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Abstract

Hypertension is one of the most prevalent diseases that leads to end organ damage especially 

affecting the heart, kidney, brain, and eyes. Numerous studies have evaluated the association 

between hypertension and impaired sexual health, in both men and women. The detrimental 

effects of hypertension in men includes erectile dysfunction, decrease in semen volume, sperm 

count and motility, and abnormal sperm morphology. Similarly, hypertensive females exhibit 

decreased vaginal lubrication, reduced orgasm, and several complications in pregnancy leading 

to fetal and maternal morbidity and mortality. The adverse effect of hypertension on male and 

female fertility is attributed to hormonal imbalance and changes in the gonadal vasculature. 

However, mechanistic studies investigating the impact of hypertension on gonads in more detail on 

a molecular basis remain scarce. Hence, the aim of the current review is to address and summarize 

the effects of hypertension on reproductive health, and highlight the importance of research on the 

effects of hypertension on gonadal inflammation and lymphatics.

Introduction

Reproductive health is vital for human flourishing and survival of the species, and includes 

the sexual wellness of both men and women along with maternal and infant health. A 

male’s ability to produce sperm in the testes coupled with a female’s release of matured 

eggs from the ovaries are necessary for successful reproduction. Human reproduction 

is affected by lifestyle, genetics, and environmental factors. It is also affected by 

physiological abnormalities like obesity, dyslipidemia, insulin resistance, and hypertension 

[1,2]. Hypertension, present in almost half of the population, is a well-known factor 

increasing cardiovascular disease risk by altering the macro- and micro-vasculature in 
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target organs like the brain, heart, and kidney. However, hypertension also vastly affects 

reproductive health in both men and women [3–7]. While the roles that the primary 

male gonadal hormone testosterone (T) and the primary female gonadal hormone estrogen 

play in cardiovascular disease have been studied extensively, the mechanisms by which 

hypertension affects gonads are less known. In this review, we discuss how hypertension 

impacts fertility with a focus on the effects on male and female gonadal function. How 

hypertension influences gonadal inflammation and what roles lymphatic vessels might play 

in these tissues are highlighted to bring attention to novel findings that impact fertility.

Hypertension and reproductive health

The major public health epidemic of hypertension can result in target-organ injury and 

is associated with inflammation and sexual dysfunction in both men and women [3–7]. 

For example, the prevalence of erectile dysfunction (ED) is higher in hypertensive men 

than normotensive men [8,9]. Similarly, hypertensive women exhibit decreased vaginal 

lubrication, less frequent orgasm, and more frequent genital pain than normotensive women 

[4,10]. It is known that hypertension affects the reproductive ability of both men and women 

(Figure 1), but the mechanisms by which hypertension impacts reproductive health and 

function remain to be fully unraveled.

Hypertension and male fertility

Hypertension and spermatogenesis—There are several studies on hypertensive men 

that established an inverse relationship between blood pressure and total serum T [11,12], 

free T [13–15], and the sex hormone-binding globulin15. Nevertheless, only a few studies are 

available to date that relate hypertension and male reproductive function. A study involving 

110 newly diagnosed, never treated hypertensive men and 110 normotensive men attributed 

a reduction in sexual activity reported in hypertensive men to a decrease in T levels [12]. 

Using a rat model exhibiting renovascular hypertension, diminished sexual behavior and 

impaired spermatogenesis were attributed to attenuated levels of prolactin, T, and follicle 

stimulating hormone [16]. Another group evaluated the quality of ejaculated spermatozoa 

in a group of 25 normotensive and 25 hypertensive subjects by measuring (i) the levels of 

clusterin, a glycoprotein associated with abnormal sperm morphology, and (ii) sperm DNA 

damage. There was a significant increase in clusterin levels and sperm DNA damage in 

hypertensive subjects that established a strong relationship between hypertension and poor 

sperm quality [17]. Guo et al. [18] explored the association between hypertension and semen 

quality utilizing collected data from the Stanford Reproductive Endocrinology and Infertility 

Center. The study cohort included male patients who visited the infertility center between 

1994 and 2011 who had been diagnosed with hypertension prior to or within one year 

after semen analysis. Abnormal semen parameters were characterized based on the World 

Health Organization Manual on Semen Analyses [19]. Hypertensive males were found to 

have decreased semen volume, sperm motility, total sperm count, and motile sperm count 

with respect to normotensive males [18,20]. Eisenberg et al. [21] also revealed higher rates 

of semen abnormalities, including reduced sperm count and motility, in hypertensive men. 

These studies reinforce a strong association between hypertension and impaired semen and 
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sperm quality. As correlations, however, these studies lack thorough investigation and a 

direct end-organ effect of hypertension on the testes.

Hypertension and erectile dysfunction—There are several studies that link 

hypertension with reproductive dysfunction based primarily on hormonal imbalance and/or 

ED. It is well established that hypertensive men have an increased risk to develop ED [22–

24]. ED-associated erectile tissue morphological changes including smooth muscle tissue 

hypertrophy and stenosis in the corpus cavernosum correlate positively with hypertension 

[25–27]. One of the plausible mechanisms behind the morphological changes in erectile 

tissue may be the oxidative stress caused by chronic hypertension, leading to endothelial 

dysfunction resulting in inefficient dilation of the arteries of the corpus cavernosum [28]. 

Spontaneously hypertensive rats that are stroke prone (SHRSP) demonstrated a significant 

reduction in erectile response to ganglionic stimulation. However, this improved after 

a single intracavernous injection of drug Y-27632 [29]. This drug binds to the ATP-

binding site on Rho-kinase, preventing the phosphorylation and subsequent inactivation 

of myosin light chain (MLC) phosphatase, thereby promoting cavernosal smooth muscle 

relaxation leading to erection [29–34]. This demonstrates the RhoA/Rho-kinase pathway 

as a critical regulator controlling the erectile process by regulating the phosphorylation of 

MLC phosphatase. A similar trend was observed using the mineralocorticoid-salt model 

of hypertension, where treatment with Y-27632 improved the erectile response [29]. Nitric 

oxide (NO) induces vasodilation in cavernosal tissues leading to erection by inhibiting 

RhoA activity [32–34]. Sildenafil, a commonly prescribed ED drug, acts by promoting 

NO-mediated activation of guanylyl cyclase and eventual accumulation of cGMP leading to 

relaxation of the corpus cavernosum and subsequent erection [35,36]. This drug slows down 

the process of apoptosis in corpora cavernosa and ameliorate spermatogenesis, eventually 

improving the microcirculation in men with ED [36]. Few studies have reported that 

antihypertensive drugs (e.g. β-blockers and diuretics) themselves are associated with ED 

[37], while others had controversial reports [38,39]. Despite these sometimes-conflicting 

reports, evidence suggests a relationship between hypertension and male fertility that 

warrants further mechanistic investigations.

Hypertension and testes—Despite strong evidence for the association between 

hypertension, sperm quality, and male fertility [2,9,12,16–18,20,21], the target organ testes 

have not been studied extensively. Rats made hypertensive using a deoxycorticosterone 

acetate treatment protocol exhibited reduced testis weight in addition to a reduction in sexual 

behavior, seminal vesicle weight, and T levels when compared with the uninephrectomized 

controls [40,41]. SHRs demonstrated testicular hypertrophy and ED [42]. A study in the 

SHRSP model reported the hypertensive changes in intra-testicular arterioles resulted in the 

impairment of Sertoli cell (SC) function with subsequent loss of spermatogenic cells [43]. 

Another study using the same model confirmed the marked alterations in intra-testicular 

arteries including increased intimal thickness, fibrinoid necrosis, and hyalinization [44]. 

These alterations in testicular arterial vasculature induce ischemia and a significant reduction 

in the nutritional supply to the organ [45–47]. This study also identified an impairment 

in spermatogenesis likely due to atrophic seminiferous tubules with reduced numbers 

of spermatids in hypertensive rats [44]. Due to the presence of the blood–testis barrier 
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(BTB), germ cells (GCs) depend on SCs for nutrients [48]. Hence, a reduced blood supply 

to SCs in testes resulted in impaired spermatogenesis. Akagashi et al. [45] measured 

a significant reduction in the concentration of transferrin in SHRSP rats that coincides 

with impaired spermatogenesis. Treatment with manidipine (a long-lasting calcium channel 

blocker, CCB) to improve blood flow led to improvement in spermatogenesis. Atanassova 

et al. [49], in support of the previous studies, demonstrated deleterious testicular changes 

with GC depletion in seminiferous tubules of SHRs. Elevations in the local expression of 

testicular angiotensin-converting enzyme (ACE) in SHRs occurred earlier in the stage of 

spermiogenesis and correlated with decreased fertility when compared with age-matched 

normotensive rats. Increased ACE activity is known to be involved in vascular remodeling. 

Therefore, the compromise in fertility observed in SHR may be attributed in part to the 

dysfunctional intra-testicular vasculature [49].

In a study with SHRs, enalapril (an ACE inhibitor) treatment restored the morphological 

changes in the testes and normalized spermatozoid production by preventing vascular 

remodeling in the testes [50]. A recent study in hypertensive rats identified increased 

testicular weight and altered testicular morphology resulting from arterial alterations 

(Figure 2) and impaired testicular vasomotion [51]. These rats had a reduction 

in sperm concentration and DNA integrity, and increased percentages of sperm 

with dysfunctional mitochondria, intracellular superoxide anion activity, and abnormal 

morphology. Histological studies showed perturbed spermatogenesis with immature GCs 

in the tubular lumen and tubular necrosis. The hypertensive rats also displayed increased 

arteriolar adventitia in the testicular microvasculature. The authors also reported elevated 

hypoxia-inducible factor-1α gene expression in the testes, suggesting an inadequate oxygen 

supply to the tissue in hypertensive animals. Increased levels of vascular endothelial growth 

factor (VEGF) were also observed in the testes of hypertensive animals due to testicular 

hypoxia-induced protein expression [51]. In total, these studies help us to have a better 

understanding of the mechanisms implicated under hypertensive conditions with respect to 

male fertility.

Hypertension and female fertility

Hypertension and sexual health—The prevalence of hypertension in women of 

reproductive age is relatively less compared with age-matched males [52,53], but should not 

be ignored in women as it is one of the most prevalent risk factors for cardiovascular disease 

and can also greatly complicate pregnancy and offspring health. Women with hypertension 

may show sexual dysfunction due to alterations in clitoral and vaginal vasculature, reduced 

blood flow in the pelvic region, and thinning of the vaginal wall and clitoral smooth muscles 

resulting in vaginal dryness [54,55]. Subsequent complications include pain during sexual 

intercourse, lack of orgasm, adverse effects of the arousal phase, and sexual reluctance in the 

woman have also been reported [54]. Hypertension can lead to fibrosis of the clitoris and the 

vaginal wall due to lower NO levels and reduced blood flow in the pelvic region [56,57]. 

A reduction in blood flow with inefficient vasocongestion during sexual arousal results in 

decreased lubrication and finally dyspareunia in hypertensive women [58,59].
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Hypertension and pregnancy—It is reported that out of the estimated 4 million 

pregnancies in the United States each year, around 5% of women face complications due 

to hypertension [60], leading to maternal and fetal mortality [60–62]. Women with chronic 

hypertension are highly susceptible to preeclampsia [63–65]. In hypertensive women, the 

chances of placental abruption [63–65], maternal stroke [66–68], renal failure, pulmonary 

edema, and death [67,68] are tremendously increased. The adverse effects of chronic 

hypertension on fetal growth can lead to perinatal and maternal morbidity and mortality 

through premature delivery; intrauterine growth restriction [64,65]; hemolysis, elevated liver 

enzymes, low platelet count (HELLP) syndrome; perinatal death; and maternal convulsion 

or eclampsia [64,67,69–71]. A retrospective study conducted using medical records at Mettu 

Karl Referral Hospital, Mettu, Ethopia, for the period January 1, 2010 to December 1, 

2013 reported increased rates of fetal death, low birth weight, low APGAR score, abortion, 

preterm delivery, and HELLP syndrome in pregnant women with hypertensive disorders 

[72]. Khosravi et al. [73] reported a higher prevalence of hypertensive disorders among 

pregnant women who were admitted to a tertiary center in Tehran for delivery. Zhou 

et al. [74] reported higher risk of pregnancy loss in hypertensive women among 2940 

women attempting pregnancy in Anhui, China. Several clinical studies have associated 

both preconception and early pregnancy blood pressures with risk of pregnancy loss 

[71,72,74,75]. While clearly linked, the actual underlying mechanisms of sexual dysfunction 

and pregnancy loss in hypertensive women remains obscure.

Hypertension and ovaries—Possibly due to the lower prevalence of hypertension 

in young reproductive women than their male counterparts, studies on the effects of 

hypertension on the ovarian vasculature and folliculogenesis have been neglected. To date, 

there are only a few studies that have specifically focused on the mechanisms by which 

hypertension affects female fertility. Studies on female SHRs demonstrated an association 

between hypertension and sexual dysfunction with reduced ovulation and morphological 

changes in the clitoris [76]. In female rats with renovascular hypertension, there was 

a delay in re-establishing estrous cyclicity. Resumed hypertensive rats demonstrated a 

significant decrease in lordosis quotient (a measure of sexual posturing) and oocyte number, 

demonstrating a reduction in sexual behavior and ovulation, respectively [77]. Although 

many studies have identified a higher prevalence of sexual dysfunction in hypertensive 

women when compared to normotensive women [78–80], further studies are needed 

to identify the exact pathophysiological mechanisms underlying the adverse effects on 

reproduction. With the profound effects that hypertension has on the male testis vasculature, 

it seems likely that the ovaries may demonstrate similar changes, but this area of research 

remains unexplored.

Antihypertensive drugs and reproduction

The antihypertensive drugs are mainly classified into five categories namely β-blockers, 

CCBs, ACE inhibitors, angiotensin II receptor blockers, and diuretics [18]. The effect of 

antihypertensive drugs on sexual function has always remained a topic of debate. CCBs 

have been reported to attenuate hormone levels viz., T, luteinizing hormone, and follicular 

stimulating hormone, leading to impaired spermatogenesis and sperm parameters [81,82]. 
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Many in vitro studies have demonstrated the negative impact of CCBs on reproductive 

function by hampering spermatozoa–oocyte interaction and the fertilizing capability of 

sperm [83–86]. These effects are obvious since it is well known that Ca2+ is crucial for 

spermatogenesis, sperm motility, capacitation, acrosome reaction, and fertilization [83–92]. 

Clonidine, a selective agonist of α2-adrenoceptors, induced desensitization of functional 

α2-adrenoceptors and elicited contractions of the rat testicular capsule affecting the proper 

transport of spermatozoa out of the testes [93]. It was reported that rats treated with 

lisinopril, an ACE inhibitor, exhibit decreased sperm density and motility along with a 

decrease in sperm acrosomal reaction [94]. β-Blockers hamper the relaxation of smooth 

muscles in the corpora cavernosum by blocking the β2 adrenergic receptors and cause a 

reduction in plasma T levels [38,95–100]. In contrast with these findings, a few studies 

elucidated beneficial aspects of these drugs on sperm parameters and sexual activity 

[50,101,102].

ACE inhibitors or angiotensin II receptor blockers are teratogenic and have been shown to 

increase the likelihood of congenital anomalies; hence they are generally not recommended 

to women who are planning to get pregnant [103–106]. Methyldopa has been considered 

safe even in the early trimester, with no potential harm to the growth and development of 

the fetus [107,108]. β-Blockers have been implicated in intrauterine growth restriction and 

premature birth [109]. CCBs such as nifedipine have been reported to reduce blood pressure 

in pregnant women without compromising fetal health and prevent premature labor [110]. 

Further extensive research is required in this field to choose the appropriate treatment and 

improve the impact of hypertension treatment on the patient’s reproductive health. Since it 

is difficult to delineate the effect of hypertension and antihypertensive drugs on reproductive 

function, a better understanding of the direct effects of hypertension on reproductive organs 

can pave the way for alternative treatments.

It is well known that hypertension promotes inflammation, immune cell trafficking, and 

inflammation-associated lymphangiogenesis in several organs like the skin, intestine, heart, 

kidney, and airway tract [111–113], but the impact of hypertension on gonadal lymphatics 

remains obscure. In the following sections, we will focus on the development of gonadal 

lymphatic vasculature and inflammation-associated lymphangiogenesis in gonads under 

several pathological conditions to emphasize the need for extensive research in this area.

Gonads and lymphatics

The lymphatic system plays a crucial role in the maintenance of tissue fluid homeostasis 

by recirculating the interstitial fluid, formed by blood vessel extravasation, and in the 

transportation of antigen-presenting cells and lymphocytes from tissues to lymph nodes 

[114–116]. These roles are particularly important during inflammation, when blood vascular 

permeability is enhanced and immune cell numbers and activation increase in the tissue.

The lymphatic network in testes originates 9.5 days post coitum in the mouse and its 

distribution varies across mammalian species [117–119]. The lymphatic network arises on 

the surface of the testes spreading across the tunica albuginea in both large animals and 

rodents [118–121]. Using immunolabeling with lymphatic vessel endothelial hyaluronan 
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receptor 1 (LYVE-1) antibodies or Prox-1-EGFP transgenic lymphatic reporter mice to 

identify lymphatics, it is reported that testicular lymphatics are found only on the surface 

and do not penetrate into the interstitium (Figures 3 and 4) [118,119,122]. Similarly, 

lymphatic vessels were also absent in the interstitium in rat testes [123]. In contrast, 

lymphatic capillaries were detectable within the testicular interstitium of large animals; 

these vessels drain into the tunica albuginea via fibrous septa and finally into larger 

collecting lymphatic vessels in the mediastinum testis [117,120,121,124]. In large animals, 

these large lymphatics carrying testicular lymph drain into the latero- or para-aortic lymph 

node groups (Figure 5) [122,125,126]. In rats, collecting lymphatics from three regions 

(superior, middle, inferior) combine to form a large testicular lymphatic trunk [127]. The 

testicular lymphatics in rats may drain to either the renal or lumbar lymph nodes, but in 

certain cases bypass lymph nodes and lead directly to the thoracic duct [128]. Interestingly, 

there are distinct routes of lymphatic drainage of testes from those of the scrotum (that 

drains to the inguinal lymph node) (Figure 5) [129]. It was concluded in studies using 

rams that testicular lymphatics do not play an important role in the return of T into the 

blood due to both the lower concentration of the hormone in lymph and lower flow rate 

of lymph when compared to venous blood [130]. Nevertheless, studies on pigs and horses 

have demonstrated a comparatively higher concentration of conjugated steroids like estrone 

sulfate and dehydroepiandrosterone sulfate in testicular lymph than in the testicular venous 

blood accounting for the contribution in returning these to the circulation [131,132]. Hence, 

the role of testicular lymphatics in hormone transport and distribution may be species- and 

molecule-dependent [122].

Ovaries secrete hormones and produce ova for the maintenance of female fertility. Unlike 

testes, ovaries possess a dense network of lymphatics (Figure 6) and the distribution of 

lymphatic networks are consistent among many mammalian species where the lymphatic 

vessels reside in the thecal layer surrounding the developing follicles and the periphery 

of the corpus luteum [119,121,133–136]. The density and size of the lymphatic network 

depends on the different stages of the estrous cycle in pigs and sheep [121]. The formation 

and degeneration of the lymphatic network corresponds to the follicular development and 

regression of the corpus luteum, respectively [137–139]. The first appearance of ovarian 

lymphatics in mice occurs after birth around post-natal day 10 and starts expanding 

along the length of the uterine horn [119,136]. These lymphatics undergo remodeling 

corresponding to folliculogenesis, attributed to the increased expression of VEGF-C, VEGF-

D, and vascular endothelial growth factor receptor-3 (VEGFR-3) genes in adult mice [136]. 

The ovarian lymphatic network combines at the hilum into a dense plexus and eventually 

into 4–6 larger lymphatic vessels anastomosing with other lymphatics from the uterus and 

Fallopian tube and finally drains into the lumbo-aortic nodes [125,140–142]. A recent study 

suggested three lymphatic drainage paths occurring in the human ovary (Figure 7) [143]. 

The first major route arises from the cranial side of the ovary, accompanying the ovarian 

artery in the infundibulopelvic ligament towards the para-aortic and paracaval nodes [143]. 

The second arises from the caudal side of the ovary that travels along the ovarian artery 

that anastomoses to the uterine artery in the ovarian ligament, ultimately draining to internal 

iliac lymph nodes [143]. The third route appears to be minor and involves sparse lymphatic 

vessels following the round ligament to the inguinal nodes [122,143].
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A higher concentration of ovarian steroid hormones is detected in the draining lymph 

from ovaries compared with peripheral blood, but these concentrations are comparatively 

lower than in sampled ovarian venous blood [144,145]. These ovarian hormones are 

transported back to the ovarian arteries through retrograde transfer, revealing the potential 

role of lymphatics in the feedback mechanism in hormonal regulation and thereby female 

reproductive health [146,147].

Testicular inflammation and lymphangiogenesis

The predominant process underlying male infertility is the disrupted or disturbed 

spermatogenesis. A few studies have correlated impaired spermatogenesis with 

inflammatory and/or immunological factors by demonstrating immunoglobulin and 

complement reactivity on the thickened basement membrane of seminiferous tubules in 

testis biopsy specimens from infertile men [148–152]. The testis is an immunologically 

privileged organ that protects the auto-immunogenic spermatids from the male’s immune 

system through the BTB between SCs [153]. However, testes are still vulnerable to 

immune activation leading to inflammatory reactions. Testicular inflammation, or orchitis, 

can occur due to bacterial, viral, or other pathogenic infections as well as exposure 

to drugs and heavy metals [154]. Autoimmune orchitis can lead to male infertility 

[153,155–157]. This condition is characterized by an increased infiltration of immune 

cells (macrophages, dendritic cells, and subsets of T cells) that results in elevated 

proinflammatory cytokines levels [158–160], leading to degeneration and apoptosis of GCs. 

It is known that resident macrophages and mast cells, as well as SCs, can produce an 

array of cytokines, including both pro- and anti-inflammatory molecules such as interleukin 

−1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), members of 

the transforming growth factor-β (TGF-β) family, and IL-10 [161–164]. Increased levels 

of mRNAs of proinflammatory cytokines, such as IL-1β, TNF, and IFN-γ were linked to 

disturbed spermatogenesis and inflammatory lesions in human testicular biopsies showing 

GC neoplasia [165]. Stimulation with TNF-α and IL-1α resulted in upregulation of IL-6 

in cultured SCs [166]. In an experimental autoimmune orchitis (EAO) model, peritubular 

and intratubular immune cell infiltration was reported that was attributed to chemotactic 

gradients established in the testes due to up-regulation of cell adhesion molecules (CD31, 

CD44, CD106), chemokines [monocyte chemoattractant protein-1 (MCP-1), macrophage 

inflammatory proteins (MIP) 1α and 1β] and chemokine receptors (CCR2, CCR5) 

[161,167]. There was an increase in the expression of CCR7 in dendritic cells isolated 

from EAO rat testes [168]. TNF-α has also be shown to upregulate MCP-1, IL-6, and 

cyclooxygenase-2 in cultured human testicular peritubular cells [169].

Spiess et al. [170] reported an increased mRNA expression of high-affinity IgE receptor 

and the mast cell-related fractalkine receptor in a cross-sectional microarray analysis study 

involving testicular biopsies with spermatogenic failure. A similar study reported an increase 

in transcript levels associated with inflammatory activity in human testicular biopsies [171]. 

This is in accordance with earlier studies that pointed out increased numbers of mast cells 

in testicular biopsies from infertile men with impaired spermatogenesis [165,172,173]. Mast 

cells, in addition to secreting proinflammatory cytokines like TNF and IL-6, also produce 

serine protease tryptase that enhances the synthesis of collagen and subsequently tubular 
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fibrosis by exerting its mitogenic effect on fibroblasts and peritubular cells [174–177]. Mast 

cell tryptase activates proteinase-activated receptor-2 on isolated peritubular cells in vitro 
leading to up-regulation of inflammatory molecules such as MCP-1, cyclooxygenase-2, and 

TGF-β2 [177]. Translocation of high-mobility group box protein-1 from the nuclei in EAO 

rat testes has been shown to regulate inflammatory responses. A similar result was found 

in testes of infertile men with impaired spermatogenesis along with lymphocytic infiltrates 

[178]. Galectin-1, activins, and inhibin have also been reported to play a crucial role in the 

development of testicular immunopathology [179–182].

Immune cell infiltration has been associated with disruption of the BTB in seminiferous 

tubules [183,184]. IL-6 has proved to be an essential factor in the development of testicular 

inflammatory responses, which is found to disrupt the integrity of the BTB in rats, thereby 

attacking the immunological barrier in testes [185]. IL-6 inhibits protein degradation and 

activates phosphorylated ERK in SCs [186]. IL-6 also interferes with GC differentiation 

or degeneration by acting through the transcription factor Zfp637 on spermatogonia. TNF/

TNFR1, Fas/FasL, and Bax/Bcl-2 systems have all been implicated along with IL-6 and 

its receptor in GC apoptosis in the rat EAO model [164,168,187]. Oh et al. [188] reported 

attenuated mRNA expression of SC tight junction proteins such as Claudin-11 (Cldn11), 

Occludin, and Zona occludens-1 in varicocele testes when compared with normal testes. 

Immunolocalization showed that Cldn11 was found in the cytoplasm rather than in the 

periphery of the seminiferous tubule suggesting impaired subcellular localization. Increased 

mRNA levels of proinflammatory cytokines (Tnfa, Il1a, and Il6), leukocyte marker (Cd45), 

and T-cell markers (Cd3g and Cd3d) were observed in varicocele testes, indicating immune 

cell infiltration. This might have deregulated Cldn11 expression in SCs in varicocele 

testes, thereby attenuating the permeability of the BTB and finally resulting in impaired 

spermatogenesis [188]. Another study using rats with EAO reported an increase in IL-6 

along with a decrease in Occludin, and delocalization of Cldn 11 and Zona occludens-1 

leading to a disrupted BTB and membrane permeability [185]. Hence, it is very clear 

from the available literature that impaired spermatogenesis is associated with testicular 

inflammation and immune cell infiltration (Table 1).

Expansion of the local lymphatic vasculature, lymphangiogenesis, is common under 

inflammatory conditions and generally considered to be a beneficial process in restoring 

tissue homeostasis [111–113,189–191]. Several tissue cells and infiltrating immune 

cells secrete the predominant lymphangiogenic proteins VEGF-C and VEGF-D during 

inflammation. It was also reported that TNF-α, VEGF-A, VEGF-C, and VEGF-D are 

produced by macrophages and induced angiogenesis and lymphangiogenesis [192–198]. 

Few studies have directly examined lymphangiogenesis in orchitis. It is reported that 

seminiferous tubules are immersed in lymph and the tissue fluid is drained through 

lymphatic capillaries extended beneath the tunica albuginea but not within the testicular 

interstitium [118]. Naito et al. [199] demonstrated an expanded interstitium area in the 

EAO model that was restored under post-inflammatory condition. The increased lymphatics 

observed around the inflammatory lesions point out the importance of interstitial fluid 

and infiltrated immune cell clearance. Hirai and colleagues [200] identified a significant 

increase in VEGF-D in the testes of EAO mice. Quantifying inflammation-associated 

lymphangiogenesis is complicated in some tissues because LYVE-1, a commonly used 
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marker to identify lymphatic endothelial cells, is expressed on a subset of macrophages 

under inflammatory conditions [196,201,202]. LYVE-1+ cells were identified in the 

interstitium proper of inflamed testes; however, all of these cells were F4/80+ and CD31- 

indicating that these LYVE-1+ cells were mature macrophages and not true lymphatic 

endothelial cells. An incorporation of LYVE-1+ macrophages into the wall of lymphatic 

capillaries under the tunica albuginea was also identified in this model. This indicates 

that F4/80+ macrophages expressing LYVE-1 may play a role in promoting testicular 

lymphangiogenesis during inflammation [200]. Whether gonadal lymphangiogenesis occurs 

in hypertension has not yet been described.

Ovarian inflammation, endomteriosis, and lymphangiogenesis

Autoimmune ovarian disease (AOD), a chronic inflammatory disease, is linked to 

lymphocytic infiltration in the ovarian follicle in women with premature ovarian failure 

[158]. Researchers have established a rodent model of AOD by immunization of animals 

with zona pellucida (ZP) antigens [203–206]. ZP is an extracellular glycoprotein found 

around the oocytes and aids follicular development, spermatozoa–oocyte interaction, and 

fertilization [206]. Immunization with ZP led to the release of anti-ZP autoantibodies and 

activation of autoreactive T cells eventually resulting in autoimmune oophoritis, a condition 

identified by inflammation in the ovarian interstitium and organized monocytic granulomata 

[203–207]. Adoptive transfer of ZP peptide-specific T cells into näıve mice caused 

granulomatous oophoritis and up-regulation of proinflammatory markers including IL-1, 

TNF-α, and IFN-γ, but did not alter ovarian function or fertility [207]. Ovarian granulosa 

cells had ectopic expression of major histocompatibility complex (MHC) II in the site 

of inflammation, induced by IFNγ [208]. Similar results were observed with cynomolgus 

macaques where pZP3 (zona pellucida 3 peptide) immunization showed co-localization of T 

cell clusters with MHC-II+ macrophages in the ovarian interstitium [205]. Increased level of 

chemokines such as MIP-1α, IL8, eotaxin-1, and interferon inducible protein-10, as well as 

the pro-lymphangiogenic factor VEGF-D, was reported to be associated with an early stage 

of premature ovarian insufficiency [209]. Beyond the ovary, an increase in the production 

of chemokines and macrophage recruitment have been identified in the uterine tissues 

of women with endometriosis [210–212]. Increased production of intercellular adhesion 

molecule-1, insulin-like growth factor-I, IL-1, IL-6, IL-8, IL-12, MCP-1 (CCL2), MIP-1α 
(CCL3), RANTES (CCL5), eotaxin (CCL11), VEGF, and TNFα were associated with 

endometriosis [211,213]. It is to be noted that inflammation in the ovaries and uterus are 

associated with reproductive dysfunction in females (Table 2).

Lymphangiogenesis occurs in the ovaries and uterus under normal physiological conditions 

with respect to reproductive cycles and pregnancy [139,214]. While studied somewhat 

extensively in ovarian cancer due to lymphatics serving as a route of metastases, 

lymphangiogenesis in the ovary during inflammation has been understudied. Studies have 

reported that proinflammatory cytokines like IL-6 and TNF-α might be involved in 

pathologic lymphangiogenesis in ovarian cancer-related inflammation [215,216]. Reichelt 

et al. [217] demonstrated lymphangiogenesis in peritoneal endometriosis with up-regulation 

of VEGF-C and VEGF-D expression. The pathological lymphangio-genesis observed may 

be ascribed to the chronic inflammatory responses during endometriosis induced by VEGF-
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C and VEGF-D expressing macrophages [217]. Recently, it was reported that VEGFR1 

signaling is responsible for the induction of lymphangiogenesis in endometrial tissues 

and contributes to the pathogenesis of endometriosis in a mouse model [218]. Whether 

hypertension causes inflammation-associated lymphangiogenesis in female reproductive 

organs and whether this is beneficial or detrimental remains an area to be explored.

Future perspectives and conclusion

To conclude, studies conducted so far demonstrate that hypertension has a deleterious 

effect on male and female fertility. It is also now appreciated that hypertension induces 

inflammation, immune cell trafficking, and inflammation-associated lymphangiogenesis in 

various organs, but it remains largely unknown whether hypertension induces inflammation 

and inflammation-associated lymphangiogenesis in the gonads (Figure 8). Moreover, 

while limited in reports thus far, inflammation-associated lymphangiogenesis occurs in 

gonads in certain other pathological conditions (Figure 8). Hence, identifying how and 

to what extent inflammation and lymphangiogenesis occurs as a result of hypertension in 

reproductive tissues is a question of keen interest to our group. Preliminary results from our 

lab demonstrate up-regulation of lymphatic vessel markers, pro-lymphangiogenic growth 

factors, their respective receptors, and proinflammatory cytokines and chemokines in the 

testes of hypertensive mice (Figure 9). Studies are underway to examine how hypertension 

may induce inflammation-associated lymphangiogenesis in the gonads of hypertensive male 

and female mice. Whether enhancing lymphatic density in gonads may help in combating 

the inflammatory response and its consequences on reproductive function are key questions 

to consider. Further studies along these lines are required to support our hypothesis that may 

enlighten the mechanisms behind the deleterious effect of hypertension on fertility.
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IFN-γ interferon-γ

IL interleukin

L-NAME L-arginine methyl ester hydrochloride

LYVE-1 lymphatic vessel endothelial hyaluronan receptor-1

MCP-1 monocyte chemoattractant protein-1

MHC-II major histocompatibility complex-II

MIP-1α macrophage inflammatory protein-1α

MLC myosin light chain

NO nitric oxide

SC Sertoli cell

SHRSP spontaneously hypertensive rats that are stroke prone

SHR spontaneously hypertensive rat

T testosterone

TNF-α tumor necrosis factor-α

VEGF vascular endothelial growth factor

VEGFR vascular endothelial growth factor receptor

ZP Zona pellucida
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Figure 1. Effect of hypertension on gonadal function
Hypertension affects reproductive health by altering hormone levels and reproductive tissue 

vasculature in both males and females, thereby disturbing spermatogenesis and oogenesis, 

respectively. Created with BioRender.com.
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Figure 2. Hematoxylin and eosin staining of testis from normal and spontaneously hypertensive 
rats
(A) Normal histoarchitecture of testes from 26-week-old Wistar rats. Arrowheads indicate 

arteriolar adventitia. (B) Testes from 26-week-old Wistar rats showing intact seminiferous 

tubules and interstitial compartment. (C) A significant increase in adventitial layers 

in testicular arterioles (arrowheads) independent of their diameter in spontaneously 

hypertensive rats (SHR). (D) Testes from SHR showing immature germ cells in the tubular 

lumen (asterisk). The images are reproduced from the reference [51] with permission.
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Figure 3. Distribution of lymphatic vasculature in the prenatal testes of Prox1-EGFP reporter 
mice
(A) During embryonic development (E17.5), EGFP-positive lymphatic vessels begin to grow 

from the spermatic cord across the surface of the testis (T) but does not cross the testis cap. 

Lymphatics are also established on the epididymal head (E1) and tail (E2). (B) Endoglin 

(ENG) staining was done to view the distribution of blood vessels in fetal testes. (C) The 

lymphatics (Prox 1-EGFP-positive) and blood vessels (ENG labelled) did not colocalize. 

Regions in yellow represent overlapping of both green and red signals from different planes. 

(D) A 3-D representative image of the lymphatics in fetal testes. (E) Magnified image of 

fetal testes illustrating the lymphatic vessels running alongside the coelomic vessel (CV). 

(F) Magnified view of the rete testes (RT). Scale bar for panels (A–D) = 500 μm; (E and F) 

= 250 μm. The images are reproduced from the reference [119] with permission.
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Figure 4. Distribution of the lymphatic vasculature in the adult testes of Prox1-EGFP reporter 
mice
(A) A brightfield image of the surface of adult mouse testes exhibiting blood vessels 

(BV) and the spermatic cord (asterisk). (B) Prox 1-EGFP-positive signals were observed 

from the same surface view. (C) A confocal image showing the Prox1-EGFP-positive 

lymphatic network across the tunica albuginea originating from the spermatic cord. (D–F) 

Prox 1-EGFP positive lymphatics were confined within the tunica albuginea (arrow) but 

was not found inside the seminiferous tubule (encircled) when co-stained with the Leydig 

cell marker HSD3B1 and counterstained with DAPI. Within the seminiferous tubules, EGFP 

expression was observed in spermatids that are in close proximity to the lumen. Scale bar for 

panel (C) = 600 mm, (D) = 100 mm. The images are reproduced from the reference [119] 

with permission.
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Figure 5. Lymphatic drainage of the testes and scrotum
Lymphatics from the testes drain into the para-aortic lymph nodes, whereas the 

lymphatics from the scrotum drain into the superficial inguinal lymph nodes. Created with 

BioRender.com.
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Figure 6. Distribution of the lymphatic vasculature in the adult ovary of Prox1-EGFP reporter 
mice
The adult ovary possesses a rich lymphatic network largely overlapping with the blood 

vasculature. (A) Prox 1-EGFP-positive lymphatics were observed throughout the ovary, 

originating from the rete ovarii (RO) (arrow), and extending into the ovarian medulla 

(Om) and ovarian cortex (Oc). (B) Endoglin (ENG) labeling showed an extensive network 

of blood vessels in the ovary with the follicle (F) indicated by an arrow. (C) Lyve-1 

positive lymphatic vessels were confined to the ovarian and extraovarian rete. (D) A 

3-D representative image showing Prox1-EGFP-positive lymphatics. (E) Lyve1- positive 

lymphatic vessels and ENG-positive blood vessels. (F) Combined image showed some 

colocalization of Prox1, Lyve1, and ENG and a distinct pattern of the blood and lymphatic 

network in the adult ovary; scale bar = 1 mm. The images are reproduced from the reference 

[119] with permission.
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Figure 7. Lymphatic drainage of the ovary and uterus
(A) The lymphatic vessels from ovaries drain into (i) the para-aortic lymph nodes, (ii) 

internal iliac lymph nodes, and (iii) inguinal lymph nodes. (B) Lymphatics from the 

fallopian tube drain into para-aortic and internal iliac lymph nodes. (C) Lymphatic vessels 

from the (i) fundus and superior uterine body drain into pre-aortic and para-aortic lymph 

nodes, cornu into the superficial inguinal lymph nodes, (ii) middle uterine body into the 

external iliac nodes, and (iii) the lower portion (cervix) into the internal iliac, external iliac, 

and sacral lymph nodes. (D) Lymphatics from the vagina drain into the superficial inguinal 

lymph nodes. Created with BioRender.com.
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Figure 8. Graphical overview of the effects of hypertension on gonadal function and the plausible 
mechanisms behind these effects
Hypertension is known to promote immune cell infiltration, inflammation, and 

inflammation-associated lymphangiogenesis in several organs like the heart, kidneys, 

intestine, and skin. Similarly, immune cell infiltration, inflammation, and lymphangiogenesis 

have been observed in gonads under certain pathological conditions. However, the exact 

molecular mechanisms by which hypertension affects gonads are still unclear. Hence, one 

of the plausible mechanisms might be immune cell infiltration and inflammation in gonads 

thereby leading to reproductive dysfunction. Inflammation-associated lymphangiogenesis 

may occur in a compensatory manner and its role in gonadal function in hypertension is 

unknown. Created with BioRender.com.
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Figure 9. Testes from L-NAME induced hypertensive mice had a significant increase in 
gene expression of lymphatic markers, proinflammatory cytokines, chemokines, and adhesion 
molecules
Results are expressed as mean ±SEM (n=4 per group), and statistical analyses were 

performed with a Student’s t test. *P<0.05 vs. Control mice.
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Table 1

Inflammatory markers altered in testis during inflammation

S.No. Inflammation model Findings of the study References

1. Experimental autoimmune 
orchitis model

Increased infiltration of macrophages, dendritic cells and subsets of 
T cells, elevated pro-inflammatory cytokines levels IL-6, TNF- α, 
up-regulation of cell adhesion molecules (CD31, CD44, CD106), 
chemokines (MCP-1, MIP 1 α and 1 β) and chemokine receptors 
(CCR2, CCR5 and CCR7)
Increased levels of IL-6 disrupted the integrity of the BTB by down-
regulating the expression of Occludin, and delocalization of Claudin 11 
and Zona occludens-1 in the testes, IL-6 also induces GC apoptosis

[153,158–
162,164,167,168,185,187]

2. Testicular cancer biopsies Increased levels of mRNAs of pro-inflammatory cytokines, such as 
IL-1β, TNF-α, and IFN-γ

[165]

3. Testicular biopsies 
from patients with 
spermatogenic failure

Increased mRNA expression of high-affinity IgE receptor and the 
mast cell-related fractalkine receptor revealing increased inflammatory 
activity in the testis

[170,171]

4. Lipopolysaccharide-
induced inflammation

Up-regulation of IL-1β and IL-6 in the testis [163]

5. Varicocele testes model Increased mRNA levels of proinflammatory cytokines (Tnfa, //1a, 
and //6), leukocyte marker (Cd45), and T-cell markers (Cd3g and 
Cd3d), attenuated mRNA expression of SC tight junction proteins such 
as Claudin-11, Occludin and Zona occludens-1 in varicocele testes

[188]
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Table 2

Inflammatory markers altered in ovaries and uterus during inflammation

S.No. Inflammation Model Findings of the study References

1. Autoimmune ovarian disease 
model

Up-regulation of proinflammatory markers such as IL-1, TNF-α, and IFN-γ [207]

2. Ovarian biopsies from women 
with premature autoimmune 
ovarian failure.

Ovarian granulosa cells had ectopic expression of MHC-II in the site of 
inflammation.

[208]

3. Autoimmune ovarian disease 
model (Cynomolgus macaques)

Co-localization of T cell clusters with MHC-II+ macrophages in the ovarian 
interstitium.

[205]

4. Females with premature 
ovarian insufficiency

Increased level of chemokines such as MIP-1α, IL-8, eotaxin-1 and 
interferon inducible protein-10 as well as lymphangiogenic factor VEGF-D 
in follicular fluid.

[209]

5. Endometriosis Elevated levels of intercellular adhesion molecule-1, insulin-like growth 
factor-I, IL-1, IL-6, IL-8, IL-12, MCP-1, MIP-1α, RANTES, eotaxin, VEGF 
and TNFα were associated with endometriosis.

(Explained in detail 
in the cited 
reviews) [211,213]
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