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Abstract

The domestication of plant species leads to repeatable morphological evolution, often referred to as the phenotypic domestication syn-
drome. Domestication is also associated with important genomic changes, such as the loss of genetic diversity compared with adequately
large wild populations, and modifications of gene expression patterns. Here, we explored theoretically the effect of a domestication-like
scenario on the evolution of gene regulatory networks. We ran population genetics simulations in which individuals were featured by their
genotype (an interaction matrix encoding a gene regulatory network) and their gene expressions, representing the phenotypic level. Our
domestication scenario included a population bottleneck and a selection switch mimicking human-mediated directional and canalizing se-
lection, i.e., change in the optimal gene expression level and selection toward more stable expression across environments. We showed
that domestication profoundly alters genetic architectures. Based on four examples of plant domestication scenarios, our simulations pre-
dict (1) a drop in neutral allelic diversity; (2) a change in gene expression variance that depends upon the domestication scenario; (3) tran-
sient maladaptive plasticity; (4) a deep rewiring of the gene regulatory networks, with a trend toward gain of regulatory interactions; and (5)
a global increase in the genetic correlations among gene expressions, with a loss of modularity in the resulting coexpression patterns and
in the underlying networks. We provide empirically testable predictions on the differences of genetic architectures between wild and do-
mesticated forms. The characterization of such systematic evolutionary changes in the genetic architecture of traits contributes to define a
molecular domestication syndrome.

Keywords: plant domestication; gene expression regulation; population bottleneck; phenotypic plasticity; environmental change; net-
work topology; artificial selection; individual-based simulations; population genetics; genetic correlations

Introduction
Domestication is a process of rapid evolution over successive
generations of anthropogenic selection, leading to adaptation to
habitats created by humans and acquisition of profitable traits
for them. Such innovations originate from genetic and plastic
variation sustaining phenotypic shifts in domesticates compared
with their wild counterparts (Fuller et al. 2010). In plants, traits
targeted by those shifts alter architecture (more compact mor-
phology), life-history (loss or partial loss of seed dispersal and
seed dormancy, increased synchronicity of germination and rip-
ening), as well as production- and usage-related traits (taste, in-
crease of harvestable organs). They are often associated with
convergent phenotypic changes across species (Larson et al.
2014), and collectively referred to as the phenotypic domestication
syndrome.

The discovery of the genetic bases underlying variation of do-
mesticated traits has been the focus of ample empirical work.
Dozens of domestication genes have been discovered, most of
which are transcription factors (Martı́nez-Ainsworth and

Tenaillon 2016; Fernie and Yan 2019) embedded into complex

gene regulatory networks (GRNs). Perhaps the most emblematic

example is provided by the Tb1 gene, which together with other

genes controls maize branching architecture via hormone and

sugar signaling (Doebley et al. 1997; Whipple et al. 2011; Dong et al.

2017, 2019). It is responsible for the strong apical dominance phe-

notype, i.e., repression of axillary bud outgrowth (Clark et al.

2006). Interestingly, in contrast to the maize allele, the Tb1 allele

from its wild ancestor (teosinte) confers a responsiveness to light

when introgressed into a maize background (Lukens and Doebley

1999). It therefore appears that domestication has triggered the

selection of a constitutive shade avoidance phenotype in maize

(Studer et al. 2017), that has translated into a loss of phenotypic

plasticity. Along this line, recent results indicate that reduced

Genotype-by-Environment (GxE) interactions may be a general

consequence for traits targeted by human selection. For example,

genomic regions displaying footprints of selection explain less

variability for yield GxE than “neutral” regions (Gage et al. 2017).
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Decreased phenotypic plasticity during domestication likely
results both from the stability of human-made compared with
wild habitats and from selection for stable crop performance
across environments; it has yet to be characterized in other crops
and for a broader range of traits.

In addition to the phenotypic domestication syndrome, genome-
wide sequencing data have revealed the outlines of a molecular do-
mestication syndrome. This molecular syndrome includes a loss of
genetic diversity through linked selection and constriction of pop-
ulation size due to sampling effects (Yamasaki et al. 2005).
Severity of those genetic bottlenecks as estimated by nucleotide
diversity loss, ranges from 17% to 49% in annuals while often no
loss is observed in perennial fruit crops [reviewed in Gaut et al.
2015]. The combined effect of bottlenecks, increased inbreeding
(Glémin and Bataillon 2009) and linked selection in domesticates
translates into shrink in effective population size, which in turn
reduces the efficacy of selection against deleterious mutations
(Moyers et al. 2018). Although increased recombination rate in
domesticates compared with their wild relatives may partially
compensate this effect (Ross-Ibarra 2004), fixation of deleterious
mutations in domesticates and a resulting genetic load is often
observed as exemplified in African rice (Nabholz et al. 2014),
grapevine (Zhou et al. 2017), and maize (Wang et al. 2017).

Regarding molecular phenotypes assessed by transcriptomic
surveys, data are still scarce and emerging patterns not as clear.
Measures of variation of gene expression in domesticates relative
to their wild counterparts either reveal a significant loss, as in
rice, cotton (Liu et al. 2019), beans (Bellucci et al. 2014); a signifi-
cant gain as in tomato (Sauvage et al. 2017); or no substantial
change as in soybean (Liu et al. 2019), olives (Gros-Balthazard
et al. 2019), and maize (Swanson-Wagner et al. 2012). In the latter,
however, reduced variation in expression was observed at domes-
tication candidate genes, indicating that selection primarily acts
on cis-acting regulatory variants (Hufford et al. 2012): most
evolutionary-relevant mutations affecting the evolution of gene
expressions are located in (or in the close vicinity) of the domesti-
cation genes. This result was further confirmed in F1 hybrids
from maize/teosinte crosses where large differences in expres-
sion were primarily caused by cis-divergence, and correlated with
genes targeted by selection during domestication (Lemmon et al.
2014).

Beyond quantitative measures of gene expression, domestica-
tion is also associated with gene network rewiring. A pioneer
work in maize indeed indicates that 6% of all genes display al-
tered coexpression profiles among which, genes targeted by se-
lection during domestication and/or breeding are over-
represented (Swanson-Wagner et al. 2012). Interestingly, net-
works encompassing domestication targets display greater con-
nectivity in wild than in domesticated forms as if selection had
triggered connection loss to/from these genes. In beans, coex-
pression networks at the genome level revealed a global excess of
strong correlations in domesticates compared with wild, the lat-
ter being sparser with more isolated nodes and smallest con-
nected components than the former (Bellucci et al. 2014). In
contrast to maize, little qualitative difference was reported as for
networks surrounding selected and neutral contigs.

While population genetic tools have been broadly used to esti-
mate domestication bottlenecks and associated genetic load in
plants (Eyre-Walker et al. 1998; Tenaillon et al. 2004; Wright et al.
2005; Gaut et al. 2015; Kono et al. 2016; Liu et al. 2017; Wang et al.
2017), a theoretical framework that considers molecular domestica-
tion syndrome as a whole allowing to make predictions beyond ver-
bal models is still in its infancy (Stetter et al. 2018). Here, we

propose to simulate the evolution of GRNs in a population sub-
mitted to domestication-like pressures. We used a modified ver-
sion of a classical gene network model (the “Wagner” model,
after Wagner 1994, 1996) to represent the complex genetic archi-
tecture of gene expression regulation, and tracked the evolution
of genetic diversity, of gene expression plasticity, and of network
topology in scenarios featuring (1) a temporary drop in the popu-
lation size (bottleneck) and (2) a substantial change in the selec-
tion regime. The default demographic scenario was defined
based on maize, an outcrosser crop with a relatively simple do-
mestication (a single origin for the crop with a moderate domesti-
cation bottleneck); we further studied alternative domestication
scenarios (African rice, pearl millet, and tomato) to assess the ro-
bustness of our conclusions. Simulations aim at providing a gen-
eral framework to explore a multitude of scenarios and life-
history traits, and experimentally testable predictions.

Materials and methods
Gene network model
The gene network model was directly inspired from Wagner
(1996), with minor changes detailed below. An illustration of a
simplified (three genes) network evolution under this model is
given in Figure 1. Individual genotypes were stored as n� n inter-
action matrices W, representing the strength and the direction of
regulatory interactions between n transcription factors or regula-
tory genes. All genes have the potential to regulate other genes of
the network (although such feedback is not mandatory). Each el-
ement of the matrix Wij stands for the effect of gene j on the ex-
pression of gene i; interactions can be positive (transcription
activation), negative (inhibition), or zero (no direct regulation).
Each line of the W matrix can be interpreted as an allele, i.e., the
set of regulatory sites in the promoter of the gene. The model
considered discrete regulatory time steps, and the expression of
the n genes, stored in a vector P, changes during the development
of an individual as Ptþ1 ¼ F WPtð Þ, where F x1; x2; . . . ; xnð Þ applies a
sigmoid scaling function f xð Þ to all elements to ensure that gene
expression ranges between 0 (no expression) and 1 (full expres-
sion). We used an asymmetric scaling function as in
Rünneburger and Le Rouzic (2016) and Odorico et al. (2018):
f xð Þ ¼ 1= 1þ ke�lxð Þ, with k ¼ 1� að Þ=a and l ¼ 1=a 1� að Þ. This
function is defined such that a ¼ 0:2 stands for the constitutive
expression (in absence of regulation, all genes are expressed to
20% of their maximal expression).

The kinetics of the gene network was simulated for 16 time-
steps in each individual, starting from P0 ¼ a; . . . ; að Þ. The simula-
tion program reports, for each gene i, the mean pi , and the vari-
ance Vi of its expression level over the four last time steps. A
non-null variance characterizes networks that have not reached
equilibrium at 16� 4¼ 12 time steps, either because of slow net-
work dynamics or because the network is unstable (cyclic pat-
tern). In addition to this traditional framework, we considered
that one of the network genes was a “sensor” gene influenced by
the environment. This makes it possible for the network to react
to an environmental signal and evolve expression plasticity. In
practice, the environmental signal at generation g was drawn in a
uniform distribution eg � U 0; 1ð Þ and the value of the sensor gene
was eg at each time step (the sensor gene had no regulator and
was not influenced by the internal state of the network).

Population model
The gene network model was coupled with a traditional
individual-based population genetics model. Individuals were
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diploids and hermaphrodites, and generations were non-overlap-

ping. Reproduction consisted in drawing, for each of the

N offspring, one (in case of selfing) or two (outcrossing) parents

randomly with a probability proportional to their fitness. Parents

gave two gametes, a gamete containing a random allele at each

of the n loci (assuming free recombination). There was no recom-

bination between regulatory sites at a given locus (the model

assumes cis-regulation only, so that all regulatory sites are close

to the gene). The genotype of an individual was defined by both

inherited gametes; the W matrix from which the expression phe-

notype was calculated was obtained by averaging out maternal

and paternal haplotypes. In the “Wagner” model, regulatory

effects are additive; the regulatory effects of both alleles average

out, and the effects of transcription factors add up. Yet, even if

regulatory effects are additive, the mapping between the strength

of regulation and gene expression is nonlinear (sigmoid). As a

consequence, the model accounts for both dominance and epis-

tasis at the gene expression level, strong regulators (activators or

inhibitors) being dominant over weak regulators. For instance,

the gene expression in a loss-of-function heterozygote will be

closer to the functional homozygote than to the mutant homozy-

gote.

Individual fitness w was calculated as the product of two compo-

nents, w ¼ wU �wS: The first term wU corresponds to the penalty

for networks that have not reached stability, wU ¼
Qn

i¼1 exp �s0Við Þ,
s0 being the strength of selection on gene expression variance

(i.e., selection against expression instability). The second term wS

corresponds to a Gaussian stabilizing selection component, which

depends on the distance between the expression phenotype and a

selection target h: wS ¼
Qn

i¼1 exp �si pi � hið Þ2
h i

, si standing for the

strength of stabilizing selection on gene i. As detailed below, some

genes were not selected (in which case si ¼ 0), some genes were se-

lected for a stable optimum hi (“stable” genes), while a last set of

genes were selected for optima that changed at every generation g

(“plastic genes”), half of them being selected for hig ¼ eg, and the

other half for hig ¼ 1� eg. Selection was moderate (s ¼ 10) for most

simulations, albeit stronger selection (s ¼ 50) was also tested

(Supplementary Figure S1).
Mutations occurred during gametogenesis with a rate m,

expressed as the mutation probability per haploid genome. A mu-

tation consists in replacing a random element of the W matrix by

a new value drawn in a Gaussian distribution centered on the for-

mer value Wij
0 � N Wij; rm

� �
, where rm is the standard deviation of

mutational effects. In this model, mutations affect gene
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Figure 1 Gene network model. An original network with three genes (A, B, C) and an environmental sensor gene (E) is illustrated. The genotype of an
individual is provided by the matrix of interactions (left panel), which provides the strength and direction (middle panel) of regulatory interactions: A is
a plastic gene influenced by E (and B), B is up-regulated by C but its expression does not depend on the environment, C is not regulated and therefore
expressed constitutively (level of expression set to 0.2). This example assumes that selection targets only the expression of gene A, which optimum is
hA ¼ 0:6 independently from the environment. Top row: expression of E is set to 0.5. The kinetics of the network during 16 time-steps shows a rapid
stabilization after three steps, the expression of the genotype is, however, distant from the expression target which represents a fitness cost (fitness< 1).
Middle row: upon an environmental change (expression of E changes from 0.5 to 0.8), the expression of the genotype reaches the expression target, and
the fitness is maximal. Bottom row: Without environmental change, maximum fitness can be reached with a mutant network whereby C now regulates
A; such a mutant network would have a fitness advantage over the original network in this environment. The variance of expression is computed for
each gene on the four last time-steps (shaded area), and networks which have not reached a stable state at that point (non-null variance) suffer a fitness
penalty.
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regulatory regions only (i.e., protein sequences do not evolve);
mutations occurring in the promoter of a gene affects primarily
its own expression, but the rest of the network may also be af-
fected when this gene regulates other “downstream” genes
(Figure 1).

Domestication scenario and parameterization
Domestication was associated with two independent changes in
the simulation parameters: a temporary demographic bottleneck
(decrease in population size), and a change in the gene expression
optima (directional selection). In order to calibrate simulations
with realistic parameters, we used simplified versions of docu-
mented domestication scenarios. The default scenario features a
protracted model of maize-like domestication involving a moder-
ate bottleneck starting about 9000 years (generations) ago with a
bottleneck strength of k ¼ 2Nb=Tb ¼ 2.45 (Wright et al. 2005), Nb

and Tb being the effective population size and the duration of the
bottleneck. Simulations were thus split in three stages: (1) a long
“burn-in” stage (Ta ¼ 12; 000 generations in the largest population
size Na ¼ 20; 000 that was computationally tractable, unless
specified otherwise) aiming to simulate predomestication condi-
tions, after which the “ancestral” species is expected to harbor
genotypes adapted to wild conditions (selection optima ha, drawn
in a uniform U 0; 1ð Þ distribution at the beginning of each simula-
tion for “stable” genes, fluctuating optima for “plastic” genes); (2)
a bottleneck of Tb ¼ 2800 generations (Eyre-Walker et al. 1998),
during which the population size was reduced to Nb ¼ 3430 indi-
viduals, and selection optima switched to hb; and (iii) Tc ¼ 6200
generations of expansion of the domesticated species (population
size to Nc ¼ 20; 000), while the selection optima remained to the
“domestication” conditions hb. Selection under domestication
conditions, compared with ancestral condition, implied more sta-
ble genes and less plastic genes. For computational feasibility,
the regulation network size was limited to 24 genes (þ1 environ-
mental signal), from which 12 were under direct selection. Before
domestication, the network encompassed 12 unselected, 6 stable,
and 6 plastic genes (Supplementary Figure S2). At the onset of do-
mestication, we modified the selection regime to mimic increased
environmental stability and, in turn, decreased plasticity (12 un-
selected, 10 stable, and 2 plastic genes, Supplementary Figure
S2). The mutation rate was set to m ¼ 10�3/gamete/generation,
which, given the estimated mutational target of 24 genes of 1 kb
[average estimated length of enhancers from Oka et al. (2017) and
Ricci et al. (2019)] roughly corresponded to a per-base mutation
rate of 3� 10�8 par generation, close to the maize estimate (Clark
et al. 2004).

In addition to the maize default domestication scenario, we
considered three additional domestication scenarios (African
rice, pearl millet, and tomato). Only the demography (timing and
strength of the bottleneck) was modified; the strength and mode
of selection before and after domestication was identical to the
maize scenario. Unknown demographic parameters were
replaced by educated guesses as detailed below, and the maxi-
mum population size was capped at N¼ 20,000. The domestica-
tion of the African rice (Oryza glaberrima) is characterized by a
long bottleneck (k¼ 0.61), starting 10,000 generations ago and
lasting 8200 generations (Cubry et al. 2018). Although the domes-
tication might have started later than the beginning of the bottle-
neck, we considered that the selection switch occurred
simultaneously with the bottleneck. The African rice is a selfer,
the selfing rate was set to 0.98. The domestication of the pearl
millet (Cenchrus americanus syn Pennisetum glaucum) is more recent
(4800 generations ago), with a short bottleneck (k¼ 1.89) (Clotault

et al. 2012; Burgarella et al. 2018). Just like maize, pearl millet is an
outcrosser. Finally, the tomato (Solanum lycopersicum) was do-
mesticated about 6400 years ago, with a long (5800 generations)
bottleneck (k¼ 0.17) (Arnoux et al. 2021). The ancestral species
was featured by a low diversity (estimated Na ¼ 1600), in con-
trast to the other large-ancestral population cases. The tomato
is a selfer (selfing rate 0.98). Scenario parameters are summa-
rized in Table 1.

In addition to the four default domestication scenarios (maize,
African rice, pearl millet, and tomato) described above, we ex-
plored control simulations to disentangle the contribution of the
bottleneck and the selection switch in emerging patterns, based
on the maize scenario (“Default”): a scenario with no bottleneck,
and a scenario with no selection switch. Given the importance of
these three scenarios (Default, no bottleneck, no selection switch)
in the analysis of the results, simulations were run with a longer
burn-in (Ta ¼ 24; 000) to ensure that the network was close to the
mutation-selection-drift equilibrium at the onset of domestica-
tion. We further assessed the sensitivity of our results for the
maize default domestication scenario to independent changes in
parameters values by (1) increasing the number of genes of the
GRN, from 24 to 48, and doubling the number of selected genes
and the mutation rate per genome accordingly; (2) setting the
mutation rate to 0 at the time of domestication to evaluate selec-
tion response from standing variation only; (3) modulating selec-
tion intensity both through a decrease in selected genes count (by
twofold), and through a modification of the fitness function to
simulate stronger selection; (4) dissociating selection switch from
a loss of plasticity, either by maintaining the selection for plastic-
ity over genes during domestication, or by keeping the same
number of plastic genes before and after domestication; (5) test-
ing the effect of a harsher (10 times less individuals) bottleneck.
We also assessed the sensitivity of the model to arbitrary param-
eters influencing the gene network dynamics, such as the num-
ber of time steps, or the selection on network instability. All
scenarios were replicated 1000 times; unless specified otherwise,
the reported variables were averaged over all individuals from
the population; figures report the mean over the replicates; col-
ored areas stand for the 10–90% quantiles over the simulation
replicates.

Model output and descriptive statistics
For each simulation run, summary statistics were computed ev-
ery 100 generations. The output includes the population mean
and variance of (1) the absolute fitness w; (2) gene expressions pi ;
and (3) gene regulations Wij for all pairs of genes. In addition, the
environmental index eg and all selection optima hg were
recorded.

Effective population sizes were estimated as Ne ¼ N= 1þ 4Vw

� �

(Walsh and Lynch 2018), where Vw stands for the variance in the

Table 1 Demographic parameters associated with all four
domestication scenarios

Maize African rice Pearl millet Tomato

Burn-in Ta 24,000 12,000 12,000 12,000
Burn-in Na 20,000 20,000 20,000 1600
Bottleneck Tb 2800 8200 900 5800
Bottleneck Nb 3430 2500 850 490
Bottleneck k 2.45 0.61 1.89 0.17
After Tc 6200 1800 3900 600
After Nc 20,000 20,000 5400 20,000
Selfing rate 0 0.98 0 0.98
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relative fitness (Vw ¼ Vw=E2
w, Vw and Ew being the population var-

iance and the population mean of the absolute fitness, respec-
tively). When computed over a time interval (e.g., over the
duration Tb of the bottleneck), the harmonic mean effective size
Ne ¼ Tb=

PTb
t¼1ð1=Ne tÞ was reported.

A proxy for neutral molecular variance around gene i was
obtained by reporting the average population variance of the Wij

for a subset of genes j which expression was very low (pj < 0:1
over the whole simulation), as regulatory sites sensitive to nonex-
pressed transcription factors are expected to evolve neutrally.

Environmental reaction norms (gene expression plasticity)
were estimated for each gene i by regressing the average expres-
sion pi over the environmental index eg, taken over a sliding win-
dow of 10 consecutive measurements (1000 generations).

The effect of gene regulations Wij being quantitative (and
thus, never exactly 0), the presence/absence of a connection in
the network was determined by the following procedure: the ex-
pression phenotypes P and P0

ij were calculated both from the full
W matrix, and from each of the n2 possible W0

ij matrices in which
Wij was replaced by 0. The regulation Wij was considered as a
meaningful connection when the Euclidean distance d P;P0

ij

� �

exceeded an arbitrary threshold of 0.1. Using other thresholds
shifted the number of connections upward or downward, but did
not affect the results qualitatively.

Genetic correlation matrices were estimated directly from the
population covariances in gene expressions hereafter called G
matrices, although they reflect here all genetic components and
not only additive (co)variances. The evolution of G matrices was
tracked by computing the distance between consecutive matrices
Gg and Ggþ500 in the simulation output. In practice, genetic cova-
riances were turned into genetic correlation matrices, and then
into genetic distance matrices ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� rð Þ

p
. The difference be-

tween both genetic distance matrices was calculated from their
element-wise correlation, as in a Mantel test (function mantel.rt-
est in the R package ade4; Dray and Dufour 2007). Network topo-
logical features, including the number of clusters used as an
index of modularity, were measured with the package igraph
(Csardi and Nepusz 2006).

Implementation
The simulation model was implemented in Cþþ and compiled
with gcc v-7.5.0. Simulation runs were automated via bash
scripts, and simulation results were analyzed with R version 4.0
(R Core Team 2020).

Results
We used a gene network model encompassing 24 transcription
factors to simulate the molecular domestication syndrome and pro-
vide testable predictions regarding (1) adaptation and the evolu-
tion of plasticity; (2) the evolution of molecular and expression
variance; and (3) the extent of network rewiring. Regulation
strength between genes was modeled as a quantitative variable
directly affected by mutation at regulatory sites, so that individ-
ual genotypes were stored in a matrix of interactions among all
genes (Figure 1). Our simulations featured plants undergoing a
rather classic protracted domestication scenario with a single
bottleneck. Demographic parameters were inspired by four docu-
mented domestication histories, two outcrossers (maize and
pearl millet) and two selfers (African rice and tomato). We mod-
eled the selection switch associated with domestication both as a
change in the gene expression optima and a partial loss of plastic
responses. The default maize domestication scenario was

compared with simulations without bottleneck (albeit a selection
switch), and simulations without selection switch (albeit a bottle-
neck), and we also explored independent variation of parameters
values to explore the sensitivity of our results. The whole simula-
tion approach is summarized in Supplementary Figure S3.

Adaptation during habitat shift
The strong selection switch resulted in an immediate change in
absolute fitness which dropped to <0.1%, mimicking transient fit-
ness loss of wild plants during habitat shift—a wild individual
would have a probability <0.001 to be selected by a breeder over
a modern crop strain (Figure 2). Fitness was slowly regained as
domesticated plants adapted to their new cultivated habitat.
Fitness recovery was slower in the Default scenario including a
bottleneck, the end of which was featured by an increase in the
rate of fitness gain. With the maize default scenario, the popula-
tion has entirely recovered its initial fitness roughly 9000 genera-
tions after the selection switch, the process being 2000
generations faster in absence of a bottleneck (Figure 2). Most of
the evolutionary change was due to new mutations, as simula-
tions without mutations from the beginning of domestication,
i.e., adapting from the standing genetic variation only, did show a
very limited response to selection (Supplementary Figure S4B).

We simulated the loss of plasticity during domestication as a
change in selection regime for four plastic genes (out of six) to-
ward stable selection or neutrality (Supplementary Figure S2).
The speed at which the gene network evolved increased by a fac-
tor of roughly 13 when the selection regime shifted (Figure 3A).
The selection switch translated into an abrupt change in reaction
norm for genes that became selected for a flat reaction norm
(plastic! stable in Figure 3B). We indeed observed a rapid loss of
plasticity, showing that it was an evolvable feature that
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simulations for each scenario.
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responded to selection. More surprisingly, however, the loss of

plasticity also affected genes that (1) were no longer under direct

selection (Plastic ! Neutral in Figure 3B) and (2) were supposed

to remain plastic (Plastic ! Plastic in Figure 3B), albeit to a lower

extent. This short-term maladaptive evolution highlighted the

genetic constraints during the rewiring of the network caused by

the selection switch. Immediately after it, plastic genes were still

tightly connected to genes that were selected to evolve a flat re-

action norm, and the first stage of this evolutionary change in-

volved a maladaptive tradeoff. It was slowly resolved by rewiring

the connections across genes. Note that the bottleneck retarded

slightly the evolutionary change (Figure 3A), as adaptive plastic-

ity was recovered faster in constant population-size simulations

(Plastic ! Plastic in Figure 3B). Maladaptive plasticity did not

evolve in simulations where plastic genes were under the same

selection regime before and after domestication (Supplementary

Figure S5E), showing that it resulted from underlying constraints

of the network, where selection-triggered changes in reaction

norms at some genes affect the evolution of plastic genes.

Molecular variation is affected by both
demography and selection
Regulation strength was modeled as a quantitative variable di-

rectly affected by mutation (Figure 1). For any given gene in the

network, we measured its neutral molecular variance among

individuals of the population as the average variance of the regu-

lation strength at regulatory sites that had no influence on gene

expression. Hence, molecular variance is an analogous measure

of neutral nucleotide genetic diversity of the genes of the net-

work.
Based on empirical evidence, the first signal that we expected

was a loss of neutral genetic diversity. The variance indeed

dropped at the beginning of the domestication (Figure 4A). Such

variance drop was driven by genetic drift, that increased during

the bottleneck. The maximum observed drop in genetic diversity

was �30% loss during the bottleneck for the default scenario.

Recovery was slow and still ongoing at the end of the simula-

tions.
In addition to change in molecular variance, we investigated

the evolution of phenotypic (expression) variance during the do-

mestication. Our results showed that in contrast to the neutral

genetic variance, phenotypic variance may increase during do-

mestication (Figure 4B). Expression variance bursts, absent from

the simulations without selection switch, can be associated with

ongoing adaptation: they corresponded to the segregation of se-

lected variants that brought the phenotype closer to the new op-

timum. Domestication was thus associated with an increase in

the gene expression variance, as a result of the balance between

the selection switch (which increased temporarily the variance,

Figure 4B) and the bottleneck (which slightly reduced the vari-

ance, Figure 4B). In case of a stronger bottleneck, however, the ex-

pression diversity was reduced at the selection switch showing

that the net effect on phenotypic diversity strongly depends on

the details of the domestication scenario (Supplementary Figure

S4D).

Domestication is associated with the rewiring of
gene networks
Genetic correlation matrices (G matrices) were estimated from

the population covariances in gene expressions. Genetic correla-

tions evolved rapidly after domestication, and this evolution was

driven both by the change in the selection regime and by the bot-

tleneck (Figure 5A; Supplementary Figure S6A). Domestication

resulted in (1) a slight increase in the average coexpression from

0.11 to 0.18 (Figure 5A) and (2) a redistribution of genetic correla-

tions, with less distinct clusters of correlations after domestica-

tion (Figure 5B). The slight trend toward larger coexpressions

results from a diversity of evolutionary changes depending on

status of genes before and after domestication (Supplementary

Figure S6B). Overall strong correlations weakened during domes-

tication, while many weak coexpression signals increased

(Supplementary Figure S6B).
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We explored the evolution of the GRN topology during domes-

tication, by tracking the evolution of the number of connections.

We observed a strong signal of network rewiring during the first

stage of domestication, with an increase (by a factor >10) of the

rates of both gained and lost connections, immediately after the

selection switch (Figure 6A; Supplementary Figure S7A). This

rewiring was solely due to the selection switch, as there was no

effect of the bottleneck alone on the network evolution. The

rewiring was associated with a systematic excess of gained con-

nections over lost connections, i.e., domestication caused an in-

crease in the total number of connections (Figure 6A). As a

consequence of the gain of new connections, the number of clus-

ters decreased (some connections appeared between previously

independent modules, Figure 6B). New connections appeared to

be distributed evenly across the network (Supplementary Figures

S7B and S8).

The molecular syndrome does not depend on the
domestication scenario
Based on the maize domestication scenario, we defined a list of

molecular consequences of domestication, featuring (1) a drop in

the molecular (genetic) variance; (2) an increase in the pheno-

typic (gene expression) variance; (3) the evolution of gene expres-

sion plasticity, with a stage during which plasticity is

maladaptive; (4) the rewiring of gene networks, with a general in-

crease in the number of connections; and (5) a slight increase in
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gene expression correlations, corresponding to a loss of modular-

ity in the underlying regulatory networks. We assessed the ro-

bustness of these results to the domestication scenario by

simulating alternative demographic features, inspired by the do-

mestication history of three plants (African rice, pearl millet, and

tomato). These scenarios differ by the strength and the duration

of the bottleneck (Table 1 and Figure 7), and by the rate of self-

fertilization (African rice and tomato are selfers, while maize and

pearl millet are outcrossers).
Overall, most of the molecular evolution observed in the

maize scenario was reproducible (Figure 7). The neutral molecu-

lar variance drops during the bottleneck in all scenarios, and

raises again after the bottleneck. As predicted from the maize

scenario, the direction of the evolution of the variance in gene ex-

pression was sensitive to the demographic scenario, and depends

on a complex balance between drift, selection, and selfing rate.

The evolution of plasticity was very similar in maize, African rice,

and pearl millet. Interestingly, however, the extremely small an-

cestral population size of tomato hampered the evolution of plas-

ticity. In all cases, the number of network connections evolved

similarly as in maize—network rewiring at the onset of domesti-

cation, with an excess of connection gains vs losses. Patterns of

pleiotropy in the network (average expression correlation) were

consistent with an overall strong short- and mild long-term in-

crease, except for the recent marked expansion of population

size in tomato that translated into a decrease in pleiotropy below

the initial level (Figure 7).

Discussion
Domestication is a complex process, involving deep modifica-

tions of the demographic, environmental, and selective context

in which populations evolve. Here, we explored the consequences

of domestication-like changes on the evolution of GRNs underly-

ing domestication traits, combining a population bottleneck, di-

rectional selection and phenotypic canalization, simulated as the

evolution of selection pressure toward decreased plasticity, i.e.,

environmental stability of phenotypes.

Adaptive dynamics under domestication
We observed that the bottleneck had a substantial effect on ge-
netic diversity, including (1) a substantial loss of neutral genetic
(molecular) diversity (Figure 4A); (2) a moderate loss of expression
variance (Figure 4B). These observations are in line with theoreti-
cal expectations. When the population size drops, genetic diver-
sity is expected to be lost progressively, as the inbreeding
coefficient increases by a factor (1� 1=2Ne) every generation.
How much of the initial diversity of the species survives the bot-
tleneck depends on the strength and the duration of the popula-
tion size drop; in our simulations, parameterized from the maize
domestication scenario, about 70% of the initial neutral diversity
survived the bottleneck. This estimate matched the 60% of mean
pairwise diversity retained in “neutral” maize regions as defined
as those located 5 kb away from genes, with p¼ 0.00691 and
0.0115 in maize and teosintes, respectively (Beissinger et al. 2016).

Less expected perhaps was the fact that even such a mild bot-
tleneck penalized substantially the response to anthropic selec-
tion (Figure 2). This may be due to less frequent occurrence of
adaptive mutations during the bottleneck or a diminished effi-
ciency of selection, or a combination of both. In the simulations,
the bottleneck was associated with a burst of segregating adap-
tive alleles (Figure 4B), which suggests a two-stage domestication
scenario: (1) during the bottleneck, the adaptive alleles that seg-
regate (either from the standing genetic variation and/or from
new mutations) increased the population fitness, but tend to
have suboptimal effects (e.g., negative side effects on well-
adapted genes are illustrated by plastic genes whose reaction
norms diminish while they are continuously selected to be plas-
tic, Figure 3B); (2) after the end of the bottleneck, a new set of
adaptive alleles can invade the population (because more muta-
tions are available and selection is more efficient), fine-tuning ge-
netic effects, e.g., on reaction norms (Figure 3B). Hence, we expect
mutations segregating during the first stage and surviving to drift
to display greater effects than those segregating during the sec-
ond stage. In line with this prediction, early work on maize do-
mestication has identified several quantitative trait loci (QTLs)
with large effects, some of which were fine-mapped down to indi-
vidual genes such as Tb1 (Doebley et al. 1997; Studer et al. 2011)
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and Tga1 (Wang et al. 2005). Examples of early mutations with

large effects have also been recovered in tomato (Frary et al.

2000), in wheat (Simons et al. 2006), in rice (Konishi et al. 2006; Li

et al. 2006), in barley (Komatsuda et al. 2007) among others. These

large QTLs that most likely encode early domestication targets

stand as exceptions in the overall architecture of domestication

traits dominated by small-effect QTLs as recently reported in

maize (Chen et al. 2020).
Most phenotypic changes associated with domestication are

controlled by mutations in transcription factors, and therefore in-

volve a reorchestration of gene networks (Martı́nez-Ainsworth

and Tenaillon 2016) as described in cotton (Rapp et al. 2010),

maize (Hufford et al. 2012), bean (Bellucci et al. 2014), and tomato

(Sauvage et al. 2017). Consistently, in our simulations, the gene

network was deeply rewired, as the rate of gain/loss connections

increased by more than one order of magnitude (Figure 6A). This

effect was solely due to the shift in the selection regime. Before

domestication, the population was well-adapted to an arbitrary

wild-type fitness landscape, involving genes which expression

was constant and genes which expression was selected to track

the environment. The structure of the underlying network

evolved so that expressions of genes of the same type were genet-

ically correlated, suggesting direct or indirect regulatory connec-

tions. When the fitness landscape changed, some genes that

were previously correlated were forced to become independent.

The results suggest that this was easier to achieve by adding con-

nections rather than removing them, illustrating evolution by ge-

netic tinkering instead of re-engineering. Interestingly, there was

no apparent cost to this additional complexity, as the fitness af-

ter domestication reached similar levels as before domestication.

Model approximations
Gene network models based on Wagner (1994) are built on a set

of simplifying assumptions: the network dynamics is discretized
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and simplified (e.g., no distinction between RNA products and
proteins), mutations can affect gene expression only (transcrip-
tion factors do not evolve), there are no interactions between
transcription factors (their effects adds up), and a given tran-
scription factor can act both as an activator and a repressor.
Little is known about the potential effect of such details on the
general dynamics of the network. We confirmed that the number
of developmental time steps did not affect the simulation results
(except if very low, <8) (Supplementary Figure S9, B and C), nor
the number of time steps during which network instability was
measured (Supplementary Figure S9D). Selection on the network
stability did not have a perceptible effect on the results
(Supplementary Figure S9E).

For the sake of realism, and to connect the model results to
quantitative genetics theory, we proposed several changes to the
original framework from Wagner (1996). We adopted the setting
used in, e.g., Siegal and Bergman (2002), in which gene expression
was considered as a quantitative character, with a continuous
scaling function between 0 (no expression) and 1 (maximal ex-
pression), instead of the traditional on/off binary setting (Wagner
1996; Ciliberti et al. 2007). We used an asymmetric sigmoid scaling
(as in Rünneburger and Le Rouzic 2016) to ensure that a nonregu-
lated gene has a low constitutive expression (here, 20% of the
maximal expression). Our model allows for the possibility to
evolve a plastic response. We added a perfect environmental cue
as an input of the network through a sensor gene, which expres-
sion was reflecting the environmental index during the whole
network dynamics. The literature provides alternative settings to
introduce plasticity in the Wagner model, such as the introduc-
tion of the environmental cue as the starting state of the net-
work, mimicking developmental plasticity (Masel 2004), or
transgenerational plasticity (Odorico et al. 2018).

Computational constraints limited the population size to a
maximum of N¼ 20,000. Estimates of the effective population
sizes of both maize and teosinte vary roughly between 105 and
106 depending on data/methods/models (Eyre-Walker 1998;
Tenaillon et al. 2004; Beissinger et al. 2016; Wang et al. 2017), sug-
gesting that genetic drift before and after the bottleneck was sub-
stantially larger in the simulations than expected in a realistic
domestication scenario. Domestication scenarios were also
greatly simplified, with a single bottleneck. Refinements of this
initial setting could include multiple expansion waves of semido-
mesticated forms, as well as rapid population growth and gene
flow with wild relatives postdomestication (Beissinger et al. 2016;
Kistler et al. 2018). For simplicity, we parameterized the bottle-
necks by setting the census size (N) to the effective population
sizes (Ne) documented in the literature. Because of selection,
Ne < N, which made bottleneck slightly stronger than expected.
Yet, the difference was modest (<10%, Figure 5), and was unlikely
to affect the results. Larger population size would raise the neu-
tral diversity, but is unlikely to impact general outcomes. Due to
computational constraints, we also had to limit the number of
generations prior to domestication (Ta) for some simulations; as a
consequence, “wild” populations were not necessarily at
mutation-selection-drift equilibrium. However, the effect
remains limited compared with the strong effects due to domesti-
cation (e.g., Figure 5A, Ta ¼ 24; 000, vs Figure 5C, Ta ¼ 12; 000 prior
to domestication).

Likewise, network size also had to be limited to n ¼ 24 genes,
as the complexity of the gene network algorithm increases with
the square of the number of genes. Defining a realistic size for a
gene network remains problematic, as, in fine, most genes are
connected through correlated regulations. Nevertheless, we

considered here only transcription factors (or TF-like regulators,
such as regulatory RNAs), which have the potential to affect the
expression of other genes.

Finally, how selection affects the expression level of such TFs
remains quite arbitrary. For simplicity, we considered stabilizing
selection directly on the gene expression level—a common set-
ting in similar studies (e.g., Siegal and Bergman, 2002). This
remains an oversimplification, as the relationship between gene
expression, physiological characters, life history traits and fitness
can be very complex. For instance, Draghi and Whitlock (2012)
mapped n genes into m traits via a n�m transition matrix, stabi-
lizing selection being applied at the phenotypic level, translating
into indirect selection on gene expressions. Yet, if the relation-
ship between gene expression and selected phenotypes is monot-
onous, applying a multivariate bell-shaped fitness function on
gene expression probably remains an acceptable approximation,
assuming that the details of the fitness function does not affect
deeply the evolution of gene networks.

In the default scenario, most of the response to selection was
due to new mutations, as the standing genetic variation alone
could not explain more than about 20% of the (log) fitness recov-
ery (Supplementary Figure S4). The contribution of standing ge-
netic variation to the response to selection is a complex function
of the mutational variance, the strength of stabilizing selection
before domestication, and the strength of directional selection
during domestication (Stetter et al. 2018). The simulations thus
correspond to a harsh domestication scenario in this respect,
where the number of selected traits and the phenotypic changes
induced by domestication were both large compared with the
phenotypic diversity of the wild ancestor. We also considered
that the expression level of only half of the network genes was
under direct selection pressure—this would happen if half of the
TFs were regulating directly key enzymes or growth factors.
Simulating twice less selected genes did not affect the qualitative
outcomes of the model (Supplementary Figure S5).

The molecular syndrome of domestication
Simulations confirm that the domestication process is expected
to be associated with several characteristic signatures (S) at the
molecular level; S1: a decrease of allelic diversity, S2: a change in
gene expression variance, S3: the rewiring of the GRNs, and S4:
less modularity of coexpression patterns.

The loss of genetic diversity (S1) was both due to the bottle-
neck (genetic drift removed rare alleles from the population) and
to the selection shift (selective sweeps decreased the genetic di-
versity at linked loci), it is thus expected to be a general signature
of domestication (Figure 4A). Empirically, a loss of genetic diver-
sity is indeed always associated with domestication, although its
amplitude may vary (reviewed in Gaut et al. 2015).

The direction and magnitude of the evolution of gene expres-
sion variance (signature S2) depends on the balance between se-
lection and drift; bottlenecks tend to reduce diversity, while a
shift in the selection regime tends to increase it transiently (seg-
regation of adaptive variants). Given our simulation parameters,
inspired from the maize domestication scenario featuring a mild
bottleneck, expression variance increased (Figure 4B). This was
not necessarily the case with all parameter combinations, as a
stronger bottleneck as in African rice led to a decrease in both
molecular and expression variance (Figure 7). The strength and
the pattern of selection also affect the speed and the nature (soft
vs hard) of the selective sweeps, which may differ across species.
As a consequence, domestication is not expected to be associated
with a systematic evolution of gene expression variance: it may
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increase when the bottleneck is moderate, as in maize, or de-
crease in species where the bottleneck was drastic and/or associ-
ated with an autogamous mating system, such as rice, cotton
(Liu et al. 2019), and beans (Bellucci et al. 2014).

Genetic networks were rewired (signature S3) and evolved toward
less modularity (Figure 5B), as a consequence of swapping the selec-
tion pattern among genes (shift in the optimal expression for stable
genes, and loss of plasticity for others). The network was less plastic
after domestication, which was a consequence of a modeling choice
(domestication was associated with a decrease in the number of
genes expected to respond to the environmental cue). New connec-
tions occurred among previously isolated modules, but former con-
nections were not all eliminated. As a result, the rewiring of
regulatory connections lead to a moderate increase in gene coexpres-
sions (signature S4), associated with a loss of structure in the coex-
pression network (uncorrelated genes became correlated, and
strongly correlated genes became more independent). This illustrates
a realistic evolutionary scenario toward nonadaptive complexity,
where the final network structure is not the more efficient one, but
rather results from the accumulation of successive beneficial muta-
tions in an existing, constrained genetic background. Empirically, we
therefore predict that connections involving genes targeted by do-
mestication should increase rather than decrease, in line with obser-
vations in beans where coexpression networks revealed a global
excess of strong correlations in domesticates compared with wild
(Bellucci et al. 2014). Global increase in genetic correlations (Figures
5A and 7) should translate into greater constraints and pleiotropy,
and less independent modules. Interestingly, the general increase in
genetic correlations was associated with a trend toward homogeniza-
tion, i.e., strong correlations tended to weaken whereas uncorrelated
genes became slightly correlated (Figure 5B). Empirical comparisons
at 18 domestication-related traits between two independent popula-
tions of offspring generated by the intermating of multiple parents
from a teosinte population and from a maize landrace, revealed sev-
eral interesting features in line with our observations: only a subset
of genetic correlations (33 out of 153) were conserved between teo-
sinte and maize, teosinte correlations were more structured among
trait groups (Yang et al. 2019). Investigating carefully the transcrip-
tome evolution for several pairs of domesticated/ancestral popula-
tions will be necessary to assess the predictive power of our
theoretical model.

The genetic diversity available in modern cultivated species is
often considered as a limitation to further response to artificial
selection. Controlling recombination has been proposed as cru-
cial for plant breeders to engineer novel allele combinations and
reintroduce diversity from wild crop relatives (reviewed in
Taagen et al. 2020). Yet, if the domestication syndrome was also
associated with changes in the pleiotropy of the genetic architec-
ture, genetic progress might also be limited by undesirable ge-
netic correlations among traits of interest (Yang et al. 2019).
Understanding how genetic constraints evolved under anthropic
selection and whether it is possible to avoid or revert them
requires a better understanding of the complex nonlinear map-
ping between domestication genes and phenotypes.

Data availability
The simulation software is available at https://github.com/ler
ouzic/simevolv. All scripts (simulation launcher, data analysis,
and figure generation) are available at https://github.com/ler
ouzic/domestication.

Supplementary material is available at GENETICS online.
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l’Évolution Moléculaire” for travel support to E.B. EGCE and GQE-Le
Moulon benefit from the support the Institut Diversité, Écologie et
Évolution du Vivant (IDEEV), and GQE-Le Moulon from Saclay Plant
Sciences-SPS (ANR-17-EUR-0007).

Conflicts of interest
The authors declare that there is no conflict of interest.

Literature cited
Arnoux S, Fraisse C, Sauvage C. 2021. Genomic inference of complex

domestication histories in three Solanaceae species. J Evol Biol. 34:

270–283.

Beissinger TM, Wang L, Crosby K, Durvasula A, Hufford MB, et al.

2016. Recent demography drives changes in linked selection

across the maize genome. Nat Plants. 2:1–7.

Bellucci E, Bitocchi E, Rau D, Rodriguez M, Biagetti E, et al. 2014.

Genomics of origin, domestication and evolution of Phaseolus vul-

garis. In: Tuberosa R, Graner A, Frison E., editors. Genomics of

Plant Genetic Resources. Berlin : Springer. p. 483–507.

Burgarella C, Cubry P, Kane NA, Varshney RK, Mariac C, et al. 2018. A

Western Sahara Centre of domestication inferred from pearl mil-

let genomes. Nat Ecol Evol. 2:1377–1380.

Chen Q, Samayoa LF, Yang CJ, Bradbury PJ, Olukolu BA, et al. 2020.

The genetic architecture of the maize progenitor, teosinte, and

how it was altered during maize domestication. PLoS Genet. 16:

e1008791.

Ciliberti S, Martin OC, Wagner A. 2007. Innovation and robustness in

complex regulatory gene networks. Proc Natl Acad Sci U S A. 104:

13591–13596.

Clark RM, Linton E, Messing J, Doebley JF. 2004. Pattern of diversity in

the genomic region near the maize domestication gene tb1. Proc

Natl Acad Sci U S A. 101:700–707.

Clark RM, Wagler TN, Quijada P, Doebley J. 2006. A distant upstream

enhancer at the maize domestication gene tb1 has pleiotropic

effects on plant and inflorescent architecture. Nat Genet. 38:

594–597.

Clotault J, Thuillet AC, Buiron M, De Mita S, Couderc M, et al. 2012.

Evolutionary history of pearl millet (Pennisetum glaucum [L.] R. Br.)

and selection on flowering genes since its domestication. Mol Biol

Evol. 29:1199–1212.

Csardi G, Nepusz T. 2006. The igraph software package for complex

network research. Int J Complex Syst. 1695:1–9.

Cubry P, Tranchant-Dubreuil C, Thuillet AC, Monat C, Ndjiondjop

MN, et al. 2018. The rise and fall of African rice cultivation

revealed by analysis of 246 new genomes. Curr Biol. 28:

2274–2282.

E. Burban et al. | 11

https://github.com/lerouzic/simevolv
https://github.com/lerouzic/simevolv
https://github.com/lerouzic/domestication
https://github.com/lerouzic/domestication
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyab214#supplementary-data
https://www.france-bioinformatique.fr/ifb-core/
https://www.france-bioinformatique.fr/ifb-core/


Doebley J, Stec A, Hubbard L. 1997. The evolution of apical domi-

nance in maize. Nature. 386:485–488.

Dong Z, Li W, Unger-Wallace E, Yang J, Vollbrecht E, et al. 2017. Ideal

crop plant architecture is mediated by tassels replace upper

ears1, a BTB/POZ ankyrin repeat gene directly targeted by

TEOSINTE BRANCHED1. Proc Natl Acad Sci U S A. 114:

E8656–E8664.

Dong Z, Xiao Y, Govindarajulu R, Feil R, Siddoway ML, et al. 2019. The

regulatory landscape of a core maize domestication module con-

trolling bud dormancy and growth repression. Nat Commun. 10:

1–15.

Draghi JA, Whitlock MC. 2012. Phenotypic plasticity facilitates muta-

tinal variance, genetic variance, and evolvability along the major

axis of environmental variation. Evolution. 66:2891–2902.

Dray S, Dufour A-B. 2007. The ade4 package: implementing the dual-

ity diagram for ecologists. J Stat Softw. 22:1–20.

Eyre-Walker A, Gaut RL, Hilton H, Feldman DL, Gaut BS. 1998.

Investigation of the bottleneck leading to the domestication of

maize. Proc Natl Acad Sci U S A. 95:4441–4446.

Fernie AR, Yan J. 2019. De novo domestication: an alternative route

toward new crops for the future. Mol Plant. 12:615–631.

Frary A, Nesbitt TC, Grandillo S, Knaap E, Cong B, et al. 2000. fw2.2: a

quantitative trait locus key to the evolution of tomato fruit size.

Science. 289:85–88.

Fuller DQ, Allaby RG, Stevens C. 2010. Domestication as innovation:

the entanglement of techniques, technology and chance in the

domestication of cereal crops. World Archaeol. 42:13–28.

Gage JL, Jarquin D, Romay C, Lorenz A, Buckler ES, et al. 2017. The ef-

fect of artificial selection on phenotypic plasticity in maize. Nat

Commun. 8:1–11.

Gaut BS, Dı́ez CM, Morrell PL. 2015. Genomics and the contrasting

dynamics of annual and perennial domestication. Trends Genet.

31:709–719.
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