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Abstract: Imaging of blood vessel structure in combination with functional information about
blood oxygenation can be important in characterizing many different health conditions in which
the growth of new vessels contributes to the overall condition. In this paper, we present a method
for extracting comprehensive maps of the vasculature from hyperspectral images that include
tissue and vascular oxygenation. We also show results from a preclinical study of peritonitis
in mice. First, we analyze hyperspectral images using Beer-Lambert exponential attenuation
law to obtain maps of hemoglobin species throughout the sample. We then use an automatic
segmentation algorithm to extract blood vessels from the hemoglobin map and combine them into
a vascular structure-oxygenation map. We apply this methodology to a series of hyperspectral
images of the abdominal wall of mice with and without induced peritonitis. Peritonitis is an
inflammation of peritoneum that leads, if untreated, to complications such as peritoneal sclerosis
and even death. Characteristic inflammatory response can also be accompanied by changes in
vasculature, such as neoangiogenesis. We demonstrate a potential application of the proposed
segmentation and processing method by introducing an abnormal tissue fraction metric that
quantifies the amount of tissue that deviates from the average values of healthy controls. It is
shown that the proposed metric successfully discriminates between healthy control subjects and
model subjects with induced peritonitis and has a high statistical significance.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

In recent years, hyperspectral imaging (HSI) has shown promising results in many different
biomedical applications [1]. HSI has its roots in remote sensing [2] and is a combination of
imaging and spectroscopy that opens up possibilities for novel contrasts in biomedical imaging,
such as light scattering and chemical contrasts. In the past, it has been used to segment organs in
the abdominal cavity [1], to study a wide range of pathologies such as melanoma [3] and prostate
cancer [4], and for many other novel applications to support medicine and biology [1].

Understanding tissue changes associated with a disease is an important aspect of preclinical
studies addressing disease onset and mitigation. One such case is peritonitis, which can cause
serious complications in patients receiving peritoneal dialysis (PD). The occurence of peritonitis
is a major reason for discontinuation of peritoneal dialysis, resulting in a decreased quality of life
for patients [5]. Since peritonitis can lead to peritoneal fibrosis and is a major cause of peritoneal
dialysis failure, which can even lead to patient deaths [6], it is important to investigate possible
mitigation techniques and identify changes associated with the onset and the progression of the
disease [7]. In the scope of this study, a chlorhexidine gluconate (CHX) induced mouse model of
peritonitis [5,8,9] was used, along with resolvin D as a method to regulate inflammatory response
[10]. Morphological and physiological changes in the CHX animal model include inflammation,
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fibroblast proliferation, neoangiogenesis, and collagen fiber production that ultimately lead to
fibrosis and peritoneal dysfunction [5,9]. In preclinical studies of peritonitis, the main methods
used to assess disease state are visual observation of changes and histological examination [5,8,9].
The former provides an overview of the entire specimen, but lacks the sensitivity to subtle
changes in morphology and physiology. Histology, on the other hand, offers excellent insight
into microscopic changes, but often overlooks smaller lesion areas due to limited sampling.
Biomolecular methods, such as DNA microarray, are also used [11], but lack spatial resolution.
Therefore novel methods capable of assessing morphological and physiological changes at larger
scales with sufficient spatial resolution are needed. This study focuses on blood parameters and
blood vessel architecture because neoangiogenesis and luminal narrowing of arterioles have
been reported in some studies [9] and a high statistical significance of blood-related metrics was
observed in our previous study [12].

Because changes in blood vessel function and structure are difficult to assess with established
imaging and examination methods and often require highly skilled personnel (e.g., Doppler
ultrasound), we propose a novel approach that combines hyperspectral imaging and extraction
of tissue properties with automated vessel segmentation. Such an approach offers new insights
through hybrid vasculature-oxygenation maps and opens opportunities for novel metrics to
calculate disease burden.

In this paper, we first present the methodology based on hyperspectral images acquired using a
custom developed hyperspectral imaging system. We extract tissue properties from the spectra,
namely the volume fractions of oxygenated and deoxygenated blood, and use them to create
maps of hemoglobin species. These maps are then automatically segmented and used to generate
either composite oxygenation-vasculature maps or binary blood vessel network maps. Using the
segmented blood vessels, we propose a novel metric of abnormal tissue fraction calculated from
tissue and blood vessel oxygenation. We test the proposed metric with statistical tests to confirm
that it can reliably detect the presence of peritonitis, demonstrating its applicability.

2. Methods

2.1. Hyperspectral imaging

Hyperspectral imaging (HSI) is an imaging modality that combines imaging with spectroscopy.
The result of HSI is a 3-dimensional dataset, often referred to as a hyperspectral cube, that
contains both spectral and spatial information such that a spectrum is available for each spatial
pixel. This approach allows for both spatial and spectral analysis.

Our in-house developed hyperspectral pushbroom imaging system [12,13], shown schematically
in Fig. 1 was used to perform hyperspectral imaging. Samples were illuminated in a transmission
geometry with a halogen light source placed below the sample. Light passing through the
sample was collected with a 50 mm objective lens (Xenoplan 2.8/50-0902, Schneider Kreuznach,
Germany) coupled to an imaging spectrograph (ImSpector V10e, Specim, Finland) designed to
operate in the spectral range between 400 nm and 1000 nm. The diffracted light was recorded
using a 5 MP CMOS camera (Blackfly S BFS-U3-51S5M-c, FLIR Integrated Imaging Solutions,
Canada) with a detector size of 2/3" and a USB3.0 connection resulting in images with a
resolution of 2448 × 2048 along the spatial and spectral dimensions, respectively. To achieve a
better signal-to-noise ratio, the images were binned by a factor of 2 along the spatial dimension,
resulting in 1224 pixels across the field of view of approximately 3.7 cm, giving a pixel size of
0.03 mm in the object plane. The actual spatial resolution determined using a USAF target was
0.1 mm, whereas the spectral resolution determined using a HeNe laser line broadening was
2.9 nm.

In addition to the sample measurement, a white reference image was acquired. Here, the light
source illuminated the white diffusive plate, which was also used as the substrate for the sample
imaging and was located between the light source and the spectrograph. In this way, the only
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Fig. 1. HSI system schematic. A complete schematic of the HSI system used for this
study is shown in a), with the imaged object placed on top of the diffusive plate above
the transmission halogen light source. b) depicts the internal components of the system.
Components used in the transmission geometry are annotated. In c), the illumination
assembly along with the sample table is presented.

difference between the white reference and sample measurements was the absence of the sample
in the former. The acquisition protocol was adjusted to minimize the time between sequential
acquisition of the reference and sample images to minimize the effects of thermal instability of
the imaging system. The dark current of the detector was omitted from the measurements due to
an internal camera calibration. The sample data was normalized to obtain the real transmittance
values by dividing the recorded sample image with the white reference image. The normalization
also corrected the inhomogeneities in the illumination profile.

An integrated laser profilometry system based on laser triangulation [14,15] was used to
evaluate the sample thickness. The profilometry system allows imaging of the 3D surface with
resolutions of 0.1 mm in the lateral directions and 0.05 mm in the Z direction.

2.2. Study protocol

Mice subjects included in this study were 17 male C57BL/6J mice that were 15-16 weeks
old at the beginning of the study (Medical Experimental Centre, Ljubljana, Slovenia). Before
the experiment, all necessary approvals were obtained from the National Ethics Committee
of the Republic of Slovenia and the Administration of the Republic of Slovenia for Food
Safety, Veterinary and Plant Protection (Licence No. 34401-13/2018/5). The experiments were
performed in accordance with national and EU legislation (Directive 2010/63/EU). During the
study, animals were in a barrier system at 22 − 25 ◦C, 55 ± 10% humidity, 12 h light/dark
cycle (light 7a.m.-7p.m.); SPF according to FELASA recommendations (QM diagnostics, The
Netherlands), negative to all tested microorganisms. They were housed in open cages (Ehret,
825 cm2 floor area) with autoclaved bedding (Lignocel 3/4, Germany) and enrichment (Mouse
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house, Tecniplast; paper towels; paper tunnels), maintenance diet (Altromin 1324, Germany),
and autoclaved water (bottles, Tecniplast) ad libitum.

The treated model group received all the substances in the study. Peritonitis was induced by
intraperitoneal injection (G33) of 200 µL of chlorhexidine gluconate - CHX solution (0.1% CHX
(Wako Pure Chemical Industries) in 15% ethanol in phosphate buffered saline - PBS) per mouse
every second day. In addition, this group received resolvin D1 or epiresolvin D1 (an omega
3-fatty acid metabolite dissolved in absolute ethanol (100 ng/µL), Cayman Chemical, USA) daily
resolvin solution (100 ng dissolved in PBS, injected as 100 µL per mouse) as a treatment strategy.
In the (untreated) model and the (untreated) control groups, the daily resolvin solution injection
was replaced by 1% ethanol dissolved in PBS. In treated control and (untreated) control groups,
CHX solution injections used to initiate the model were replaced by PBS injections. In this way,
the amount of physical damage due to the injections was equal for all the experimental groups.
The entire protocol along with the group abbreviations and nomenclature used throughout this
paper is shown in Table 1. Because the distinction between the two resolvins was not important
in the scope of this study, both groups that received different resolvins are analyzed together. The
subjects included in this study were a subset of subjects in a larger study who were selected for
participation based on available imaging dates when the addition of hyperspectral imaging of the
subjects was a minimal intrusion into the established workflow.

Table 1. Three week experiment cohort overview. Overview of
the mice groups and the intraperitoneally injected substances

for each group on odd and even days are given in the first table.
The whole cohort consisted of n = 17 subjects. Column

marked with # lists number of subjects in each group. In the
second table, substances administered are listed. Legend:

CHX - chlorhexidine gluconate.

Abbreviation Group Even days Odd days #

PBS control PBSE PBS+PBSE 2

PBS+RVD treated c. RVD PBS+RVD 6

CHX model PBSE CHX+PBSE 3

CHX+RVD treated m. RVD CHX+RVD 6

Abbreviation Substance Injected volume

PBS PBS 200 µL

PBSE 1% ethanol in PBS 100 µL

RVD resolvin D1 in PBS 100 µL

CHX 0.1% CHX in 15% ethanol in PBS 200 µL

The 17 subjects in the experimental cohort were treated for three weeks prior to the sacrifice.
After euthanasia by CO2-gas inhalation, the abdominal cavity was filled with 6.5 mL of ice cold
PBS. After 30 seconds of gentle massage, PBS was removed to collect cells for further analysis.
The skin was removed and the abdominal wall was opened along the linea alba from the xiphoid
cartilage to the pelvic opening. One half of the abdominal wall, divided by the linea alba, was
excised, placed on a white Plexiglas substrate, and imaged in transmission geometry using the
hyperspectral imaging system.

The study was conducted as a double-blind study in which neither the person performing the
final phase of the experiment nor the person processing the data knew which group the subjects
belonged to. In this way, potential bias was minimized. Subjects were imaged in a random order
to further minimize the possibility of observer bias. The data collection protocol was established
before the study began, while the analysis protocol was established after data collection. The
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work presented is in the development and exploration phase, which roughly corresponds to
IDEAL phases 2a and 2b [16].

2.3. Extraction of physiological parameters

To extract physiological parameters, namely oxygenated and deoxygenated blood volume fraction
along with the blood oxygenation, a simple, yet fast model was used. To approximate the
scattering in the tissue, a common power law was used in the form of [17]

µ′s = a
(︃
λ

500 nm

)︃−b
, (1)

where parameter a is the value of the reduced scattering coefficient at 500 nm and b is the
scattering power.

Light absorption in the tissue was modelled by considering both hemoglobin species and
weighting them by the blood volume fractions BVF

µa = BVFOµa,oxy + BVFDµa,deoxy, (2)

where BVFO and BVFD are the blood volume fractions of oxygenated and deoxygenated blood,
respectively. Data for the absorption coefficients of pure oxygenated and deoxygenated blood
µa,oxy and µa,deoxy were obtained from the literature [18] and corrected for mice gene line specified
hematocrit of 51.2%.

Light attenuation in tissue was modelled using the Beer-Lambert exponential attenuation law
[19]

T =
I
I0
= e−(µ

′
s+µa)d, (3)

where T is the normalized transmittance as the ratio of the transmitted intensity I and the incident
intensity I0, d is the sample thickness and µ′s and µa are reduced scattering and absorption
coefficients, respectively.

A nonlinear least squares lsqnonlin fitting routine in MATLAB (MathWorks, USA) was used
to fit the above model equations to the white reference normalized hyperspectral data and to
determine the blood volume fractions for both hemoglobin species. The fitted parameters were the
oxygenated and deoxygenated blood volume fractions BVFO and BVFD, along with the scattering
parameters a and b. The thickness of the sample d was determined from the laser profilometry
measurements. The calculated blood volume fractions were also used to calculate the total blood
volume fraction BVF = BVFO + BVFD and the oxygenation SpO2 = BVFO/BVF. The resulting
maps for the blood-related tissue properties are shown along with an RGB projection of the
hyperspectral cube in Fig. 2. The RGB projection of HSI was obtained by multiplication of the
normalized tissue spectra by CIE XYZ tristimulus spectra [20]. The results were summed over
the entire wavelength range, and finally normalized by the number of wavelengths. In this way,
each transmittance spectrum was translated into the three CIE XYZ colorspace coordinates. To
obtain the RGB image representation from the XYZ colorspace, a MATLAB function xyz2rgb
was used with the default option of the D65 standard illuminant.

2.4. Automatic vessel segmentation

To obtain maps of blood vessels from blood parameter maps, automatic segmentation of blood
vessels was performed. Before segmenting the vessels, the contrast of the BVF image was
enhanced using CLAHE adaptive histogram equalization implemented as adapthisteq function in
MATLAB. This step produces a high-contrast image (Fig. 3(a)), but destroys the quantitative
information. The image was additionally padded to mitigate artifacts that may occur at the edges
of the image.



Research Article Vol. 13, No. 6 / 1 Jun 2022 / Biomedical Optics Express 3466

Fig. 2. RGB projection and fit results. Locally contrast enhanced RGB projection of the
HSI is shown in panel a). The shaft of the blue arrow marks the location of linea alba
and the direction points towards the head. Peritoneal side of the abdominal wall is facing
the camera. In panel b), parameters fitted with the model relating to the blood are shown.
Treated control group subject S17.

Fig. 3. Enhanced BVF total and B-COSFIRE images. Panel a) shows CLAHE enhanced
BVFT map as obtained from the model. Additionally, map is padded by extending border
values to avoid effects of the border on automatic segmentation. In panel b), enhanced
B-COSFIRE image is shown. Treated control group subject S17.
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To automatically detect the linear structural features corresponding to blood vessels, an
unsupervised filtering algorithm B-COSFIRE [21–23] was used. Briefly, this filter uses
difference-of-gaussian (DoG) functions (Fig. 4(a)) arranged along a line (Fig. 4(b)) and performs
a convolution with the original image to enhance linear features. Individual filter is parameterized
by the distances of the DoGs from the support center ρ and the widths of the DoGs σ. Several
such filters are then applied at different rotations parameterized by the angle ϕ. The algorithm
uses additional parameters length, which specifies the length of the linear segments to be detected,
and parameters σ0 and α, which specify the blur that allows small deviations from the perfectly
linear feature. Since a symmetric line, as defined in Fig. 4, fails to amplify line endings, an
additional asymmetric filter is introduced containing i.e.only DoG2 and DoG4. More information
about the algorithm can be found in the original papers by Azzopardi, Strisciuglio, and others
[21–23]. The filter parameters used for this work were determined by manually testing different
parameters to obtain a robust set and are listed in Table 2.

Fig. 4. B-COSFIRE filtering uses a set of difference-of-gaussian (DoG) functions (a)
arranged along a linear segment, as shown in b).

Table 2. B-COSFIRE filter parameters for
blood vessel segmentation. Parameters for

both filters used in automatic segmentation are
given in the table. Length denotes the length of

a line segment to be detected, whereas
orientations denotes the number of

orientations used to achieve rotational
invariance. Parameters depend on image

resolution and sample characteristics, such as
expected vessel dimensions and lengths. All

units are in pixels.

parameter symmetric filter asymmetric filter

σ 5.5 4.0

ρ 2 2

length 20 20

orientations 12 24

σ0 3 4

α 0.7 0.1

After the B-COSFIRE operation, the resulting image was first cropped to the original size,
removing slightly more than was added in the padding step, further eliminating possible artefacts



Research Article Vol. 13, No. 6 / 1 Jun 2022 / Biomedical Optics Express 3468

at the image or sample edge. A threshold was also applied to the processed image to remove
the background. Small spurious unconnected areas were removed using bwareaopen MATLAB
function that eliminated areas smaller than 150 pixels. Filtered segmented image was smoothed
using a 2-D Gaussian filtering, implemented in MATLAB as imgaussfilt function, with the default
standard deviation parameter of 0.5 pixels and kernel size of 3 pixels. This has minimal effect on
the overall image but removes sharp edges that can cause problems when using the segmentation
for Fourier analysis. The resulting segmentation of blood vessels for subject S17 is shown in
Fig. 3(b).

From the B-COSFIRE filter response, binary vasculature maps were obtained by applying
another threshold to the images. The resulting raw binary mask (Fig. 5(a)) contained some small
artefacts that were a consequence of the segmentation and needed to be removed. These regions
were removed by using the MATLAB function bwareaopen that removed all areas smaller than
100 pixels in surface. The resulting filtered image is shown in Fig. 5(b). In addition, a skeleton of
the vascular tree was calculated from the filtered image using the bwskel function in MATLAB.
To avoid accidentally unconnected vessels, the skeletonized image was dilated by 3 pixels using
the imdilate function and a diamond structural element. The resulting skeleton in Fig. 5(c) could
be further used to evaluate the structure of the vascular network.

Fig. 5. Automatic binary segmentation of blood vessels. Panel a) shows raw output
obtained by thresholding the B-COSFIRE image. In panel b), small areas are removed and
vessels are slightly dilated to remove any artificial termination of the segmented vessels. In
panel c), a skeleton of segmented vessels is obtained. Treated control group subject S17.

3. Results

Blood vessels were first visually examined by superimposing the oxygenation map over the
B-COSFIRE segmentation. For this purpose, an unmodified oxygenation map with an additional
opacity channel was plotted. Filtered segmentation was used for the opacity channel. This
process consequently provides smoother images due to the smoothing during the generation
of the segmented image and by gradually changing from fully opaque to a fully transparent
image at the edges of the vessels. In this way, a composite map of oxygenation and vessel
architecture was created. Two example maps are shown in Fig. 6. Since the method is not depth
resolved, the oxygenation of blood in the vessels reported in this paper is actually a combination
of oxygenation of the blood in the segmented vessels and in the tissue above and below the
vessels. Since most of the blood is located in the segmented vessels, total oxygenation of the
sample at points with vessels still provides a good approximation of the oxygenation of the
blood in the segmented vessels themselves. Please note, that due to the protocol including CO2
euthanasia, no differentiation between arteries and veins could be made. The image thus shows
all vessels that were filled with blood during the imaging. At first glance, the images of the
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healthy control group subject S30 (a) and the diseased model group subject S21 (b) appear
similar, but subtle differences can be seen in the peripheral regions. In particular, the diseased
subjects showed increased oxygenation in the peripheral part of the tissue (regions marked with
green dashed ellipses), as indicated by the redder smaller vessels. An interesting abnormality,
indicated by a white arrow in Fig. 6(a), was observed in some of the subjects as a high increase
in oxygenation of blood in larger vessels. This appears as if an occluded blood vessel was not
filled with deoxygenated blood during the sacrifice. These vessels occur in the areas near the
linea alba (marked with a gray line in Fig. 6) and thus could be due to the blood vessels damaged
during the application of the intraperitoneal injections.

Fig. 6. Vasculature oxygenation image. Oxygenation in vasculature is plotted by using
only the B-COSFIRE segmented vessels to obtain a map of vasulature and the oxygenation.
In panel a) a control group S30 subject is displayed whereas in panel b) a model subject S21
is plotted. A possibly obstructed blood vessel in an otherwise healthy subject is marked by
a white arrow. Green dashed ellipse marks the peripheral area with visible differences in
oxygenation between both subjects and the gray line denotes the line alba.

Qualitative differences observed visually from oxygenation maps were further analyzed to obtain
quantitative metrics and potentially relate them to disease severity. First, oxygenation information
was divided into blood vessels and surrounding tissue based on the binary segmentation maps
shown in Fig. 5(b). The data obtained in this fashion was plotted as a per-image histogram, with
an example shown in Fig. 7(a). A difference between oxygenation in vessels and tissue was
observed with lower values for vessels. This finding is consistent with the protocol involving
CO2 euthanasia, which significantly decreases the oxygen saturation of blood circulating in the
vessels. Second, an increase in the mode (most frequent value) of the oxygenation was observed
in the model subjects both in vessels and in the surrounding tissue. This change is shown in the
scatter plot for both oxygenation modes in Fig. 7(b). In this figure, a large difference can be seen
between the model (CHX & CHX+RVD) and control (PBS & PBS+RVD) groups.

Considering only the mode of oxygenation as in Fig. 7(b), some subjects (subject S25) would
be mis-classified as diseased. To avoid this, the relative abnormal fraction metric was introduced.
First, the value of 0.35 oxygenation was selected based on the Fig. 7(b) and used as a threshold
between healthy and diseased tissue. Further, this value was used to calculate the relative fraction
of tissue and vessels with oxygenation above this threshold. The relative abnormal fraction
metric is thus related to the surface area of tissue exhibiting abnormal oxygenation. The metric is
defined as

RAF =
NSpO2>0.35

Nall
, (4)
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Fig. 7. In a), a smoothed histogram of oxygenation in vessels and in the surrounding tissue
for a healthy subject S30 is shown. Integral of the histogram (1000 bins) is normalized
to unity. In b), a scatter plot of most frequent values of histograms (mode) for the whole
population of both vessel and surrounding tissue oxygenation is displayed. Each node,
marked with the sequential number of the subject in the study represents a single animal.
With a maroon line, value of SpO2 = 0.35 is denoted. Where groups of subjects are
not obvious from label placement, additional colored line above the number indicates the
appropriate group.

where RAF is the relative abnormal fraction, NSpO2>0.35 is the number of pixels with increased
oxygenation, and Nall is the number of all pixels included in the analysis. The results of this
metric for blood vessels and surrounding tissue are shown in Fig. 8(a) and (b), respectively.

Fig. 8. Box plots of relative abnormal fraction (RAF) metric for vessels (a) and surrounding
tissue (b). Individual subjects are denoted by points. Red line shows the median, box covers
the interquartile range and whiskers show maximal and minimal values.

From the box plots in Fig. 8 (per-subjects bar chart is available in the Supplement 1), there
is a clear difference between control group subjects (PBS & PBS+RVD groups) and model
group subjects (CHX & CHX+RVD groups). In general, less than half of the tissue exhibited
oxygenation higher than the set threshold in the control groups whereas in the model groups, the
relative abnormal fractions approached 1. This suggests widespread changes in the tissue due
to the prolonged inflammation. No significant differences were observed between the resolvin
treated and untreated groups, neither for the vessels nor for the surrounding tissue. To test this, a
two-sided Wilcoxon test implemented as ranksum function in MATLAB was used, providing

https://doi.org/10.6084/m9.figshare.19733569
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the values for CHX and CHX+RVD of p = 0.38 and p = 1 for vessels and surrounding tissue,
respectively. For PBS and PBS+RVD groups, p = 1 was obtained for the both vessels and the
surrounding tissue. These findings indicate, that both resolvin (RVD) receiving groups were
statistically indistinguishable from those without resolvin.

To further test the statistical power of the proposed relative abnormal fraction RAF metric,
an analysis of statistical significance using a Wilcoxon rank-sum test in Matlab was performed.
To determine the effect of the proposed threshold for oxygenation on classification, significance
was evaluated at different thresholds for oxygenation, as shown in Fig. 9(a). Differences with
high statistical significance (p<0.01) were observed almost independently of the threshold value.
This observation is supported by the visually dramatically different histograms of a healthy and
diseased subjects (see Fig. 9(b)).

Fig. 9. Evaluation of statistical significance of the proposed relative abnormal fraction of
tissue and blood vessels in relation to the oxygenation threshold (a). Dashed black line shows
the threshold value selected for relative abnormal fraction (RAF) metric. Example average
histograms for blood vessel oxygenation of a healthy and diseased subjects, showing marked
differences (b).

4. Discussion

The tissue property extraction model was found to be suitable for determining blood volume
fractions and hemoglobin oxygenation in this study, as confirmed by the statistically significant
results of the double-blind study. However, the use of both the power law approach to model
reduced scattering and Beer-Lambert’s law inherently introduce some uncertainty in the absolute
values of the scattering parameters (scattering a and b) and in the hemoglobin concentration
obtained from this model [24]. The use of Beer’s law is justified to some extent by the fact that the
samples were rather thin and translucent. However, the use of the combination of the two simple
models introduces a large uncertainty in determining the exact scattering properties of the tissue,
which were therefore excluded from further analysis. In addition, oxygenation values were used
to classify subjects, which should be more robust than absolute values of blood volume fractions.
In the future, a more robust model of light propagation in tissue could be used that would also
provide more reliable absolute values. An example would be the adding-doubling algorithm
[19,25,26], which would also allow extraction of tissue scattering properties and provide better
insight into tissue morphology changes.

The main parameters observed in this study were the structure of the vascular network and the
oxygenation of the blood therein. The oxygenation of the blood in the vessels was approximated
for the scope of this study by the overall oxygenation of the blood in the parts of the tissue where
segmented vessels were present. This approach could offset the values because the regions above
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and below the segmented vessels also contribute to the total oxygenation. These effects are
limited by the fact that a) most of the blood is in the segmented vessels, and b) that the samples
were thin and the segmented vessels subsided a considerable proportion of the total tissue. In
the future, these effects could be reduced by calculating the segmented vessel diameter from the
observed projection and subtracting the contribution of tissue above and below these vessels.
The latter could be estimated from the pixels surrounding the segmented vessels. Because no
systematic differences in oxygenation were observed within the different vessels, it was not
possible to determine whether the vessels were veins or arteries. This is mainly due to the
protocol involving CO2 euthanasia, which causes an inrush of deoxygenated blood first into
the arterial network. In studies in which such differentiation would be required, an additional
experimental step could be introduced. One possible approach would be to use a method capable
of detecting blood movement within the vessels in-vivo, such as Doppler OCT [27], and then
coregister the images to separate arteries from veins. This step could allow the creation of a
blood vessel atlas. Such an atlas could later be used to decouple arteries and veins based on their
relative location and architecture even without the additional imaging step. Analysis of tissue and
vascular oxygenation revealed statistically significant differences between healthy and diseased
experimental groups, leading to the introduction of a successful relative abnormal fraction. In
addition, a study of the blood vessel network with fractal dimensions [28,29] was also performed
but yielded null results. First, the non-binarized vasculature maps were used to calculate the
Fourier fractal dimension [30] since such approach has been successful in several studies on
biological samples [31–33]. In this study, no significant differences were found between healthy
and diseased subjects in fractal dimensions calculated with the Fourier transform. Skeletonized
vascular maps were additionally used in calculation of the box-counting fractal dimension [28],
but again the results showed no statistically significant differences between the experimental
groups. Additional visual inspection of the vessel maps revealed no significant differences in
vascular architecture between subjects in the different groups, confirming the results of the fractal
dimension analysis. On the basis of these observations, two conclusions suggest themselves: a)
the resolution of the imaging modality was not sufficient to observe the growth of new, small
blood vessels, or b) there was no new growth or no change in the topology of the vascular
network. In the future, the approach could be extended to study various pathologies with proven
neovascularization, providing an additional metric to assess disease progression. It is important
to note that the presented results show, that even with lower resolution, it is possible to detect
the tissue changes that accompany peritonitis. Additionally, the null results for the vasculature
architecture analysis place the minimum resolution and disease induction time for these changes
to be visible in the given animal model above those used in this experiment.

The metrics based on oxygenation, although highly statistically significant, also lend themselves
to future study from a biological standpoint. Although it is evident that statistically significant
changes are occurring, the biological reasons for the observed changes are not entirely clear at
this time. A single study in the literature suggests a possible luminal narrowing of the arterioles
[9], but the results are not adequately investigated and discussed. To better understand these
changes, the protocol and nature of the disease will be further investigated in the future. Changes
in oxygenation can be grossly attributed to changes in oxygenation before sacrifice but could also
be a consequence of different vessel and tissue permeability as euthanasia was performed with
CO2 gas, which naturally reduces oxygenation. The latter is consistent with results from other
studies [9].

Recently, machine learning approaches to image segmentation and classification have been
gaining popularity in many different areas of biomedical optics [34] as well as in general
medical physics for computer-aided recognition [35]. Artificial intelligence methods present
promising results, from improvements of optical methods and segmentation of optical images
[34], help with segmentation of medical images [36], to automatically classifying and screening
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of cancer [37,38], among others. In the future, the segmentation task could be delegated
to machine learning, reducing processing time and user’s work in setting appropriate filter
parameters. It has already been shown that machine learning approaches can provide good results
in blood vessel segmentation [39,40]. Nonetheless, the presented approach addresses the need to
generate a wealth of training data and thus represents a key component in the development of
a machine learning approach for segmentation and generation of composite oxygenation maps
from hyperspectral images.

5. Conclusion

In conclusion, an approach for the generation of composite vasculature maps with oxygenation
information form hyperspectral images was presented. The approach based on a simple model of
light-tissue interaction and the B-COSFIRE filter enables fast analysis and provides statistically
significant results with minimal user interaction. Based on the vascular maps and oxygenation
information, a relative metric for abnormal tissue was proposed, implemented, and statistically
tested. It showed reliable, highly statistically significant (p<0.01) performance in classifying
control and model group subjects with and without peritonitis, respectively. In addition, the
possibility of creating binary segmentation maps that can be used for blood vessel structure
analysis was presented.

The research presented in this work serves as an introduction to a new composite hyperspectral
image representation that could be used in the future to further explore oxygenation related
changes in biological tissues, and provides a solid foundation for the implementation of advanced
machine learning-based approaches to vascular map generation. These, in turn, could help
provide new biomarkers of vascular form and function and support clinical and preclinical
research.
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