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Abstract

Previous human postmortem brain tissue research has implicated abnormalities of 5-HT receptor 

availability in depression and suicide. Although altered abundance of 5-HT 1A, 5-HT 2A, and 

5-HT 2C receptors (5-HT1A, 5-HT2A, and 5-HT2C) has been reported, the causes remain obscure. 

This study evaluated the availability of these three receptor subtypes in postmortem brain tissue 

specimens from persons with a history of major depression (MDD) and normal controls and 

tested the relationships to protein kinases A and C (PKA, PKC). Samples were obtained from 

postmortem brain tissue (Brodmann area 10) from 20 persons with a history of MDD and 20 

matched controls as determined by a retrospective diagnostic evaluation obtained from family 

members. Levels of 5-HT1A, 5-HT2A, and 5-HT2C receptor were quantitated via Western blot 

analyses. Basal and stimulated PKA and PKC activity were also determined. The depressed 

samples showed significantly increased 5-HT2A receptor abundance relative to controls, but no 

differences in 5-HT1A or 5-HT2C receptors. Basal and cyclic AMP-stimulated PKA activity was 

also reduced in the depressed sample; PKC activity was not different between groups. 5-HT2A 

receptor availability was significantly inversely correlated with PKC activity in controls, but with 

PKA activity in the depressed sample. Increased 5-HT2A receptor abundance and decreased PKA 

activity in the depressed sample are consistent with prior reports. The correlation of 5-HT2A 

receptor levels with PKA activity in the depressed group suggests that abnormalities of 5-HT2A 

receptor abundance may depend on receptor uncoupling and heterologous regulation by PKA.
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Major depression (MDD) is a serious, potentially disabling, and even life threatening 

disorder. Although the underlying pathophysiology is undoubtedly multifactorial, a huge 

literature implicates the 5-HT system as a possible causal factor in depression in general 

and suicidal behavior in particular (Stockmeier, 2003; Pandey et al., 2003b; Mann et al., 

2001; Jans et al., 2007; Arango et al., 2003). 5-HT serves a modulatory role with regard 

to mood, and a variety of factors may lead to dysfunction of the 5-HT system, leading to 

abnormal mood states. A variety of mechanisms regulate 5-HT response in brain, including 

enzymes involved in the synthetic pathway (e.g. tryptophan hydroxylase, indoleamine 2,3-

dioxygenase), synaptic regulation (e.g. the 5-HT transporter protein) and a variety of 5-HT 

receptors.

5-HT 2A receptors (5HT2A) have been shown to be elevated in frontal cortex of depressed 

persons and suicide victims (Turecki et al., 1999; Stanley and Mann; Pandey et al., 2002; 

Hrdina and Du, 2001; Hrdina et al., 1993; Arranz et al., 1994; Arango et al., 1990, 1997), 

particularly involving pyramidal cells of cortical layer V (Pandey et al., 2002). 5-HT2A 

receptors have been shown to have a significant role in the modulation of mood state, 

consistent with their widespread distribution in brain regions known to modulate mood 

responses, including cortex, hippocampus, and amygdala (Weisstaub et al., 2006). Activation 

of 5-HT2A has been shown to enhance anxious responding in animal and human studies 

(Mora et al., 1997; Graeff et al., 1996), whereas selective blockade (Kleven et al., 1997; 

Griebel et al., 1997), antisense inhibition (Sibille et alt., 1997), or disruption (Weisstaub et 

al., 2006) has been shown to reduce anxiety and learned helplessness behavior. Furthermore, 

learned helplessness in rats related to chronic inescapable shock, a putative model for human 

depression, is associated with significant up-regulation of 5-HT2A mRNA and protein 

expression in frontal cortex (Dwivedi et al., 2005).

Elevated availability of 5-HT2A receptors in brains of depressed and suicide victims 

has been attributed to decreased 5-HT leading to receptor upregulation (Jans et al., 

2007). However, the regulation of 5-HT2A receptors is complex and, under certain 

conditions, paradoxical (Van Oekelen et al., 2003). For example, both agonists and 

antagonists induce down-regulation in 5-HT2A receptor availability (Van Oekelen et al., 

2003). 5-HT2A receptors are also susceptible to both homologous and heterologous 

receptor-mediated down-regulation via protein kinases (Saucier et al., 1998; Saucier 

and Albert). Although homologous desensitization can occur via protein kinase C 

(PKC)–dependent phosphorylation by activation of the 5-HT2A–Gq/11–phospholipase C–

diacylglycerol cascade, heterologous desensitization of 5-HT2A receptors by other enzymes 

including protein kinase A (PKA) or calcium-calmodulin kinase (CaMK) also occurs (Van 

Oekelen et al., 2003). Phosphorylation-dependent internalization to endosomes results in 

either dephosphorylation leading to resensitization or degradation (Van Oekelen et al., 

2003). Therefore, regulation of 5-HT2A receptors via phosphorylation may significantly 

affect availability.

Our research group and others have demonstrated decreased activity and protein availability 

for PKA (Shelton et al., 1996, 1999; Perez et al., 1995, 1999, 2001; Pandey et al., 2007; 

Manier et al., 1996, 2000; Dwivedi et al., 2002, 2004b; Akin et al., 2004, 2005) and PKC 
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(Pandey et al., 1997, 1998; Coull et al., 2000; Akin et al., 2005) in a significant subset 

of patients with MDD using both peripheral tissue models and postmortem brain tissue. 

This has also been tested functionally by demonstrating decreased phosphorylation of target 

proteins such as cyclic AMP response element binding protein (CREB) (Pandey et al., 2007; 

Manier et al., 2001) and myristoylated alanine-rich C kinase substrate (MARCKS) (Pandey 

et al., 2003a). However, to our knowledge, the relationship between reduced PKA and PKC 

and 5-HT receptor availability has not been previously tested.

Other 5-HT receptors have been implicated in the regulation of mood. For example, 

presynaptic 5-HT1A receptors inhibit release of 5-HT and down-regulation is required for 

the antidepressant response to 5-HT selective reuptake inhibitors (SSRIs) (Lemonde et al., 

2003; Blier et al., 2001). Post-synaptic 5-HT1A receptors also appear to mediate some of 

the antidepressant actions of SSRIs and related drugs. For example, activation of 5-HT1A 

receptors enhances the activity of both norepinephrine and dopamine neurons (Szabo and 

Blier, 2001; Ichikawa and Meltzer, 1999; Ichikawa et al., 2001), which is likely to be 

involved in antidepressant effects (Szabo and Blier, 2001; Stahl and Shayegan; Simon 

and Nemeroff; Haddjeri et al., 1997). 5-HT1A also has been studied in depressed and 

suicide samples using both brain imaging and postmortem brain tissue methods (Tochigi et 

al., 2008; Szewczyk et al., 2008; Stockmeier et al., 1997, 1998; Matsubara et al., 1991; 

Lemonde et al., 2003; Hsiung et al., 2003; Drevets et al., 1999, 2007; Arranz et al., 

1994; Arango et al., 2001), with variable results (for a review, see Stockmeier, 2003). A 

number of studies have demonstrated reduced binding, availability, or activity of 5-HT1A 

receptors, but this appears to vary depending on both the brain region analyzed and the 

clinical subtype tested (Stockmeier, 2003; Drevets et al., 2007). For example, Drevets 

et al. conducted two different positron emission tomography (PET) studies of 5-HT1A 

binding using carbonyl-[11C]WAY-100635, a relatively selective 5-HT1A ligand in depressed 

and control samples. They showed decreased 5-HT1A binding in medial temporal cortex 

and raphe nuclei, but not in other brain regions, a finding that appeared to be specific 

for recurrent, familial depression (Drevets et al., 1999, 2007). Stockmeier et al. (1997) 

did not find any differences [3H]8-hydroxy-2-(di-n-propyl)-aminotetralin ([3H]8-OH-DPAT) 

binding to 5-HT1A receptors in right anterior prefrontal cortex (PFC) (Brodmann area [BA] 

10) from depressed suicide victims in comparison to controls, although in a related study, 

5-HT1A protein abundance was found to be reduced in PFC samples from depressed females 

(Szewczyk et al., 2008).

By contrast, 5-HT2C receptors have received less attention, in spite of their apparent 

involvement in mood regulation. Activation of 5-HT2C receptors attenuates PFC 

norepinephrine and dopamine release in rodent models (Pozzi e al., 2002; Li et al., 2005; 

Gobert et al., 2000), and blockade of 5-HT2C receptors by atypical antipsychotics has 

been hypothesized to underlie their antidepressant properties (Shelton and Papakostas). 

There have been limited postmortem studies of 5-HT2C receptors; studies (Schmauss, 2003; 

Niswender et al., 2001; Gurevich et al., 2002) have shown an increase in an edited form 

of 5-HT2C receptor (isoleucine–asparagine–isoleucine to valine–glycine–valine editing at 

positions 156, 158, and 160) that is associated with decreased coupling of the receptor to 

G-proteins in samples from persons with MDD. One study of 5-HT2C receptors in various 

human postmortem brain regions contrasted samples from suicide victims and controls 
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(Pandey et al., 2006). 5-HT2C receptors were found to be widely distributed, with greater 

abundance in choroid plexus, hypothalamus, and nucleus accumbens, and lesser availability 

in PFC and cerebellum. However, only PFC (BA8/9) showed decreased abundance of 5-

HT2C receptors in the depressed sample relative to controls.

The primary purpose of the current study was to contrast the abundance of 5-HT1A, 5-HT2A, 

and 5-HT2C receptors and to test the association of these receptors with PKA and PKC 

levels in postmortem orbitofrontal cortex tissue (BA10) from depressed and control samples. 

BA10 is involved in a variety of functions of significance to depression, including executive 

function (Rogers et al., 1999; Okuda et al., 2007; Leung et al., 2005; Konishi et al., 2000) 

and reward behavior (Rogers et al., 1999). BA10 is also relatively selectively activated 

with administration of cocaine (Kufahl e al., 2005) and amphetamine (Devous et al., 2001), 

which is consistent with the rich innervations of this region by norepinephrine and dopamine 

containing neurons (Volkow et al., 2000). We hypothesized that there would be alterations 

in the availability of these receptor subtypes in depressed subjects versus controls, consistent 

with previous observations in postmortem samples. We also hypothesized that there would 

be reduced PKA and PKC activity and that the activity of these enzymes would be correlated 

with the abundance of 5-HT receptors, particularly 5-HT2A. A final goal of this study was 

to test whether altered 5-HT receptors and kinase activity are specific to depressed patients 

who died by suicide.

EXPERIMENTAL PROCEDURES

Brain specimens were obtained from the Brain Tissue Donation Program at the University 

of Pittsburgh Medical Center and were acquired during autopsies after consent was 

given by the next of kin. Samples of PFC (BA10) were collected from 20 persons 

with a history of MDD and 20 age, sex, and postmortem interval (PMI) matched 

controls (Table 1). All procedures were conducted in accordance with the Declaration 

of Helsinki and were approved by the University of Pittsburgh’s Committee for the 

Oversight of Research Involving the Dead and Institutional Review Board for Biomedical 

Research and the Vanderbilt University Health Sciences Institutional Review Board. An 

independent diagnostic conference was conducted with a committee of experienced research 

clinicians who assigned DSM-IV diagnoses by consensus for each subject on the basis 

of all information obtained from a standardized psychological autopsy which incorporated 

structured interviews (e.g. the Structured Clinical Interview for DSM-IV; First et al., 1996), 

conducted by trained and experienced clinicians with family members of the index case 

(patients and controls), to assess diagnosis, psychopathology, medical, developmental, social 

and family history, medication history, history of alcohol, tobacco and other substance use, 

and handedness. The use of multiple informants, including physicians and other health care 

workers, provided both an extensive range of detailed information and the opportunity to 

corroborate critical elements of the history. Ancillary data from clinical records, toxicology 

and neuropathology examinations, and the Medical Examiner’s investigation were also 

reviewed. Written informed consent was obtained from all participants. Based on the 

consensus findings, the deceased were given primary (e.g. MDD) and subtype (e.g. 

melancholia) diagnoses. All samples came from persons free from all known psychotropic 
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agents based on toxicology and recent substance abuse. The right hemisphere of each brain 

was blocked coronally, immediately frozen and stored at −80 °C.

Western blot analysis

Tissues were homogenized by sonication in 10 volumes of ice-cold buffer containing 20 

mM tris(hydroxymethyl)aminomethane (Tris)–HCl, (pH 7.4 at 25 °C), 2 mM EDTA, 25 

mM 2-mercaptoethanol, 0.5 mM 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride, 

plus 0.5% Triton X-100, 2 μg/ml leupeptin, 3 μg/ml aprotinin, and 0.2 mg/ml soybean 

trypsin inhibitor. The homogenate was centrifuged at 12,000×g for 10 min at 4 °C. Equal 

volumes of supernatant (20 μl containing 30 μg of protein) and gel loading solution (50 

mM Tris–HCl, pH 6.8, 4% β-mercaptoethanol, 1% sodium dodecyl sulfate [SDS], 40% 

glycerol, and a trace amount of Bromphenol Blue) were mixed, then boiled for 3 min and 

kept on ice for 10 min. Samples were loaded onto 10% (w/v) SDS–polyacrylamide gel 

using the Mini Protein II gel apparatus (Bio-Rad, Hercules, CA, USA). The gels were run 

using 25 mM Tris-base, 192 mM glycine, and 0.1% (w/v) SDS at 200 V. The proteins 

were transferred electrophoretically to an enhanced chemiluminescence (ECL) nitrocellulose 

membrane (Amersham) using the Mini TransBlot transfer unit (Bio-Rad) at 0.25 amp 

constant current. Membranes were washed with phosphate-buffered saline containing 0.05% 

Tween 20 for 10 min. The blots were blocked by incubation with 3% (w/v) powdered 

nonfat milk in phosphate-buffered saline. They were incubated overnight at 4 °C with 

primary antibody (anti-5-HT1A, 5-HT2A, 5-HT2C, [all 5-HT receptor antibodies were from 

Santa Cruz Biotechnologies, Santa Cruz, CA, USA] or phosphorylated cyclic AMP response 

element binding protein (CREB-P) [Upstate Cell Signaling Solutions, Charlottesville, VA, 

USA]) at a dilution of 1:1000–1:3000 depending on the antibody used. The membranes were 

washed with phosphate-buffered saline and incubated with horseradish peroxidase–linked 

secondary antibody (anti-rabbit immunoglobulin G; 1:3000) for 1.5 h at room temperature. 

The membranes were washed with water followed by phosphate-buffered saline containing 

0.05% Tween 20 and exposed to ECL film, then standardized using 10–100 μg of protein. 

The optical density of the bands varies linearly with a concentration of up to 100 μg of 

protein. The band optical density was quantified using Un-Scan-It gel digitizing software 

(Orem, UT, USA); the optical density is corrected by the total protein in the sample, 

determined by the methods of Lowry et al. (1990). All samples were done in triplicate. For 

representative blots, see Fig. 1.

PKA and PKC activity

Brain specimens were homogenized using a glass-Teflon homogenizer (1000 rpm, five 

strokes) in 50 vol buffer containing 30% sucrose). PKA activity was determined in the 

soluble fraction (±100 μM cAMP), as previously described (Shelton et al., 1996; Manier 

et al., 1996). PKA activity was defined as the transfer of PO4 from ATP (100 μM; 
32P tracer, 300 counts per minute/pmol) to the heptapeptide Kemptide (leucine–arginine–

arginine–alanine–leucine–glycine; 50 μM) and normalized per units protein and time.

The PKC assay was based on the phosphorylation of CREB in tissue homogenates after 

treatment by phorbol 12-myristate 13-acetate (PMA) (100 μM, 10 min at 37 °C). Stimulated 
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and endogenous phosphorylation of CREB was determined. CREB-P was quantitated by 

Western blotting, using methods described above.

Statistical analysis

Demographic and postmortem (e.g. PMI) variables were compared via independent samples 

t-test or chi square analysis as appropriate. Western blot data and kinase activity were 

compared via independent samples t-test. Within-groups analyses (e.g. suicide versus non-

suicide) were done with independent samples t-tests. Missing data were handled pairwise. 

The primary outcome contrast determined a priori was a comparison of 5-HT receptors in 

samples from persons with MDD against matched controls, with 5-HT2A being the first 

entered. The relationships between PKA and PKC activity versus 5-HT receptor availability 

was tested via the Pearson product moment correlation coefficient. The a priori hypotheses 

were as follows: 1. The availability of 5-HT1A receptors would be reduced in depressed 

versus control samples; 2. 5-HT2A receptors would be increased relative to controls; 3. 5-

HT2C receptors would be decreased in depressed versus controls; 4. PKA and PKC activity 

would both be reduced in depressed relative to control samples; 5. Both PKA and PKC 

activity would be significantly correlated with 5-HT receptor abundance; 6. The contrast of 

suicide versus non-suicide depressed samples would not show any significant differences 

in 5-HT receptors or kinase activity. All hypotheses were tested independently. The effects 

of age, PMI, and brain pH on protein levels and kinase activity were tested by Pearson 

product moment correlation analysis. Data were analyzed using SPSS 15.0 (SPSS, Chicago, 

IL, USA).

RESULTS

Demographic characteristics and tissue sample descriptions are shown in Table 1 and the 

characteristics of the individual samples are shown in Table 2. There were no significant 

differences in age (t=−317, df=38, P=0.75), PMI (t=1.47, df=38, P=0.88), pH of the samples 

(t=−1.184, df=38, P=0.024), or sex (both groups were 15% female). All samples were from 

Caucasians.

Immunolabeling of 5-HT receptors

There were no statistically significant differences between depressed and control samples 

in 5-HT1A receptors (t=0.358, df=38, P=NS) or 5-HT2C receptors (t=0.043, df=38, P=NS) 

(Table 3). Alternatively, 5-HT2A receptors were dramatically and significantly increased in 

depressed versus controls (t=2.767, df=38, P=0.009); the depressed samples were increased 

to 217.30% of matched controls.

PKA and PKC activity

Basal and cyclic AMP–stimulated activity of PKA was compared between depressed 

and control samples. Depressed patients showed a statistically significant reduction of 

basal PKA activity (depressed = 1023 [S.D. =290.54], controls= 1273 [S.D.=302.97] 

pmol/min/mg protein [t=−2.664, df=38, P=0.011]), and a trend toward reduction of 

cyclic AMP–stimulated PKA activity (depressed=2953.90 [S.D.=768.23], controls=3218.65 

[S.D.=759.65] pmol/min/mg protein [t=−1.510, df=38, P=0.139]).
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Basal- and PMA-stimulated PKC activity was also compared between depressed and control 

groups (n=16, each group). No significant differences were found between groups on basal 

(depressed=3379.00 [S.D.=2356.62], controls=4439.75 [S.D.=3977.23]) or PMA activated 

(depressed=3475.56 [S.D.=2975.02], controls=4874 [S.D.=3787.50]) PKC activity.

Correlations between PKA and PKC and 5-HT receptors

The relationships between abundance of 5-HT receptors and both PKA and PKC were tested 

by Pearson product moment correlation. There were no statistically significant correlations 

between 5-HT1A or 5-HT2C receptors and either basal or activated PKA or PKC in the total 

sample, depressed, or control groups (Table 3). There were strong trends for a significant 

positive correlations between 5-HT2C receptor versus PKA in the depressed sample; basal 

PKA (r=0.432, P=0.057), activated PKA (r=0.437, P=0.054). However, when one depressed 

outlier sample with an extremely low 5-HT2C receptor value was removed, the association 

disappeared (PKA basal, r=0.118, P=0.473; PKA activated, r=0.235, P=0.150).

Alternatively, the 5-HT2A receptor showed significant, inverse correlations with PKA 

activity in the total sample (basal PKA, r=−0.365, P=0.021); activated PKA, r=−0.348, 

P=0.028). However, when examined separately, only the depressed group showed significant 

associations, including a strong trend for basal PKA (r=−0.421, P=0.065) and a significant 

correlation for activated PKA (r=−0.560, P=0.010) (Fig. 2A). The control sample did not 

show significant correlations between PKA and 5-HT2A receptor (basal PKA, r=0.051, 

P=0.831; activated PKA, r=0.031, P=0.896) (Fig. 2B).

There were no significant correlations between PKC activity and any 5-HT receptor in 

the total sample or depressed subgroup (Table 4). There were no significant correlations 

between PKC activity and either 5-HT1A or 5-HT2C receptor abundance. However, there was 

a significant inverse correlation between 5-HT2A receptor availability and basal PKC activity 

(r=−0.515, P=0.041), with a trend for significant association with activated PKC (−0.435, 

P=0.092).

5-HT receptors in depressed suicide versus non-suicide groups

Within the depressed sample, there were no statistically significant differences between 

those who died by suicide (n=11) and those who died by other causes (n=9) for any of the 

5-HT receptors. Similarly, the groups did not show any differences in basal or activated PKA 

or PKC.

Effects of age, sex, PMI, and pH on 5-HT receptors and kinases

There were no statistically significant correlations between age, PMI, or pH on availability 

of 5-HT1A, 5-HT2A, or 5-HT2C receptors or either PKA or PKC activity in the total sample, 

depressed, or control groups, although there was a trend for a significant correlation between 

age and 5-HT1A receptors in the depressed sample (r=−437, P=0.058). There were no 

significant differences by sex on any 5-HT receptors or either PKA or PKC in the total, 

depressed, or control samples, although the number of females was small (n=3 in depressed 

and controls).
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Increased 5-HT2A receptor availability still held when males only (n=17 per group) were 

analyzed. Males were increased at 233% of matched controls. Females were a mean of 

only 127% of controls, but, as noted earlier, the sample size was too low to draw any 

conclusions. When only depressed males were analyzed, the significant inverse correlation 

between 5-HT2A receptor protein and activated PKA still held (r=−0.583, P=0.014), with a 

trend for basal PKA (r=−0.474, P=0.058).

DISCUSSION

In this study, we evaluated the abundance of specific 5-HT receptors and activity of two key 

enzymes, PKA and PKC, in human postmortem brain tissue specimens from PFC (BA10), 

which produced several significant findings. First, like a number of prior studies (Turecki 

et al., 1999; Stanley and Mann; Pandey et al., 2002; Hrdina and Du, 2001; Hrdina et al., 

1993; Arranz et al., 1994; Arango et al., 1990, 1997), we found a significant increase in 

5-HT2A receptors in frontal cortex specimens in depressed persons relative to controls. The 

mean value for 5-HT2A receptors was increased to 157% in the depressed sample; when 

the depressed individuals were compared against their matched controls, the increase was 

217%. Increased 5-HT2A receptors have significant implications with regard to depression 

vulnerability. As noted earlier, activation of 5-HT2A receptors has been shown to increase 

anxiety (Mora et al., 1997; Graeff et al., 1996), which is reversed by disruption (Weisstaub 

et al., 2006), inhibition (Sibille et al., 1997), or blockade (Kleven et al., 1997; Griebel et 

al., 1997). Anxiety is an important part of the complex of features of depression (Brown 

et al., 1998); anxious temperament (i.e. trait neuroticism) and anxiety disorders also are 

known to increase the risk for depression (Jorm et al., 2000; Hettema et al., 2006). Hence, 

increased availability of 5-HT2A receptors, which may increase anxious responding, may 

mediate depressive vulnerability in some individuals.

Although brain 5-HT2A receptors have been shown to be elevated in depression, the causal 

pathway is obscure. Both genetic variation of the 5-HT2A receptor (Turecki et al., 1999) and 

decreased 5-HT innervation (Pandey et al., 2002) have been hypothesized as possible causal 

models. However, to our knowledge, the relationship between kinase activity and 5-HT2A 

receptor abundance has not been previously investigated. PKA activity was decreased in the 

samples from depressed persons relative to controls, as demonstrated in other postmortem 

studies in PFC (Pandey et al., 2005, 2007). Consistent with the overall findings, Dwivedi 

et al. (2004a) have found that stress-induced learned helplessness in rats results in both 

decreased PKA and increased 5-HT2A receptor (Dwivedi et al., 2005) availability in frontal 

cortex.

In the present study, a statistically significant association was found between cyclic AMP–

stimulated PKA activity and 5-HT2A receptor abundance. This suggests three possible 

causal models. First, as discussed earlier, PKA is involved in heterologous regulation of 

5-HT2A receptors; phosphorylation of 5-HT2A receptors leads to internalization, followed by 

dephosphorylation and either recycling to the cell surface or degradation (Van Oekelen et 

al., 2003; Roth et al., 1998). Therefore, decreased phosphorylation of cell surface receptors 

could increase availability, as in this study. Second, increased 5-HT2A receptors could 

lead to reduced PKA, although the mechanism is unclear. Finally, an independent factor 
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could be involved in the regulation of both PKA and 5-HT2A receptors. For example, 

increased glucocorticoid activity has been shown to decrease PKA availability (Dwivedi and 

Pandey, 2000) and increase 5-HT2A receptor responsiveness (Umeda et al., 2007; Katagiri 

et al., 2001; Dwivedi and Pandey, 2000) in rats. It is therefore possible that increased 

glucocorticoids induce both findings, given the fact that hypothalamic–pituitary–adrenal axis 

activity is enhanced in many depressed patients (Plotsky et al., 1998).

It should be noted that only a portion of the variance of 5-HT2A (approximately 31%) in the 

depressed sample is accounted for by PKA activity. Therefore, other factors, such as reduced 

5-HT availability, may also contribute to the reduction. However, the relationship between 

5-HT2A abundance and PKA activity in the depressed sample is potentially significant since, 

essentially, none of the 5-HT2A variance was explained by PKA in the controls. In addition, 

since this is a static finding in postmortem tissue, a direct causal link between PKA and 

5-HT2A variance cannot be definitively established, only inferred.

We did not find a decrease in PKC activity in the depressed group, unlike prior reports 

(Pandey et al., 1997, 1998; Coull et al., 2000; Akin et al., 2005). The reason for this 

discrepancy is unclear. Our group has reported reduced PKC in peripheral fibroblasts from 

living depressed persons (Akin et al., 2005), and other groups have shown low PKC in both 

peripheral and brain tissue samples (Pandey et al., 1997, 1998). Most brain tissue studies 

have been done in samples from BA8 or 9, whereas the current study examined BA10. 

To our knowledge, only one previous study examined PKC in this region, and found no 

differences in levels of PKC isoforms in samples from depressed persons (Hrdina et al., 

1998), which is consistent with the current results.

We did find a significant association between basal PKC activity and 5-HT2A receptor 

availability, but only in the control group. Agonist binding to 5-HT2A receptors leads 

to coupling of Gq/11 proteins and activation of phospholipase C, which hydrolyzes 

phosphatidylinositol-4,5-bisphosphate (PI) catalyzing the formation of inositol-triphosphate 

and diacylglycerol. The latter binds to and activates PKC and homologous phosphorylation 

of 5-HT2A receptors by PKC leads to down-regulation (Saucier et al., 1998). Hence the 

availability of the 5-HT2A receptor is dependent, in part, on PKC activity, as was found 

in the control group. The reason for the lack of correlation in the depressed sample 

is unclear. One possible explanation is a decreased availability of 5-HT in depressed 

subjects, leading to lessened homologous desensitization via PKC. Alternatively, previous 

research in our laboratory (Akin et al., 2004) has shown reduced PI hydrolysis after 

activation of 5-HT2A receptors in cultured fibroblasts from depressed patients relative to 

controls. Therefore, a second possible explanation is uncoupling of 5-HT2A receptors from 

post-receptor mechanisms in the depressed subjects, which would obviate the relationship 

between receptor and intracellular signaling.

We did not find significant differences between brains from depressed subjects versus 

controls in 5-HT1A or 5-HT2C receptor abundance. Prior studies have shown lower 5-HT1A 

receptors in specific brain regions (Stockmeier, 2003; Drevets et al., 2007). For example, 

using positron emission tomography imaging, Drevets et al. (2007) showed reduced 5-HT1A 

ligand binding in medial temporal cortex and raphe nuclei, but not in other brain regions 
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(Drevets et al., 1999, 2007). Also consistent with the current study (Stockmeier et al., 1997), 

did not find any differences in [3H]8-OH-DPAT binding to 5-HT1A receptors in BA10. A 

recent postmortem study in BA10 found reduced 5-HT1A in females only, which may also 

be consistent with our results since our sample was predominantly male; it should be pointed 

out, however, that the absolute mean values in males and females did not differ substantially 

in the present study. In fact, both males and females were slightly higher than their matched 

controls (116.3% and 109.3% respectively).

To our knowledge, only one study (Pandey et al., 2006) has examined 5-HT2C receptors 

in human postmortem brain tissue in suicide victims versus controls; the suicide sample 

showed higher 5-HT2C availability in BA8/9 (dorsolateral PFC) but not in hippocampus or 

choroid plexus. The fact that the present study did not show differences in depressed or 

suicide samples in BA10 suggests that the differences previously shown may be regionally 

specific, even within the cortex.

Previous research has suggested that elevated 5-HT2A receptor binding is present in suicide 

victims, and may not depend on the presence of MDD per se (Turecki et al., 1999; 

Stockmeier et al., 1997; Rosel et al., 2000; Pandey et al., 2002; Hrdina and Du, 2001; 

Du et al., 2000; Arango et al., 1997). In the present study, there were no differences in the 

depressed sample between those who died by suicide versus other causes. Elevated 5-HT2A 

receptors may, in fact, not be specific to MDD, but may be a vulnerability factor in people 

otherwise predisposed to being depressed. 5-HT2A receptor activation is associated with 

anxiety-related symptoms and behaviors in both animal and human models (Mora et al., 

1997; Graeff et al., 1996). Anxiety has been shown to be associated with risk for depression 

(Kendler et al., 2003; Kendler, 1996) and suicide (Hawgood and De Leo, 2008). Elevations 

in 5-HT2A receptor abundance may be associated with increases in stress-related dysphoric 

responses which may increase risk for depression, but may also enhance risk for suicide in 

either depressed or non-depressed samples.

This study is limited by the fact that it only involved 20 depressed and control samples, all 

were from Caucasians, and all but three in each group were from men. Therefore, the results 

may not be representative of all depressed patients. The samples were only from BA10, and 

may not reflect the state in other brain regions. In addition, diagnostic classification was 

made retrospectively and by second-hand report. However, the data are consistent with those 

from previous studies, which support the findings.

CONCLUSION

In conclusion, the present study found an elevation in 5-HT2A receptors in human 

postmortem brain tissue specimens from BA10 in depressed relative to control groups. 

This elevation was inversely correlated with PKA activity, suggesting that abnormalities of 

PKA may, at least in part, explain the abnormalities in 5-HT2A receptors. Further research is 

needed to more completely understand the causal pathways for these findings.

SHELTON et al. Page 10

Neuroscience. Author manuscript; available in PMC 2022 June 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments—

The project described was supported by grant award numbers MH073630 (R.C.S.), MH34007 (E.S.-B.), and 
MH084053 (D.A.L.) from the National Institute of Mental Health. The content is solely the responsibility of the 
authors and does not necessarily represent the official views of the NIMH or the National Institutes of Health.

Abbreviations:

BA Brodmann area

CREB cyclic AMP response element binding protein

CREB-P phosphorylated cyclic AMP response element binding 

protein

ECL enhanced chemiluminescence

EDTA ethylenediaminetetraacetic acid
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Fig. 1. 
Representative Western blots for 5-HT1A, 5-HT2A, and 5-HT2C receptors (triplicates, 

controls left, depressed right).
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Fig. 2. 
Correlations, PKA activity versus 5-HT2A receptor protein. A=Depressed, B=Controls.
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Table 1.

Demographic and postmortem data

Depressed Controls

N 20 20

Age (S.D.) 45.5 (14.2) years 46.9 (13.4) years

PMI (S.D.) 18.2 (6.4) hours 17.9 (5.6) hours

Brain pH (S.D.) 6.65 (0.23) 6.74 (0.27)

Sex (%) 3 Females (15%) 3 Females (15%)

Race (%) 20 White (100%) 20 White (100%)
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Table 3.

5-HT1A, 5-HT2A, and 5-HT2C Western blot results for depressed and controls (means and standard deviation), 

and depressed percent matched controls (means and standard deviations)

Protein Controls Depressed Percent matched
controls

Mean S.D. Mean S.D. Mean S.D.

5-HT1A 326.40 233.99 306.15 234.00 115.25 69.52

5-HT2A 406.75 247.52 636.85* 277.62 217.30 153.40

5-HT2C 326.25 127.77 328.05 134.57 110.65 55.18

Values expressed as relative density.

*
P=0.009.

Neuroscience. Author manuscript; available in PMC 2022 June 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SHELTON et al. Page 23

Table 4.

Correlations between PKA and PKC activity and 5-HT receptors

Group 5-HT
receptor

PKA PKC

Basal Activated Basal Activated

Total 5-HT1A 0.009 0.030 0.093 0.067

5-HT2A −0.365* −0.348* −0.297 −0.230

5-HT2C 0.238
0.300

† −0.045 −0.007

Depressed 5-HT1A 0.210 0.213 0.341 0.255

5-HT2A −0.421
† −0.560* 0.112 0.143

5-HT2C 0.432
†

0.437
† −0.097 −0.134

Control 5-HT1A −0.362 −0.357 −0.123 −0.154

5-HT2A −0.051 0.031 −0.515*
−0.435

†

5-HT2C 0.090 0.175 −0.009 0.100

*
P<0.05.

†
P>0.05 and <0.10.

Neuroscience. Author manuscript; available in PMC 2022 June 20.


	Abstract
	EXPERIMENTAL PROCEDURES
	Western blot analysis
	PKA and PKC activity
	Statistical analysis

	RESULTS
	Immunolabeling of 5-HT receptors
	PKA and PKC activity
	Correlations between PKA and PKC and 5-HT receptors
	5-HT receptors in depressed suicide versus non-suicide groups
	Effects of age, sex, PMI, and pH on 5-HT receptors and kinases

	DISCUSSION
	CONCLUSION
	References
	Fig. 1.
	Fig. 2.
	Table 1.
	Table 2.
	Table 3.
	Table 4.

