (HCC) and pancreatic 
cancer  (PC) have also risen. By 2030, PC, 
CRC, and HCC, respectively, will become 
the second, third, and fourth leading causes 
of cancer deaths in the USA.[3] Thus, GI 
cancers are a major public health burden, 
and new therapeutic strategies are urgently 
needed to improve survival outcomes.

Beyond conventional therapies, immune 
checkpoint blockade has now emerged 
as a new treatment paradigm across 
multiple solid tumors that could 
potentially provide long‑lasting survival 
benefits.[4,5] However, in GI cancers, the 
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major benefit of immune checkpoint 
inhibitors  (ICIs) is mainly limited to 
those with microsatellite instable  (MSI) 
high tumors, whereas patients harboring 
microsatellite stable  (MSS) tumors remain 
virtually unresponsive. Even though subsets 
of patients with HCC and esophageal and 
gastric cancers with a high programmed 
death ligand‑l  (PD‑L1) combined positive 
score  (CPS) derive clinical benefit from 
ICIs, the benefits remain relatively modest 
compared to those seen in other cancers 
that are more responsive to ICIs such as 
melanoma, lung cancer, and renal cell 
carcinoma.

To make immunotherapy more efficacious 
in GI cancers, sound biological 
understanding of the primary and secondary 
resistance mechanisms to immunotherapy 
in this disease group will be necessary. 
Critical too will be the development of 
predictive companion diagnostic biomarkers 
to select patients for immunotherapy. In this 
article, we review the current status of ICIs 
in GI cancers and discuss the key biological 
mechanisms impeding immunotherapy 
efficacy in GI cancers together with the 
emerging novel strategies being employed 
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in ongoing clinical studies in combination with ICIs to 
overcome resistance.

Current Status of Immune Checkpoint Blockade 
in Gastrointestinal Cancers
The most promising results with ICIs in GI cancers are 
observed in patients with MSI high tumors. A  single‑arm, 
Phase II trial evaluated pembrolizumab, a programmed 
death 1  (PD1) inhibitor, as a second‑ or third‑line agent in 
41 advanced cancer patients  (11 with MSI high CRC; 21 
with MSS CRC; and 9 with MSI high non‑CRC).[6] The 
objective response rate  (ORR) was 40%  (95% confidence 
interval  [CI], 12–74) in the MSI high CRC group 
and 0%  (95% CI, 0–20) in the MSS CRC group. The 
progression‑free survival  (PFS) was significantly higher 
in MSI high group at 20  weeks  (78%  [95% CI, 40–97] 
vs. 11%  [95% CI, 1–35]). The ORR was 71%  (95% CI, 
29–96) in MSI high non‑CRC patients.[6] These early results 
were confirmed in a followed‑on study that investigated 
pembrolizumab in 86  patients with advanced MSI high 
cancers who failed first‑line therapy, including 66  patients 
with MSI high GI cancers (40 with CRC; 8 with PC; 5 with 
small intestinal cancer; 5 with gastroesophageal cancer; 
4 with cholangiocarcinoma; and 4 with ampulla of Vater 
carcinoma).[7] The ORR was 52%  (95% CI, 36%–68%) 
in MSI high CRC patients and 54%  (95% CI, 39%–69%) 
in MSI high non‑CRC patients.[7] Based on these results, 
pembrolizumab was granted approval by the Food and 
Drug Administration  (FDA) to be used as a second‑line 
agent in advanced MSI high cancers including GI cancers. 
However, it is noteworthy that patients with MSI high 
tumors represent only a small subset of patients with GI 
cancers, especially in PC, where a recent study found that 
only 0.8% of patients  (7/833  patients screened) had MSI 
high tumors, highlighting the lack of immunotherapy option 
for almost all patients with PC.[8] In this study, four of the 
seven MSI high PC patients  (57%) achieved treatment 
benefit (1 complete response, 2 partial response [PR], and 1 
stable disease [SD]) from pembrolizumab, underscoring the 
clinical efficacy of PD1 blockade in MSI high PC.[8]

Nivolumab, a PD1 inhibitor, was also studied either alone 
or in combination with low‑dose ipilimumab, a CTLA‑4 
inhibitor, in patients with advanced MSI high CRC in a 
second‑  or third‑line setting. In the Phase II, multicohort, 
checkmate‑142 trial, 74  patients received nivolumab 
monotherapy, whereas 1194  patients had nivolumab plus 
ipilimumab.[9] In the monotherapy cohort, at a median 
follow‑up time of 12 months, 31% (95% CI, 20.8–42.9) of 
the patients achieved an objective response.[9] While median 
duration of response was not reached at the time of report, 
eight  (11%) patients had responses lasting 12  months or 
longer  (Kaplan–Meier 12‑month estimate: 86%, 95% CI, 
62–95).[9] In contrast, with the combination, at a median 
follow‑up time of 25.4 months, 6%  (n = 7) of the patients 
achieved complete response and 62%  (n  =  52) achieved 

PR.[10] The median duration of response was again not 
reached with 68% of responses ongoing at the time of data 
cutoff.[10] Two‑year PFS and overall survival  (OS) rates 
were 60% and 74%, respectively.[10] However, 31% of the 
patients experienced Grade  3–4 treatment‑related adverse 
advents  (TRAEs) and in 13%, treatment was discontinued 
due to TRAEs.[10] These results underscore the efficacy 
of single‑agent PD1 blockade in MSI high CRC, and 
demonstrate the significant additional benefit achieved with 
the combined PD1 and CTLA‑4 blockade at the expense 
of toxicities. Based on the results of the Checkmate‑142 
trial, nivolumab and nivolumab plus low‑dose ipilimumab 
were approved by the FDA for use in second‑line setting 
for patients with MSI high advanced CRC who progressed 
following treatment with fluoropyrimidine, oxaliplatin, and 
irinotecan.

Currently, there is no approved ICI for MSS CRC, PC, 
small‑bowel carcinomas, and cholangiocarcinoma. However, 
the results from ICI studies are emerging in MSS CRC and 
PC. Based on the promising results from a Phase Ib trial,[11] 
the Phase III IMblaze370 trial investigated the efficacy 
of a combination of the PD‑L1 inhibitor atezolizumab 
and a MEK ½ inhibitor, cobimetinib, in comparison 
with atezolizumab alone or regorafenib monotherapy 
in patients with chemorefractory advanced MSI stable 
CRC.[12] No differences in ORR, PFS, or OS between the 
treatment groups were observed.[12] The randomized Phase 
II CCTG CO.26 trial, on the other hand, demonstrated a 
superior survival with the combination of durvalumab, a 
PD‑L1 inhibitor, and tremelimumab, a CTLA‑4 inhibitor, 
in patients with advanced chemorefractory CRC when 
compared to best supportive care  (OS 6.6  vs. 4.1  months, 
hazard ratio  [HR]: 0.72  [90% CI, 0.54–0.97], p = 0.07).[13] 
These results were the first to show that combined immune 
checkpoint blockade prolonged survival in advanced 
CRC not selected for MSI status. In PC, a Phase 1b trial 
investigated the efficacy of pegylated interleukin 10 
combined with FOLFOX chemotherapy in the second‑line 
setting and reported a median OS of 10.2  months that is 
superior to historical controls.[14] An ORR of 10% and a 
6‑month disease control rate of 13% were demonstrated 
in another Phase Ib trial that evaluated the combination 
of the anti‑colony‑stimulating factor  (CSF) CSF1 receptor 
antibody cabiralizumab with nivolumab in 31 advanced PC 
patients who had prior chemotherapy.[15] Three confirmed 
PRs were in patients with MSS tumors. The combination of 
gemcitabine and nab‑paclitaxel chemotherapy with a novel 
CD40 agonistic monoclonal antibody APX005M with or 
without nivolumab was also investigated in treatment‑naïve 
metastatic PC patients in a recent Phase Ib study.[16] Of 
24 evaluable patients, 83%  (n  =  20) experienced tumor 
reduction, with PRs observed in 56% (n = 14). These early 
results do indicate that novel immunotherapy combination 
strategies could produce promising antitumor activity in 
patients with PC.
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Of 23 advanced esophageal cancer  (EC) patients treated 
in the KEYNOTE‑028 trial, which investigated the 
efficacy of pembrolizumab in advanced solid tumor 
patients with a PD‑L1 CPS score of  ≥  1  (CPS is 
determined by the number of PD‑L1 staining cells in a 
tumor sample divided by the total number of viable cells, 
with the result multiplied by 100), who failed to respond 
to first‑line therapy, ORR of 30%  (95% CI, 13–53) 
was observed with a median duration of response of 
15  months  (range, 6–26).[17] The KEYNOTE‑059 trial, on 
the other hand, assessed ORR and clinical response  (CR) 
to pembrolizumab in 259  patients with gastric and 
esophago‑gastric junction cancers in the third‑line setting.[18] 
The ORR was 15.5% (95% CI, 10.1–22.4) in patients with 
PD‑L1‑positive tumors, while they were 6.4%  (95% CI, 
2.6–12.8) in patients with PD‑L1‑negative tumors.[18] 
The median duration of response was also higher in the 
PD‑L1‑positive group (16.3 months [range, 1.6+–17.3+] vs. 
6.9  months  [range, 2.4–7.0+]).[18] Based on the results of 
the KEYNOTE‑059 trial, pembrolizumab was approved to 
be used in the third‑line setting in patients with advanced 
gastric and gastroesophageal junction cancers with a tumor 
PD‑L1 CPS score of ≥ 1.

The Phase III KEYNOTE‑062 trial recently evaluated 
pembrolizumab plus chemotherapy or pembrolizumab 
alone versus chemotherapy in the first‑line setting in 
HER2‑negative gastric and gastroesophageal junction 
cancers with a PD‑L1 CPS score of ≥ 1.[19] No improvement 
in OS or PFS was observed in pembrolizumab plus 
chemotherapy group. However, pembrolizumab 
monotherapy was reported to be noninferior to 
chemotherapy, based on the primary endpoint OS results, 
and was better tolerated even though PFS was shorter in 
the pembrolizumab group  (2.0  vs. 6.4  months  [HR: 1.66, 
95% CI, 0.37–2.01]). Furthermore, crossover of OS curves 
was observed at 12  months, indicating that a subgroup 
of patients  (at least 30%) treated with pembrolizumab 
monotherapy had a shorter OS compared to chemotherapy 
group.[19] Despite this, pembrolizumab alone offers 
noninferior OS compared to chemotherapy with an 
improved safety profile and as such should be considered 
for first‑line treatment in this patient population. Subgroup 
analysis demonstrated a clinically meaningful OS benefit in 
patients with a tumor PD‑L1 CPS score of ≥ 10 treated with 
pembrolizumab  (median OS 17.4  vs. 10.8  months, HR: 
0.69  [95% CI, 0.49–0.97]). Similarly, in the single‑arm, 
Phase II KEYNOTE‑180 trial, ORR of 20%  (95% CI, 
8.0–37.0) was observed with pembrolizumab in 35 patients 
with squamous cell EC with a PD‑L1 CPS score of ≥ 10.[20] 
Furthermore, the KEYNOTE‑181 randomized Phase II 
trial evaluated pembrolizumab as a second‑line therapy 
in patients with advanced EC and showed an improved 
survival with pembrolizumab in those with squamous 
cell histology and a PD‑L1 CPS score of  ≥ 10 compared 
to standard chemotherapy  (OS 10.3  vs. 6.7  months, 

HR: 0.64  [95% CI, 0.46–0.90], p  =  0.0074).[21] Of note, 
pembrolizumab did not improve OS in all randomized 
patients when compared to chemotherapy.[21] Based on the 
results of KEYNOTE‑180 and KEYNOTE‑181 studies, 
pembrolizumab was recently approved for use in patients 
with advanced squamous cell ECs with a PD‑L1 CPS score 
of ≥ 10 in the second‑line setting.

PD1 inhibitors, nivolumab and pembrolizumab, are also 
approved for use as a second‑line standard treatment 
for patients with HCC. The Phase I/II Checkmate‑040 
study evaluated the efficacy of nivolumab in both 
sorafenib‑naïve/intolerant patients and patients who had 
disease progression on sorafenib therapy with advanced 
HCC and Child‑Pugh Class  A status.[22] An ORR of 
20%  (95% CI, 15–26) was observed in 214  patients 
treated in the dose‑expansion cohort.[22] Notably, 
these responses occurred regardless of the etiology 
or tumor PD‑L1 expression.[22] The median PFS was 
5.4 months (95% CI, 3.9–8.5), with 6 months and 9 months 
OS of 89%  (95% CI, 77–95) and 82%  (95% CI, 68–90), 
respectively.[22] The Checkmate‑040 trial also included a 
separate cohort of patients with Child‑Pugh Class B  (B7–
B8) status  (n  =  49); 25 sorafenib naïve and 24 sorafenib 
experienced.[23] The ORR was 10.2% in this population 
with a median duration of response of 9.9 months and the 
median OS was 7.6  months.[23] Four patients  (8.2%) had 
hepatic select TRAEs and only two  (4.1%) discontinued 
treatment due to TRAEs underscoring the safety of 
nivolumab in this population.[23] On the other hand, 
the results from the KEYNOTE‑224 trial showed an 
ORR of 17%  (95% CI, 11–26) with pembrolizumab in 
sorafenib‑experienced patients  (80% of participants had 
disease progression on sorafenib and 20% discontinued 
sorafenib due to intolerance) with advanced HCC  (94% 
of patients had Child‑Pugh Class  A status).[24] The 
median time to response was 2.1  months  (interquartile 
range: 2.1–4.1). The median duration of response was 
not reached  (range, 3.1–14.6  +  months), but 77% of the 
responders showed a response for at least 9  months.[24] 
A higher PD‑L1 CPS score was associated with a higher 
ORR and longer PFS.[24] However, despite these promising 
results, the Phase III KEYNOTE‑240 trial that compared 
pembrolizumab with best supportive care as second‑line 
therapy in 433  patients with advanced HCC failed to 
show statistically significant improvement in OS and 
PFS compared to best supportive care.[25] Similarly, the 
CheckMate‑459 Phase III study that evaluated nivolumab 
as first‑line treatment in patients with advanced HCC in 
comparison with the standard sorafenib therapy failed to 
meet the prespecified primary OS endpoint.[26] This clearly 
highlights the need for better patient selection strategies 
using high precision biomarkers. The accelerated 
approvals of pembrolizumab and nivolumab by the FDA 
in the second‑line setting were conditional on Phase III 
confirmation, and it is yet to be determined whether the 
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current FDA label of these agents will remain in light of 
results from these studies.

Encouragingly, recent data are emerging to support 
combining PD1/PD‑L1 blockade with anti‑angiogenesis 
agents for better efficacy in patients with advanced HCC. 
In a recent Phase 1b trial of multikinase inhibitor lenvatinib 
plus pembrolizumab in patients with unresectable HCC, 
four patients achieved complete response  (6.0%), 26 
PR  (38.8%), and 25 SD  (37.3%).[27] However, serious 
adverse events were observed in 42  (62.7%) patients. 
These initial results are indeed promising for efficacy but 
concerning for toxicities. Most recently, the results from 
the Phase 3 IMBrave150 trial that compared atezolizumab 
plus bevacizumab to sorafenib in the first‑line setting 
in patients with advanced HCC were reported.[28] 
Significantly improved median OS  (not estimable vs. 
13.2 months [HR: 0.58, 95% CI, 0.42–0.79, p = 0.0006]), 
median PFS  (6.8  months vs. 4.5  months, 95%  [HR: 
0.59, 95% CI, 0.47–0.76, p  <  0.0001), and ORR  (27% 
vs. 12%, p  <  0.0001) were observed in the atezolizumab 
plus bevacizumab arm.[28] Based on these results, this 
combination may now represent the new standard of care 
in the first‑line setting for advanced HCC.The current 
FDA‑approved ICIs in GI cancers and their indications 
are summarized in Table 1.

Emerging Strategies to Improve Immune 
Checkpoint Inhibitors’ Efficacy in 
Gastrointestinal Cancers
Mounting an immune response to tumors by host is a 
multistep process and theoretically, any deficiency in this 
process could lead to tumor immune escape.[29] Based on 
advances in our understanding of biological mechanisms 
that underlie the immune evasion in GI cancers, new 
treatment strategies are being developed and tested in 
ongoing clinical trials. Herein, we discuss the key primary 
resistance mechanisms to immune checkpoint blockade 
in GI cancers, together with the emerging strategies that 
are being employed to improve the clinical outcomes 
achieved with ICIs in this disease group [Figure 1]. Table 2 
summarizes the current Phase 2 and Phase 3 clinical trials 
that are testing the efficacy of combining ICIs with key 
therapeutic strategies to overcome the immunotherapy 
resistance in GI cancers.

Enhancing tumor immunogenicity

One of the major roadblocks to the efficacy of ICIs in MSS 
GI cancers is that they are poorly immunogenic with a low 
tumor mutation burden (TMB) (< 50/genome).[30] It is known 
that a high TMB is associated with increased neoantigens 
that can be presented by major histocompatibility 
complexes  (MHC) on tumor cells,[31] resulting in immune 

Table 1: Food and Drug Administration‑approved immune checkpoint inhibitors in gastrointestinal cancers and their 
current indications
Agent (dose) Cancer 

type
PD‑L1 
status

FDA‑approved indication

Pembrolizumab (200 mg every 3 weeks) Any Any Patients with unresectable or metastatic MSI‑high or mismatch 
repair‑deficient tumors that have progressed following prior 
treatment and who have no satisfactory alternative options or 
colorectal cancer that has progressed following treatment with 
fluoropyrimidine, oxaliplatin, and irinotecan[7]

Esophageal CPS 
≥ 10

Patients with recurrent locally advanced or metastatic squamous 
cell carcinoma of the esophagus whose tumor express PD‑L1 
(CPS ≥ 10) as determined by an FDA‑approved test, with disease 
progression after one or more prior lines of systemic therapy[20,21]

Gastric CPS 
≥ 1

Patients with recurrent locally advanced or metastatic gastric 
or gastroesophageal junction adenocarcinoma whose tumors 
express PD‑L1 (CPS ≥ 1) as determined by an FDA‑approved 
test, with disease progression on or after 2 or more prior lines 
of therapy including fluoropyrimidine‑ and platinum‑containing 
chemotherapy and if appropriate, HER2‑targeted therapy[18]

HCC Any Patients with HCC who have been treated with sorafenib[24]

Nivolumab (240 mg every 2 weeks or 480 mg 
every 4 weeks)

Colorectal Any Patients with MSI‑high or mismatch repair‑deficient metastatic 
colorectal cancer that has progressed following treatment with a 
fluoropyrimidine, oxaliplatin, and irinotecan[9]

HCC Any Patients with HCC who have been previously treated with sorafenib[22]

Nivolumab plus ipilumumab (nivolumab 3 mg/
kg followed by ipilimumab 1 mg/kg on the same 
day every 3 weeks for 4 doses, then nivolumab 
240 mg every 2 weeks or 480 mg every 4 weeks)

Colorectal Any Patients with MSI‑high or mismatch repair‑deficient metastatic 
colorectal cancer that has progressed following treatment with 
fluoropyrimidine, oxaliplatin, and irinotecan[10]

CPS: Combined Positive Score, HCC: Hepatocellular carcinoma, MSI: Microsatellite instability, FDA: Food and Drug Administration, 
HER 2: Human epidermal growth factor receptor
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Figure 1: Summary of key primary resistance mechanisms to immune checkpoint blockade and key strategies that are being employed to overcome the 
resistance in gastrointestinal cancers. EGFR: Epidermal growth factor receptor, MAPK: Mitogen activated protein kinase pathway, TAM: Tumor associated 
macrophages, TME: Tumor microenvironment.

recognition and cytotoxic T cell responses. This is best 
exemplified by deep immune responses seen with ICIs in 
MSI high tumors that contain an average of over  1000 
somatic mutations per genome, which is nearly twenty 
times that of MSS tumors.[30,32,33] However, it is still unclear 
whether a high TMB is a prerequisite for responses to 
immunotherapy. There is a subset of patients with MSS 
CRC tumors with low TMB that have high immunoscore, 
defined by densities of intratumoral CD3  +  and 
CD8  +  cytotoxic T cell infiltrates and an independent 
prognostic factor of patient outcomes independent of MSI 
status, indicating that these patients may still benefit from 
immunotherapy.[34]

One particular approach to address low tumor antigenicity 
is utilizing a personalized neoantigen vaccination approach 
to augment the existing antitumor T cell responses, either 
alone or in combination with other strategies. Inhibiting 
DNA repair may also lead to an increase in neoantigen 
generation and expression by tumor cells and enhance 
recognition by the immune system.[35,36] Supporting this, 
previous preclinical studies in CRC have demonstrated 
that the combination of PARP inhibitors with ICIs resulted 
in synergistic increase in CD8  +  T cell infiltration and 
antitumor activity.[37] Furthermore, DNA fragments resulting 
from double‑stranded breaks may enter the cytoplasm and 
activate STING‑dependent Type  I interferon responses, 
augmenting immune checkpoint blockade.[37] Epigenetic 
drugs are also of particular interest to increase the 
expression of cancer‑associated antigens including tumor 
testis antigens and viral antigens.[38,39] Both hypomethylating 
and histone modification agents have been shown to induce 
this effect in preclinical studies.[39,40]

Strategies to bypass traditional T cell activation 
through recognition of MHC: Ag complexes are also 

currently being evaluated to improve CR. This includes 
bi‑specific antibodies that simultaneously bind to surface 
tumor‑associated antigens and CD3 on T cells, leading 
to their activation and proliferation. Clinical trials are 
currently evaluating carcinoembryonic antigen  (CEA)–T 
cell bi‑specific  (TCB) antibody directed toward CEA, a 
protein that is often overexpressed on the surface of CRC 
tumor cells.[41,42] Notably, CEA–TCB is the first TCB 
antibody that showed preliminary efficacy in the treatment 
of solid tumors, including patients with MSS stable 
CRC.[42] Clinical trials are currently ongoing, and adoptive 
cell therapy of engineered cells expressing chimeric 
antigen receptors toward CEA is also being investigated 
in patients with metastatic CRC.[43] Furthermore, adoptive 
T‑cell transfer therapy targeting mutant KRAS G12D 
was shown to produce effective antitumor activity in a 
patient with metastatic CRC, indicating early promise 
for this approach.[44] Interestingly, adoptive transfer 
of mutation‑reactive TH1 CD4  +  T cells recognizing 
mutated erbb2 interacting protein ERBB2IP in a patient 
with metastatic cholangiocarcinoma achieved an initial 
decrease in target lesions followed by a prolonged period 
of SD.[45] Upon progression, re‑treatment resulted again in 
the regression of metastatic disease, suggesting that this 
approach holds promise in epithelial tumors.[45]

Improving tumor antigen presentation

The second molecular roadblock to ICIs in GI cancers is 
the deficient cancer antigen presentation through MHC 
downregulation.[46] Constitutively, active oncogenes such as 
mutant KRAS downregulate MHC expression effectively, 
impeding tumor‑associated antigen presentation.[47] Thus, 
strategies to increase the presentation of existing neoantigens 
through modulating MHC expression or enhancing the 
ability of antigen‑presenting cells  (APCs) to activate 
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T cells could be of greatly benefit. Therapeutic cancer 
vaccines are of particular interest to enhance tumor antigen 
presentation by APCs, especially dendritic cells  (DCs), 
to boost the effector cytotoxic T cells’ response to tumor 
and induce long‑lasting tumor‑specific T‑cell‑mediated 
immunity and memory. There are multiple ongoing studies 
combining ICIs with therapeutic cancer vaccines in GI 
cancers [Table 2]. Approaches with a genetically engineered 
herpes virus vaccine are of particular interest due to their 
ability to mediate tumor lysis, enhance loading of peptides 
onto MHC Class  I molecules for presentation by tumor 
cells, as well as express granulocyte‑macrophage CSF in 
order to enhance DCs’ activity.[48] Listeria‑based vaccines 
have also shown promise in several preclinical models for 
stimulation of both innate and adaptive immunity and DC 
priming.[49]

Targeting oncogenic pathways using kinase inhibitors may 
also increase MHC expression and antigen presentation. 
To this end, there is strong preclinical data to support 
that targeting MAPK pathway using MEK inhibitors 
increased tumor neo‑antigen expression, intratumoral 
effector T cell infiltration, and synergy with PD1 
blockade in CRC models.[50,51] Nonetheless, combining 
cobimetinib, a MEK inhibitor, with atezolizumab, a 
PD‑L1 inhibitor, did not produce meaningful clinical 
benefit in patients with chemorefractory CRC in a recent 
Phase III study.[12] However, combining MEK inhibitors 
with other immunomodulatory agents remains a potential 
therapeutic strategy to bolster immune response in this 
setting.

Targeting tumor microenvironment

The tumor microenvironment  (TME), consisting both 
of adaptive and innate effectors, plays a vital role in 
determining response to immunotherapy. For instance, MSI 
high CRC tumors had increased enrichment of cytotoxic 
CD8 + T‑cells, natural killer (NK) cells, Th1 helper T‑cells, 
and a greater degree of Th17 T‑cell activation in comparison 
to MSS counterparts.[52] Moreover, MSI high tumors have 
an underenrichment of T‑regulatory cells.[52] In contrast, 
immunosuppressive TME predominates in MSS GI cancers. 
Enrichment of myeloid‑derived suppressor cells  (MDSCs) 
is seen in TME across MSS GI tumors and associated with 
poor prognosis.[53‑55] MDSCs play an immunosuppressive 
role through the suppression of T‑lymphocytes and NK 
cells as well as by upregulating regulatory T‑cell activity.[56] 
Supporting this, elevated levels of circulating MDSCs or 
enrichment of MDSCs in tumors has been shown to be 
associated with a poor survival across GI cancers.[53,57,58] 
Furthermore, tumor‑associated macrophages  (TAMs) play 
immunosuppressive role in GI cancers by inhibiting NK 
cell activation as well as by promoting tumor angiogenesis 
and stimulating MDSCs.[59,60] TAM infiltration was 
associated with a poor response to treatment and worse 
prognosis in EC, PC, and HCC.[61,62] It was also shown that Ta
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cancer‑associated fibroblasts  (CAFs) promote polarization 
of TAMs toward immunosuppressive protumoral 
phenotype,[63] contributing to immunosuppressive TME. 
Furthermore, growing evidence indicates a tumor‑promoting 
role of CAFs and TAMs in the bile duct epithelium and 
cholangiocarcinoma.[64,65]

Modulation of the immune TME in order to reduce 
immunosuppressive mediators and enhance cytotoxic 
activity has long been proposed as a viable strategy to 
combine with ICIs. Currently, there are several trials 
investigating this approach in GI cancers. Inhibiting CD73 
and CD39 is of particular interest. CD73 has a dual role in 
T‑regulatory self‑reinforcing autocrine stimulation as well 
as paracrine suppression of effector T‑cell activity within 
the TME.[66] Considering the immunosuppressive role 
of TAMs in GI cancers,[67] targeting TAMs using CSF1R 
inhibitors is of intense interest in the field and this approach 
is producing early clinical promise in PC.[15]

Targeting tumor angiogenesis may also reverse 
immunosuppressive TME to enhance ICIs. Beyond 
the direct antitumor effect of anti‑angiogenesis agents, 
studies have suggested a synergistic relationship between 
anti‑angiogenesis agents and ICIs.[68,69] Anti‑angiogenesis 
treatment leads to normalization of tumor vasculature 
and alleviation of hypoxia in the TME.[70,71] Importantly, 
vessel normalization was shown to decrease the 
recruitment of immunosuppressive cells such as MDSCs 
and regulatory T‑cells,[72] whereas increasing polarization 
of macrophages to M1 phenotype resulted in augmented 
antitumor response.[73] Preclinical in  vivo studies using 
colon adenocarcinoma mouse models have demonstrated a 
synergistic antitumor effect of anti‑angiogenesis and PD1 
blockade,[74] lending a biological basis for combination 
of these agents with ICI in CRC. Encouragingly, a 
recent Phase Ib study demonstrated a promising early 
efficacy of PD‑L1 inhibitor atezolizumab combined 
with anti‑angiogenic agent bevacizumab in systemic 
treatment‑naïve, advanced HCC with an ORR of 62%.[75] 
Indeed, the superiority of this combination over sorafenib 
in the first line setting has now been demonstrated  in a 
confirmatory phase 3 study.[28]

Interestingly, EGFR inhibitors were shown to induce 
favorable immune activation through increase in 
intratumoral cytotoxic T‑cell activity and suppression of 
T‑regulatory and MDSC function in preclinical models.[76] 
Other kinase inhibitors including mesenchymal–epithelial 
transition  (MET) inhibitors, PI3K inhibitors, and 
regorafenib are also being tested to improve responses 
to ICIs in CRC as well as HCC through modulation 
of immune TME. MET, a marker of drug resistance 
in many tumor types, promotes EMT transition and 
angiogenesis and inhibits DC maturation.[77] However, its 
potential immune‑stimulatory role as a tumor‑associated 
antigen makes the biological basis for combining MET 

inhibition with ICI complex.[77,78] Meanwhile, PI3K 
inhibition was shown to enhance CD8  +  T‑cell antitumor 
response and reduce T‑regulatory, TAM, and MDSC 
activities within the TME.[79,80] Preclinical in  vivo studies 
have shown that knockdown of PI3K in colon cancer 
models can lead to reduced MDSCs and decreased tumor 
growth.[80,81] Furthermore, regorafenib, a multitargeted 
kinase inhibitor, was also shown to increase tumor 
CD8  +  T cell infiltration and enhance immunotherapy 
response in murine models.[82] Supporting this, a recent 
study has demonstrated an encouraging antitumor activity 
of regorafenib plus nivolumab in patients with advanced 
MSS CRC  (n  =  7; ORR 29%) and gastric cancer  (n  =  11, 
ORR 44%) in a Phase Ib study.[83] Lastly, strategies to 
target factors made by the tumor and surrounding stroma 
hold promise in augmenting antitumor T cell responses. 
This includes targeting the indoleamine 2, 3‑dioxygenase 
with small‑molecule inhibitors and engineered enzymes 
that degrade kynurenine, an immunosuppressive metabolite 
produced during tryptophan depletion shown to dampen 
responses to immunotherapy in CRC models.[84,85] Targeting 
transforming growth factor  (TGF)‑β is of also particular 
interest given its role in modulating the balance of T‑regs 
and Th17  cells in the gut.[86] In direct support of this, 
combining OX40 agonists with a TGFβ inhibitor caused 
regression of large established tumors in preclinical CRC 
models.[87]

Overcoming T cell exhaustion

Tumor‑reactive T cells are often exhausted as a 
consequence of chronic TCR stimulation in the absence of 
co‑stimulation that is characterized by unresponsiveness. 
During this time, different co‑receptors become upregulated 
that correlates with the degree of exhaustion, which may 
differ between distinct TMEs. Thus, identifying appropriate 
co‑receptors expressed by tumor infiltrating lymphocytes 
may be necessary for overcoming T cell exhaustion in 
addition to PD1 to enhance cytotoxic antitumor immune 
responses. To this end, LAG3, TIM‑3, and CD38 are 
emerging targets  [Table  2]. Previous studies have shown 
that LAG‑3, a known T cell exhaustion marker, may act 
synergistically with PD1 to inhibit immune activation, 
and dual LAG‑3 and PD1 blockade has demonstrated 
exciting clinical efficacy in metastatic melanoma patients 
who are resistant to PD1/PD‑L1 blockade.[88,89] TIM‑3 is 
an immune checkpoint that could be co‑targeted with PD1 
or CTLA4 blockade to overcome T cell exhaustion.[90] 
However, TIM‑3 has context‑dependent stimulatory as well 
as inhibitory function on T cells,[91] and it was also shown 
to be dispensable for T cell exhaustion.[92] As such, results 
from ongoing preclinical and clinical studies will be critical 
to determine the expression of targetable co‑receptors on T 
cells in divergent tumor types in order to refine strategies to 
achieve optimal therapeutic responses. Emerging data have 
also indicated that tumors develop resistance to PD1/PD‑L1 
blockade by upregulating CD38 that inhibits effector T 
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cell function through adenosine receptor signaling and 
inhibiting CD38 overcomes resistance in tumor models.[93] 
Based on promising results in the preclinical studies, CD38 
antibodies have now entered early‑phase clinical trials.

Epigenetic reprogramming

Epigenetic modifiers hold potential to reprogram tumor as 
well as immunosuppressive cells in TME for therapeutic 
advantage. For example, through modification of histone 
and nonhistone proteins, histone deacetylase inhibitor 
(HDACi)  has a wide range of effects that include 
induction of apoptosis, cell cycle inhibition, vascular 
function, and immunomodulation.[94] The role of HDACi 
in immunomodulation has been controversial, with some 
studies indicating possible expansion of T‑regulatory 
populations following treatment,[95] whereas others 
suggesting promising enhancement of immune‑stimulatory 
mediators and antitumor response.[94,96,97] Notably, addition 
of etinostat to PD1 blockade in preclinical in vivo metastatic 
PC models has demonstrated increase in activated cytotoxic 
T‑cell activity, suppression of MDSCs, and significantly 
improved tumor‑free survival. Although the mechanisms by 
which HDAC inhibition can result in immunomodulation 
have yet to be fully elucidated, recent preclinical data 
suggest that combination with ICI may be a promising 
avenue for enhancement of antitumor immune response.[98,99]

Future Perspectives
Considering the current status of immune checkpoint 
blockade in GI cancers, progress must be made in order 
to augment ICI efficacy. Beyond MSI status, and PD‑L1 
positivity, few other predictors of CR currently exist. As 
such, most current clinical trials do not employ patient 
selection strategies beyond these markers. A  significant 
proportion of MSI high patients still demonstrate a lack 
of response to ICIs alone and in combination with other 
regimens. Greater understanding of the biological basis 
behind responders and nonresponders within MSI high 
patient populations may aid in determining which tumor 
markers and components of the TME play a pivotal role 
in rendering tumors sensitive or insensitive to ICIs. While 
this would be beneficial for expanding the subset of MSI 
high patients who benefit from ICIs, it may also expose 
molecular mediators in the MSI stable microenvironment 
that underlie the lack of response to ICIS.

Elucidating differences in specific neoantigen epitope 
expression and their qualities is an exciting proposition. 
However, attempts to do this thus far have demonstrated 
that there are thousands of different neoantigens that may 
be expressed, and that only exceedingly few of these are 
consistently observed between different tumors even within 
the same cancer type.[100] This being the case, research 
efforts that instead focus on the elucidation of the currently 
unknown or poorly understood mechanisms of immune 
suppression by tumor cells beyond PD1 and CTLA‑4 

pathways may be of significant value. Such approaches 
have already yielded exciting new understanding regarding 
mechanisms of immune escape and have revealed novel 
targets to combine with ICIs such as Dickkopf‑related 
protein 2 in the context of CRC.[101]

The current literature consistently revealed key 
immune‑suppressing mediators in TME of GI cancers. 
Among these are immature DCs, MDSCs, TAMs, regulatory 
T‑cells, and CAFs. Two distinct strategies could potentially 
be used to address these roadblocks. First, recruitment 
of new immune‑activating mediators to the tumor site 
may aid in shifting the microenvironment balance in 
favor of responsiveness. Multiple trials are already 
testing this hypothesis clinically. Second, reprogramming 
already‑present immune suppressive cells within the TME 
into immune‑activating mediators may shift the balance of 
stimulating versus constraining components in favor of a 
more robust immune response.

Among the most exciting combination strategies are those 
utilizing ICIs with the addition of immunomodulators 
such as LAG3 inhibitors, TIM3 inhibitors, and CD73 
antibodies. A  preponderance of preclinical data suggests 
that these approaches may act synergistically with 
immune checkpoint blockade. Therapeutic cancer antigen 
vaccines may still have a role in combination with other 
agents due to their potential for more efficient immune 
priming. Lastly, epigenetic modifiers have the potential 
to reprogram immunosuppressive cells in the TME into 
therapeutic advantage. However, this remains speculative 
at this juncture, and increased understanding of the role 
of different epigenetic modulators, their targets, and 
precise effects of these drugs on the immune TME will be 
necessary before their true potential is fully realized.

Conclusion
The current status of immunotherapy in GI cancers 
reveals that efficacy has been largely limited to patients 
with MSI high tumors and a small subset of patients with 
MSS tumors. Thus far, no ICIs have been approved for 
patients with MSS pancreatic and CRCs, the two most 
common causes of GI cancer‑related deaths in the USA. 
Although there are emerging treatment strategies to make 
immunotherapy more effective in GI cancers, the apparent 
lack of patient selection strategies beyond using PD‑L1 and 
MSI status hampers progress in this field. Further molecular 
insight into the heterogeneity of tumor intrinsic as well as 
extrinsic mechanisms mediating resistance to ICIs will be 
key in making significant advances in enhancing response 
to ICIs in GI cancers.
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