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Abstract

The success of transcriptome-wide association studies (TWAS) has led to substantial research toward improving the predictive accuracy of
its core component of genetically regulated expression (GReX). GReX links expression information with genotype and phenotype by play-
ing two roles simultaneously: it acts as both the outcome of the genotype-based predictive models (for predicting expressions) and the lin-
ear combination of genotypes (as the predicted expressions) for association tests. From the perspective of machine learning (considering
SNPs as features), these are actually two separable steps—feature selection and feature aggregation—which can be independently con-
ducted. In this study, we show that the single approach of GReX limits the adaptability of TWAS methodology and practice. By conducting
simulations and real data analysis, we demonstrate that disentangled protocols adapting straightforward approaches for feature selection
(e.g., simple marker test) and aggregation (e.g., kernel machines) outperform the standard TWAS protocols that rely on GReX. Our devel-
opment provides more powerful novel tools for conducting TWAS. More importantly, our characterization of the exact nature of TWAS sug-
gests that, instead of questionably binding two distinct steps into the same statistical form (GReX), methodological research focusing on
optimal combinations of feature selection and aggregation approaches will bring higher power to TWAS protocols.
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Introduction
Pioneered by several researchers in 2015 (Gamazon et al. 2015;
Gusev et al. 2016), transcriptome-wide association studies (TWAS)
have successfully identified many associations between genes
and complex traits (Gusev et al. 2018, 2019; Mancuso et al. 2018;
Theriault et al. 2018; Wu et al. 2018; Ratnapriya et al. 2019; Chen
et al. 2021) and have triggered extensive methodological research
(Gamazon et al. 2015; Gusev et al. 2016; Mancuso et al. 2019;
Nagpal et al. 2019; Shi et al. 2020; Bhattacharya et al. 2021; Cao
et al. 2021b; Tang et al. 2021). The key concept behind TWAS is ge-
netically regulated expression (GReX), which is the component of
gene expression attributed to genetic regulators. A typical TWAS
procedure involves training a linear model, such as ElasticNet
(Gamazon et al. 2015) or Bayesian regression (Zhou et al. 2013;
Gusev et al. 2016; Nagpal et al. 2019), to estimate GReX as a
weighted linear combination of regulatory DNA elements. The
predicted GReX is then associated to phenotype in a separate as-
sociation mapping dataset in which expression data is unavail-
able. The importance of GReX is evidenced by the number of
publications which either seek to improve its prediction accuracy
or expand its applications (Zeng et al. 2021). Researchers have

refined the original ElasticNet- and Bayesian-based models of

PrediXcan (Gamazon et al. 2015) and BSLMM (Zhou et al. 2013) by

integrating multiple tissues (Barbeira et al. 2019; Hu et al. 2019;

Zhou et al. 2020; Liu et al. 2021), adding trans-eQTLs (Luningham

et al. 2020; Bhattacharya et al. 2021), and incorporating improved

Bayesian methods (Nagpal et al. 2019). GReX counterparts have

also been developed for LD-score (Siewert-Rocks et al. 2021), poly-

genic risk score (Liang et al. 2020), and fine-mapping (Mancuso

et al. 2019).
However, recent efforts in improving GReX may have over-

looked its primary purpose, which is not to predict expressions

but to gather relevant genetic variants for association mapping

(Gamazon et al. 2015). This viewpoint is supported in practice by

the low predictive accuracy of GReX models, which generally

have an R2 value of 5–10% for the topmost candidates due to low

expression heritability (Gamazon et al. 2015; Li et al. 2018;

Mancuso et al. 2018; Bhattacharya et al. 2020). Properly speaking,

GReX is a weighted linear combination of genotypes which are se-

lected via the objective of predicting expression data, and as

such, these linear combinations do not necessarily represent true

biological causes of gene expression. This subtle but important
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distinction suggests that understanding the statistical roles un-
derlying GReX may yield greater benefits over simply optimizing
its prediction accuracy. From the perspective of machine learning
on high-dimensional data, GReX combines feature selection,
which reduces dimensionality by removing irrelevant features
(genetic variants), and feature aggregation, which calculates ag-
gregate statistics from selected features (variants) to maximize
statistical power (Figure 1A). The process of training the expres-
sion model is equivalent to using a linear model to select var-
iants, and the process of associating predicted expressions to
phenotype is equivalent to using the same linear model to aggre-
gate variants (Figure 1B). Given this interpretation, we investigate
whether feature selection and feature aggregation can be sepa-
rated into two different methods, and if so, are there methods
that perform better than the GReX linear model in either step

(Figure 1C)? As our analyses of real and simulated data show, the
answer to both questions is yes: it is not only possible to conduct
feature selection and aggregation separately, we also propose a
simple combination of methods that can outperform the use of
GReX alone.

This work extends the findings of two recent publications
which replace GReX-based feature aggregation in TWAS with
kernel-based methods. In our recent paper (Cao et al. 2021b), we
developed a protocol called kTWAS (kernel-TWAS) using the
ElasticNet model from PrediXcan to select variants and the well-
known Sequence Kernel Association Test (SKAT) to associate var-
iants to phenotype (Wu et al. 2010). We demonstrated that
kTWAS outperforms TWAS in real data and simulations under
different genetic architectures (Cao et al. 2021b). Independently,
another group at Emory University has released VC-TWAS

Figure 1 Function of GReX in terms of feature selection and feature aggregation. (A) Feature selection and feature aggregation are two typical steps in
the statistical analysis of high-dimensional data. (B) The current practice of TWAS combines feature selection and feature aggregation into a single
multiple linear regression model for estimating genetically regulated expression (GReX). (C) Separating these two fundamentally different steps allows a
larger combination of methods to be applied to TWAS, providing greater flexibility in practice and potentially increased power. This study quantifies the
performance of the four combinations illustrated with colored arrows.
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(Variance Component TWAS) (Tang et al. 2021), which utilizes a
Bayesian linear model adapted from Tigar (Zeng and Zhou 2017;
Nagpal et al. 2019) to select features and an equivalent kernel test
for aggregation. Although these two publications use different
approaches to model GReX and different parameterizations to
conduct simulations, both studies conclude that kernel methods
outperform GReX models in feature aggregation. In this work, we
extend these findings by also replacing GReX-directed feature se-
lection with a straightforward method for selecting variants
based on their marginal effects on expression. By thoroughly
comparing two GReX-based protocols and two protocols that dis-
entangle feature selection from aggregation, we show that sepa-
rating feature selection and aggregation into different statistical
models significantly improves the power of TWAS in many condi-
tions. This clearly shows that GReX models are not always opti-
mal for either feature selection or aggregation, and future
research should consider GReX as just one of several components
that can be chosen to maximize the power of TWAS in a two-step
framework.

Although TWAS is most often conducted on summary statis-
tics (i.e., meta-analysis) rather than subject-level genotypes
(Gusev et al. 2016, 2018; Theriault et al. 2018), our previous results
show that the relative power between protocols utilizing sum-
mary statistics is consistent with the relative power of their coun-
terparts utilizing subject-level genotype data (Cao et al. 2021b).
We therefore chose to analyze subject-level data in order to sim-
plify the comparison between GReX-based and disentangled
TWAS protocols. For the same reason, we also restricted our
comparisons to cis-genetic elements and single-tissue analyses
to avoid possible complications introduced by the integration of
more advanced models.

Materials and methods
Overview of novel TWAS protocol disentangling
feature selection and aggregation
We implement the novel protocol called Marginal þ Kernel
TWAS (abbreviated mkTWAS), which replaces GReX with mar-
ginal effect-based feature selection and kernel-based feature ag-
gregation [implemented with FastQTL (Ongen et al. 2016) and
SKAT (Wu et al. 2010), respectively]. For a given focal gene, we
first select genetic variants by associating individual variants
with the gene’s expression level (Ongen et al. 2016), retaining sig-
nificant variants as potential expression quantitative trait loci
(eQTLs) for downstream association mapping. We then aggregate
potential eQTLs using SKAT’s kernel-based score test to deter-
mine gene to phenotype associations (Wu et al. 2010). We include
a relatively large number of potential eQTLs (with nominal P-val-
ues less than 0.05 before multiple-test correction) as input to
SKAT, since our previous work found that the performance of
SKAT favors a large number of weakly correlated variants over a
small number of highly significant variants. We hypothesize that
this is because kernel methods are more robust to noise and
therefore extract weaker signals, allowing statistical power to
scale with an increasing number of features (Belkin et al. 2018).

Overview of protocols under comparison
To evaluate the effectiveness of disentangled feature selection
and aggregation, we compare a total of four protocols (Table 1).
Protocols (1) and (2) use GReX to bind together feature selection
and aggregation. Protocol (1), referred to as GReX (ElasticNet),
adopts the ElasticNet linear model from PrediXcan (Gamazon
et al. 2015) to estimate GReX. Protocol (2), referred to as GReX

(BSLMM), adopts the Bayesian sparse linear mixed model
(BSLMM) to estimate GReX. As the existing BSLMM tool Fusion
(Gusev et al. 2016) operates on summary statistics, we instead in-
corporate the weights of the BSLMM model into PrediXcan for as-
sociation mapping. Protocols (3) and (4) separate feature
selection and aggregation into different models. Protocol (3), re-
ferred to as ElasticNet þ Kernel, uses the ElasticNet model from
PrediXcan (Gamazon et al. 2015) for feature selection and SKAT
(Lee et al. 2013) for feature aggregation as implemented in our
previous method kTWAS (Cao et al. 2021b). Protocol (4), referred
to as Marginal þ Kernel, uses marginal genotype-expression
effects for feature selection and SKAT for aggregation, as de-
scribed above in our novel method mkTWAS. Type-I error is ex-
perimentally quantified by simulating under the null hypothesis
for each protocol. Details of each protocol and the type-I error
simulations are detailed below.

Notations
In this section, we use X to denote a matrix of genotypes over k�
n individuals and genetic variants, and x, y, and z to denote vec-
tors of genetic variants, phenotypes, and gene expressions re-
spectively. We use b to denote vectors of coefficients for genetic
markers and � for residuals. Vectors corresponding to a particular
variant site are indexed by the subscript i.

Details of analytic protocols
Four protocols were applied in simulations and real data analy-
sis, with two GReX-based protocols chosen to represent flagship
TWAS methods in practical use. (1) Uses ElasticNet (Friedman
et al. 2010; Simon et al. 2011) implemented by PrediXcan
(Gamazon et al. 2015), as a representative of regularized GReX
models, which is applied to both feature selection and aggrega-
tion. (2) Uses BSLMM (Zhou et al. 2013) as a representative of
Bayesian GReX models, also applied to both feature selection and
aggregation. As the widely used BSLMM tool Fusion operates on
summary statistics (Gusev et al. 2016), we instead use PrediXcan
to conduct subject-level association mapping from the weights
estimated by BSLMM.

Two additional protocols were chosen to represent methods
separating feature selection and aggregation. (3) Combines
ElasticNet feature selection with Kernel-based feature aggrega-
tion. Expression data is used to train an ElasticNet model such
that z �

P
bixi þ �, where the objective function minimizes

z� ẑð Þ2 þ kab1 þ 1� að Þb2. Training is conducted using the R
package glmnet (Friedman et al. 2010; Simon et al. 2011) in simu-
lations, while pre-trained coefficients from the PrediXcan website
are used in real data analysis (http://predictdb.org). Unlike the
standard TWAS protocol however, the predicted expressions are
not used directly to conduct association mapping. Instead, the
weighted genetic variants are formed into a kernel K ¼ X

0
DX=n,

where X is a matrix of the selected variants, D is a diagonal ma-
trix of variant weights, and n is the number of genetic variants.
Using SKAT, we conduct a score-test Q ¼ y’Ky, where K is the ker-
nel described above. Complete details are in our recent publica-
tion (Cao et al. 2021b), and the code is available on GitHub
(https://github.com/theLongLab/kTWAS). (4) Marginal þ Kernel:
This protocol uses FastQTL (Ongen et al. 2016) to carry out eQTL
analyses on each gene and select a large number of genetic var-
iants from potential eQTLs (variants with a nominal P-value
lower than 0.05, without multiple-test correction). Note that the
marginal effect of each variant is computed individually from the
eQTLs. Selected variants are formed into the same kernel and
SKAT score test as described in protocol (3), except the diagonal
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matrix D contains the log-base-10 P-values from eQTL mapping.
The code is available on GitHub (https://github.com/theLongLab/
mkTWAS).

Type-I error estimation
Although both GReX-based protocols (1) and (2) are well-
established and the type-I error of protocol (3), ElasticNet þ
Kernel, was recently assessed (Cao et al. 2021b), the type-I error
may still vary depending on the simulations and implementa-
tions. We therefore generated random phenotypes using individ-
ual data from the 1000 Genomes Project (Auton et al. 2015) to
measure the type-I error for each protocols. The type-I error is es-
timated using the top 5% cutoff for the most significant P-values
obtained by the null hypothesis simulation. More specifically, we
calculate corresponding statistics using real genotype and ran-
domly simulated phenotype and take the P-value ranked at the
top 5% (among all simulated rounds under the null) as the cutoff
for power simulations. This ensures that the type-I error of all
protocols under comparison is exactly 5%. As shown in
Supplementary Table S7, all protocols have type-I errors compa-
rable to their theoretical values.

Real data analysis
For all four protocols, feature selection was performed on GTEx
whole blood data (GTEx Consortium 2015). Association tests
were conducted on genotype data for seven diseases in WTCCC
(Wellcome Trust Case Control Consortium 2007). Out of 393,273
features (SNPs) recorded in WTCCC, 363,217 are shared
with GTEx and utilized for feature selection. The sample size for
each of the seven WTCCC diseases is listed in Supplementary
Table S8.

Success rate analysis
To assess the relevance of the genes identified by each protocol,
we examine the proportion of discovered genes which have anno-
tations in the DisGeNET database (Pinero et al. 2015, 2017).
Specifically, for any pair of protocols A and B yielding correspond-
ing sets of associated genes, we take the difference of the sets
A� B (genes only in A and not B), and B� A (genes only in B but
not A), and find the proportion of genes in each set difference
which are annotated in DisGeNET.

Simulations
Gene expressions are simulated using genotype information from
GTEx (GTEx Consortium 2015), and phenotypes are simulated us-
ing information from the 1000 Genomes Project (Auton et al.
2015).

Causal scenarios
We simulate the two commonly assumed scenarios pleiotropy
and causality (Supplementary Figure S1). All variants are sam-
pled from a region including the relevant gene body and 1 Mb of
flanking sequences at both sides. Under pleiotropy, the pheno-
type y and expression z are independently caused by the same
genetic variants, so that z ¼ f Xð Þ þ � and y ¼ gp xð Þ þ �. Under

causality, phenotype is caused by genotype directly and also via
the intermediary effect of expression, so that z ¼ f Xð Þ þ � and
y ¼ gc z; xð Þ þ �. Note that the function f which maps genotype to
simulated expressions is identical in both scenarios, but the func-
tions gp and gc for simulating phenotype differ.

Genetic architecture models
The functions f , gp and gc are defined differently depending on the
specific genetic architecture. In the additive model, given n genetic
variants in a genotype matrix X where X ¼ x1; . . . ; xn, the
expression model is defined as f Xð Þ ¼

Pn
i¼1 bixi. We set n as 2, 5,

and 10 in our simulations. The effect size bi is drawn from the
standard normal distribution Nð0; 1Þ. In the interaction model, two
genetic variants are chosen to affect gene expression or phenotype
through one of three definitions. The “heterogeneous” model is
equivalent to the logical operation “OR,” in which the presence of a
mutant allele in either or both variant sites causes a phenotypic
change. The “epistatic” model is equivalent to the logical operation
“AND,” in which phenotypic change occurs only when a mutation is
present at both variant sites. Finally, the “compensatory” is equiva-
lent to the logical operation “XOR,” in which a mutant allele can
cause phenotypic change at either site, but if mutations occur at
both sites their effect is negated. In all of the above models, the ge-
netic component contributing to expression or phenotype is simu-
lated as a value between 0 and 1, which is later rescaled based on
expression or trait heritability. Under pleiotropy, gpðXÞ is defined
identically to f ðXÞ, except that the variance component is rescaled
by expression heritability instead of local trait heritability. Under
causality, the additive genetic architecture defines gc z; xð Þ ¼ zþ �.
In the interaction architectures, letting z denote the median of the
gene expression z we define:

gc x; zð Þ ¼ z if x > 0 or z > z
0 otherwise

for the heterogeneity model;
�

gc x; zð Þ ¼ z if z > z and x > 0
0 otherwise

for the epistasis model; and
�

gc x; zð Þ ¼ z if z > z and x ¼ 0; or z < z and x > 0
0 otherwise

for the compensatory model:
�

Illustrated examples on the evaluation of the above formulas are
provided in Supplementary Table S9.

Variance component
The residual � is randomly drawn from a normal distribution
Nð0; r2Þ where the parameter r2 is a scaling parameter which
ensures that the expression heritability or trait heritability,
denoted h2, is maintained at a pre-specified value. Specifically,
let G denote the genetic component of expression or phenotype
which is calculated from f ðXÞ, gpðzÞ, or gcðz; xÞ. Then r2 is derived
using the equation ðVar Gð Þ þ r2Þ=r2 ¼ h2, where h2 is pre-
specified for a particular simulation. This ensures that the

Table 1 Design of compared protocols

Protocol no. and name Feature selection Feature aggregation Implementation

GReX (ElasticNet) GReX: ElasticNet GReX: ElasticNet PrediXcan
GReX (BSLMM) GReX: Bayesian model GReX: Bayesian model PrediXcan/BSLMM
ElasticNet þ Kernel GReX: ElasticNet Kernel PrediXcan þ SKAT
Marginal þ Kernel Marginal effects Kernel FastQTL þ SKAT
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simulated expressions or phenotypes have the desired level of
heritability.

Results
Simulations
To thoroughly investigate the conditions under which disentan-
gling feature selection and aggregation outperforms GReX alone,
we conduct simulations comparing the four protocols in two sce-
narios: causality, where genotype causes phenotype via the inter-
mediary of expression, and pleiotropy, where genotype causes
phenotype and expression independently (Supplementary Figure
S1). As previous publications show that TWAS enjoys higher
power in pleiotropy than causality (Veturi and Ritchie 2018; Cao
et al. 2021a; Tang et al. 2021), the pleiotropic simulations have re-
duced heritability to better distinguish power differences be-
tween each protocol (see Materials and Methods). In both scenarios,
we simulate expression and phenotype with an additive genetic
architecture and three interactive architectures labeled epistatic,
compensatory, and heterogeneous (Figures 2 and 3). Under plei-
otropy, the two disentangled methods (Marginal þ Kernel and
ElasticNet þ Kernel) significantly outperform the GReX-based
protocols (Figure 2). Marginal þ Kernel also outperforms
ElasticNet þ Kernel, showing that a simple marginal effect-based
model can outperform a regularized ElasticNet model in feature
selection (Figure 2). Under causality, the GReX-based protocols
have higher power in the additive case, with GReX (BSLMM) lead-
ing (Figure 3, A–C). This is unsurprising since the additive archi-
tecture consists of the same causal relations assumed by GReX

(genotype causes expression and expression causes phenotype).
In the interaction architectures under causality, all protocols
have similar power with BSLMM leading slightly (Figure 3, D–F).
Detailed mathematical formulas and parameterizations of our
simulations are available in Materials and Methods.

Real data analysis
We first compare the four protocols above by analyzing WTCCC
genotype data (Wellcome Trust Case Control 2007), with com-
plete outcomes listed in Supplementary Tables S1–S3. For quanti-
tative evaluation, we chose type 1 diabetes (T1D) and rheumatoid
arthritis (RA) out of seven possible WTCCC diseases, as all four
protocols discovered a large number of candidate genes in these
diseases (P-value less than 0.05 after Bonferroni correction). For
both diseases, Marginal þ Kernel identifies the largest number of
significant genes out of all protocols (Supplementary Tables S1
and S2). To validate the functional relevance of the identified
genes, we refer to the DisGeNET database of human gene-disease
associations (Pinero et al. 2015, 2017). We assess each protocol on
the number of their discovered genes which are reported as
disease-associated in DisGeNET (successes), as well as the pro-
portion (success ratio) of these validated genes among all of the
significant genes identified by the given protocol (Supplementary
Table S4). Due to implementation differences, Marginal þ Kernel
and GReX (BSLMM) can assess all 19,696 genes in DisGeNET,
whereas ElasticNet þ Kernel and GReX (ElasticNet) only assess
7252 genes for which corresponding ElasticNet models are avail-
able from the PrediXcan website (Gamazon et al. 2015). As such,
we only compare between the pairs Marginal þ Kernel vs GReX

Figure 2 Power comparison of protocols in simulated pleiotropy scenario. The pleiotropic scenario simulates independent associations from genotype to
phenotype and expressions (see Supplementary Figure S1 and Online Methods). Power is indicated on the y-axis. (A–C) are results under an additive
genetic architecture, with differing expression heritability and local trait heritability denoted below each panel. The total number of contributing
genetic variants is 2, 5, and 10 in each panel (left to right). (D–F) are results under interaction architectures, with expression heritability and local trait
heritability denoted below. From left to right, the specific interactions are heterogeneous (logical “OR”), epistatic (logical “AND”), and compensatory
(logical “XOR”).
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(BSLMM) and ElasticNet þ Kernel vs GReX (ElasticNet), giving a
total of four comparisons over two diseases. In three of these four
comparisons, the protocols disentangling feature selection and
feature aggregation (Marginal þ Kernel, ElasticNet þ Kernel) out-
perform GReX-based protocols in both number and proportion of
successfully identified genes (Figure 4, A and C). The only excep-
tion is between Marginal þ Kernel and GReX (BSLMM) in T1D,
where Marginal þ Kernel has a slightly lower success ratio but a
much higher number of successes (Figure 4, A and C). Since pro-
tocols which identify fewer genes tend to find a higher proportion
of known disease-associated genes, we also compare the number
and proportion of genes which are exclusively identified by only
one of the two protocols under comparison (see Materials and
Methods). Complete outcomes are listed in Supplementary Table
S5. Again, in three out of four comparisons the disentangled pro-
tocols outperform GReX-based protocols (Figure 4, B and D). The
only exception is between ElasticNet þ Kernel and GReX
(ElasticNet) in T1D, where ElasticNet þ Kernel has a lower suc-
cess ratio but identifies a much larger number genes (Figure 4, B
and D). We perform an additional comparison between the two
disentangled protocols Marginal þ Kernel and ElasticNet þ
Kernel to evaluate the effectiveness of GReX on feature selection
alone. We find that the simple marginal effects model used in
Marginal þ Kernel outperforms the more complex ElasticNet
model used in ElasticNet þ Kernel in total number of successes,
but has a lower success ratio (Figure 5, A and C). However, when
omitting genes identified by both protocols, Marginal þ Kernel
substantially outperforms ElasticNet þ Kernel in both the total
number and the ratio of exclusive successes (Figure 5, B and D).

In addition to the above comparisons, for each disease we in-
vestigate whether the protocols can identify the top three genes

with the highest gene-disease association scores in DisGeNET.
The DisGeNET score takes into account the number of sources
that report an association, the type of curation for each source,
animal models where the association was studied, and the num-
ber of supporting publications discovered via text mining. This
evidence is combined to score each gene by the confidence of its
gene-disease association. The top three genes for RA are TNF,
PTPN22, and SLC22A4, of which Marginal þ Kernel is able to de-
tect TNF and PTPN22, whereas none of the other protocols can
identify any of the three genes. For T1D, the top three genes are
PTPN22, INS, and HNF1A, of which Marginal þ Kernel identifies
PTPN22, whereas the remaining protocols do not identify any of
the three genes.

Following standard practice in methodological works
(Gamazon et al. 2015; Gusev et al. 2016; Hu et al. 2019; Nagpal et al.
2019; Wainberg et al. 2019; Li et al. 2020; Yuan et al. 2020), we
searched the literature for additional evidence that the identified
genes are relevant to disease. As discussed above, the only proto-
col which associates PTPN22 with T1D and RA is Marginal þ
Kernel. PTPN22 is highly scored in DisGeNET and has extensive
literature support (Bottini et al. 2006). Among the five WTCCC dis-
eases with an insufficient number of identifiable genes for quan-
titative comparison, Marginal þ Kernel is the only protocol which
associates TCF7L2 with type 2 diabetes and IRGM with Crohn’s
disease. Among the five WTCCC diseases with an insufficient
number of identifiable genes for quantitative comparison,
Marginal þ Kernel is the only protocol which associates TCF7L2
with type 2 diabetes and IRGM with Crohn’s disease. Both genes
are well-supported by literature (Hattersley 2007; Prescott et al.
2010; Villareal et al. 2010; Baskaran et al. 2014). Based on our liter-
ature search, the top 5 significant genes for all four protocols are

Figure 3 Power comparison of protocols in simulated causality scenario. The causality scenario simulates dependence of phenotype on genotype via
gene expression (see Supplementary Figure S1 and Online Methods). Panels (A–F) have the same layout as Figure 4.
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generally well supported. A comprehensive listing and discussion
of the relevant literature for each gene is included in
Supplementary Notes and Table S6.

Discussion
Our results show that in most cases, decoupling feature selection
and aggregation allows even a simple feature selection method,
based on the individual effects of genetic variants, to outperform
a complex regularized model, which utilizes the combined linear
effects of all potential eQTLs. Combined with the two preceding
publications which apply kernel-based feature aggregation to
TWAS (Cao et al. 2021b; Tang et al. 2021), this clearly demon-
strates that GReX is not an optimal choice for all conditions.
Although GReX has been a successful approach for leveraging ex-
pression data in GWAS, it is inherently limited by its use of a sin-
gle linear model to solve two high-dimensional machine learning
problems. Current TWAS development has largely treated GReX
as a monolithic component, perhaps because the underlying sta-
tistical understanding of GReX as a genotype (not expression)
model has been overlooked. By separating feature selection and
feature aggregation into independent procedures, we show that
many potential combinations of methods for conducting TWAS
have been overlooked, some of which can yield improved power
and specificity in commonly seen genetic architectures.

Another branch of TWAS method development is from the
perspective of instrumental variables in causal inference.
Among several tools toward this line, we chose a recently pub-
lished tool, PTWAS (Zhang et al. 2020) for a comparison against
mkTWAS by looking at the overlap between their outcomes
and DisGeNET. Based on our procedure, it is verified that

PTWAS also has a well-controled type-I-error (Supplementary
Table S7) and identified lots of sensible genes (Supplementary
Tables S1–S3). However, as a comparison, we found that
mkTWAS discovered more genes than PTWAS (Supplementary
Figure S2). The rates of success are similar however the success
rates among genes uniquely identified by mkTWAS signifi-
cantly outperform PTWAS (Supplementary Figure S2).

The simplicity of our marginal effects model suggests that fea-
ture selection plays an underappreciated role in TWAS and
deserves further investigation. We have not thoroughly investi-
gated the theoretical trade-offs between single marginal-effect-
based approach and the advanced ElasticNet-based approach
yet. One interpretation of our marginal method’s effectiveness is
that it is more lenient in selecting variants, which allows a wider
number of genes with poorly predicted expressions to be ana-
lyzed. For instance, PrediXcan can only analyze around 1/3 of the
genes which have well-predicted expressions, whereas Marginal
þ Kernel can analyze all available genes in the transcriptome.
We also propose that the larger number of variants selected by
marginal effects pairs better with kernel-based aggregation, due
to the previously discussed robustness of the kernel test to noise.
These findings suggest that while feature selection and aggrega-
tion methods can be independently developed, it is also neces-
sary to consider their compatibility when integrated in a two-step
TWAS framework.

In order to simplify the design and interpretation of the proto-
cols in this study, we did not consider trans-eQTLs and multiple
tissue-based methods. As a future work, we will examine
whether the conclusions of this study remain valid when poten-
tial trans-eQTLs are included in the protocols and simulations.
Our findings can also apply to other types of middle-omic

Figure 4 Comparison of GReX-based vs disentangled protocols in WTCCC data. Each figure compares two pairs of protocols in which the same number
of genes are assessed over two WTCCC diseases (T1D and RA): GReX (ElasticNet) vs ElasticNet þ Kernel (left), and GReX (BSLMM) vs Marginal þ Kernel
(right). (A) Total number of discovered genes (successes) which are reported as disease-associated in DisGeNET. (B) Number of discovered genes
(successes) discovered exclusively by one of the two protocols under comparison. (C) Proportion (success rate) of all discovered genes which are
validated by DisGeNET. (D) Proportion (success rate) of genes discovered exclusively by each protocol which are validated by DisGeNET.
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directed association mapping studies such as PWAS on proteins

(Okada et al. 2016; Brandes et al. 2020) and IWAS (Xu et al. 2017) on

brain images. This opens many additional opportunities for ap-

plying new or existing combinations of tools to various datasets.
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