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Abstract

The interpretation and analysis of Magnetic resonance imaging (MRI) benefit from high spatial 

resolution. Unfortunately, direct acquisition of high spatial resolution MRI is time-consuming and 

costly, which increases the potential for motion artifact, and suffers from reduced signal-to-noise 

ratio (SNR). Super-resolution reconstruction (SRR) is one of the most widely used methods in 

MRI since it allows for the trade-off between high spatial resolution, high SNR, and reduced 

scan times. Deep learning has emerged for improved SRR as compared to conventional methods. 

However, current deep learning-based SRR methods require large-scale training datasets of high-

resolution images, which are practically difficult to obtain at a suitable SNR. We sought to develop 

a methodology that allows for dataset-free deep learning-based SRR, through which to construct 

images with higher spatial resolution and of higher SNR than can be practically obtained by 

direct Fourier encoding. We developed a dataset-free learning method that leverages a generative 

neural network trained for each specific scan or set of scans, which in turn, allows for SRR 

tailored to the individual patient. With the SRR from three short duration scans, we achieved 

high quality brain MRI at an isotropic spatial resolution of 0.125 cubic mm with six minutes of 

imaging time for T2 contrast and an average increase of 7.2 dB (34.2%) in SNR to these short 

duration scans. Motion compensation was achieved by aligning the three short duration scans 

together. We assessed our technique on simulated MRI data and clinical data acquired from 15 

subjects. Extensive experimental results demonstrate that our approach achieved superior results to 

state-of-the-art methods, while in parallel, performed at reduced cost as scans delivered with direct 

high-resolution acquisition.
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I. INTRODUCTION

SPATIAL resolution plays a critically important role in magnetic resonance imaging (MRI). 

High resolution allows for precise delineation of anatomical structures and thus enables 

high quality interpretation and analyses. However, high-resolution (HR) acquisition is 

time-consuming and costly. It is practically difficult to obtain HR images at a suitable 

signal-to-noise ratio (SNR) due to the potential for patient motion and other physiological 

noise during the long time scans [1], [2]. As a result, a trade-off between spatial resolution, 

SNR, and scan times is required for any MRI practices [3], [4]. Various methods have been 

developed to improve image quality according to this trade-off, such as parallel imaging [5], 

[6] and super-resolution reconstruction (SRR) [7]–[13]. Parallel imaging requires hardware 

supports and is platform-dependent. SRR performs in a post-acquisition manner and is thus 

not subject to hardware and platform limitations.

Increasing voxel size, i.e., increasing slice thickness or reducing matrix size or both, results 

in both reduced scan times and improved SNR given the field of view (FOV) is fixed. The 

underlying principle for the improvement in SNR is that the increased voxel size leads to an 

increase in the amount of signal received by the individual voxels. Literature has shown that 

SRR is unable to improve 2D in-plane or true 3D MRI due to the Fourier encoding scheme 

[14], [15] but is possible to enhance through-plane resolution for the acquisition of 2D slice 

stacks [4], [16]. Therefore, large matrix size and thick slices are commonly adopted, in 

pursuit of high SNR and fast imaging, resulting in images of in-plane high but through-plane 

low resolution. Consequently, the focus of this study is on, but not limited to, using SRR to 

reduce the slice thickness of 2D slice stacks acquired with short duration, to obtain images 

of high spatial resolution and high SNR.

SRR originated in [17] and was applied for natural images. Since SRR was introduced to 

MRI in [18], extensive approaches were developed for MRI SRR [7]–[9], [11], [19]–[22]. 

These methods are mainly classified as either model-based or learning-based SRR. Model-

based SRR typically incorporates a forward model that characterizes the process of MRI 

acquisition, and is formulated by an inverse problem that is induced from the forward model. 

Since the inverse problem is in general ill-posed, priors, also known as regularization, are 

often leveraged to isolate the solution with desired properties from the infinitely many 

solutions to the HR reconstruction. State-of-the-art priors include Tikhonov cost [4], total 

variation (TV) [23], Huber loss [20], non-local mean method [24], and gradient guidance 

[25], [26]. These priors in general focus on improving the contrast and sharpness of the HR 

reconstruction. Learning-based SRR summarizes high frequency patterns over HR training 

datasets and applies these patterns to the low-resolution (LR) images being super-resolved 

for obtaining the HR reconstruction [27]–[31]. A common feature of the methods in this 

category is the requirement to present HR and LR training data, in order to be able to learn 

the mapping between them. However, learning by training on HR and LR data is challenging 

when HR inputs are difficult to obtain at suitable SNR.

Deep learning-based SRR has recently gained significant interest [32]–[40]. Techniques 

in this category are in general training data-oriented, rather than patient- or scan-specific, 

because large-scale auxiliary training datasets of HR images, which are practically difficult 
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to obtain at satisfactory quality, are necessarily required. Although few HR MRI image 

datasets are publicly available for training deep neural networks, the learned SRR models 

may be brittle when faced with the data from a different scanner or of different intensity 

properties. Moreover, deep SRR models commonly contain a large number of parameters 

that need to be optimized during training. Once the deep model has been trained, the 

upsampling factor is fixed for the SRR. As the image resolution, which is determined by 

FOV and matrix size, may vary in different scans or with different subjects, it is impossible 

to apply the trained deep model to super-resolve images of arbitrarily low resolution for a 

desired high resolution, e.g., in applications of spatially isotropic SRR. More importantly, 

image contrasts may be quite different for subjects from different populations. For example, 

neonatal brains exhibit reversed white matter-gray matter contrast in T2-weighted scans in 

comparison to adult brains. Therefore, even with practically available and sufficiently large 

HR training datasets, current training data-oriented deep SRR models do not guarantee the 

success or sufficient quality of SRR for every subject in a cohort, once have completed 

training. These limitations suggest that it is critically important to perform SRR with 

a dataset-free and patient-specific deep learning technique. Such a method enables high 

quality SRR through powerful deep learning techniques, while in parallel, eliminates the 

dependence on datasets for training, and in turn, allows SRR tailored to an individual 

patient.

In this study, we report the development and evaluation of a dataset-free and patient-specific 

deep learning method for SRR. The “dataset-free” here means that the training of our deep 

SRR model does not require auxiliary datasets and does not even require any HR images, 

while the “patient-specific” or “scan-specific” means that the training leverages only the LR 

images that need to be super-resolved, which are all acquired from an individual patient 

with a short imaging time. Our technique aims at constructing images with spatial resolution 

higher than can be practically obtained by direct Fourier encoding while ensuring high SNR. 

The SRR is performed from three short duration scans with variable directions of slice 

selection. A deep architecture that incorporates generative and degraded neural networks is 

designed and learned for each individual patient on the 3D volumetric image data of low 

resolution. Our technique achieves high quality brain MRI at an isotropic spatial resolution 

of 0.125 cubic mm with six minutes of imaging time for T2 contrast and an average increase 

of 7.2 dB (34.2%) in SNR to these short duration scans. Experiments on both simulated and 

clinical data demonstrate that our SRR approach achieved superior results to state-of-the-art 

methods, and performed at reduced cost as scans delivered with direct HR acquisition.

II. METHODS

The purpose of our approach developed and presented here is to construct images of 

isotropically high-resolution, at high SNR, and with short scan duration, through a deep 

SRR model that can be trained for an individual patient with no requirement of auxiliary 

datasets. A protocol that allows for short duration scans is employed to acquire LR images 

from an individual patient with variable directions of slice selection. The overview of our 

proposed deep SRR model is illustrated in Fig. 1.
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A. Acquisition strategy

The spatial resolution of an MRI image is determined by the voxel size in the acquisition. 

The in-plane resolution is computed from the FOV over matrix size, while the through-plane 

resolution is set by slice thickness. As SRR has limitations in enhancing the in-plane 

resolution of 2D slice stacks and true 3D scans [4], [14], [16], we fix the matrix at a large 

size to ensure sufficiently high in-plane resolution.

The acquisition time T of an MRI scan of 2D slice stack, delivered with a matrix size of n1 

× n2 and ns slices, is given by T ∝ TR · n2 · ns. With the fixed echo time (TE) and repetition 

time (TR) to keep the contrast unchanged, the option to reduce the acquisition time is to 

decrease the number of slices ns, i.e., increasing the slice thickness. Also, larger thickness 

leads to larger voxel size, and in turn, results in higher SNR. However, the larger the 

thickness, the more severe the partial volume effect, and thus the more difficult the super-

resolution. To this end, we acquire multiple images to facilitates SRR with an increased 

number of acquired slices. However, the total acquisition time is increased accordingly. 

Fortunately, we can employ fast imaging techniques to accelerate the scans, such as turbo 

spin echo (TSE) imaging. For images that yield long TR, such as T2-weighted images, the 

TSE technique can reduce the scan duration by NETL times with an echo train length of 

NETL that typically ranges from 4 to 32 in clinical practices.

We acquire multiple LR T2 TSE images with variable directions in slice selection from 

each subject. This method offers an effective sampling of k-space, and provides the 

high frequencies distributed in different directions that facilitate SRR. Although the slice 

selection directions and the number of the LR images can be arbitrary, orthogonal (axial, 

coronal, and sagittal) scans typically achieved a trade-off between acquisition time and SRR 

performance.

B. Acquisition model

In the spatial encoding of 2D MRI scans, a radio frequency (RF) pulse is applied in 

combination with a slice-select gradient to excite a slice, and then frequency- and phase-

encoding steps are performed in the excited slice plane. The signals from the spatial 

encoding are recorded in k-space and processed to form a slice image. By repeating the 

above process for ns times, a volumetric image (2D slice stack) composed of ns slices is then 

acquired.

In the slice selection, a slice-select gradient is imposed along an axis perpendicular to the 

plane of the desired slice, leading to a linear variation of resonance frequencies in that 

direction. A band-pass RF pulse is simultaneously applied to excite only the desired slice 

containing the resonant frequencies that lie within the band. The bandwidth of the RF pulse, 

known as the transmitter bandwidth, denoted by BW, and the strength of the slice-select 

gradient Gz determine the slice thickness Δz from Δz = BW
γGz

 with a gyromagnetic ratio γ 

that is a constant specific to each specific nucleus or particle. A slice profile that is related 

to the spectrum of the RF pulse is typically used to characterize the slice thickness in image 

space. For an RF pulse B1 (t), the slice profile is given by
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p(z) ∝ B1(ω)|ω = γ
2πGzz (1)

for B1(ω) being the Fourier transform of B1 (t).

Without loss of generality, we define the plane x-y as the imaging plane, and direction-z 
as the slice selection direction in the frame with axes-x, y, and z. Let m denote the 

magnetization density of the patient being imaged. The signal equation [42] suggests that the 

noise-free signal is measured from

s(t) = ∫ m(x, y, z)p(z)e−j2π(xkx(t) + yky(t))dxdydz, (2)

where kx = γ
2π ∫0

tGx(τ)dτ and ky = γ
2π ∫0

tGy(τ)dτ with the frequency- and phase-encoding 

gradients Gx and Gy, respectively. This is a 2D Fourier transform of ∫ m (x, y, z) p(z) 

dz. Consequently, the k-th slice with a thickness of Δz mm

sk = ∫(k − 1)Δz

kΔz
m(x, y, z)p(z)dz + ε (3)

can be obtained from an inverse 2D Fourier transform on s(t) in combination with additive 

noise ε. This equation suggests that an MRI image with an arbitrary in-plane resolution and 

a slice thickness of Δz can be formed by convolving m (x, y, z) with the slice profile p (z) 

and then downsampling the convolution result in the direction of slice selection by a factor 

of Δz.

Let column vectors x and {yk}k = 1
N  denote the HR image being reconstructed and the 

acquired N LR images with variable directions of slice selection, respectively. The forward 

model that describes the imaging process is defined by

yk = DkHkTkx + εk, k = 1, 2, …, N, (4)

where the matrix Tk denotes a rigid body transform in image coordinates; Hk is a circulant 

matrix of slice profile; Dk denotes downsampling; εk denotes additive noise. The details of 

these matrices are elaborated below.

1) Motion compensation: Patients may move during MRI scans. We consider that they 

move rigidly and the motion happens only between scans as each scan duration is short. A 

rigid body transformation Tk is thus leveraged to represent patient motion between scans, 

which is composed of six degrees of freedom (three parameters for rotation, and the other 

three for translation). We computed the six parameters of the matrix Tk from aligning each 

LR image to the first images.

2) Slice encoding: The circulant matrix Hk defines a space-invariant low-pass filter. 

It typically incorporates three kernels that are applied in the directions of frequency- and 

phase-encoding, and slice selection, respectively. Since only the through-plane resolution 
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is enhanced, we do not consider the filtering in the directions of frequency- and phase-

encoding. As discussed above, slices can be excited through a slice profile in image space by 

the convolution. Therefore, Hk comprises only the kernel defined by a slice profile.

An ideal slice profile is a rectangular window function with a full width of the slice 

thickness. It requires a sinc pulse that needs an infinite number of side lobes to uniformly 

and exclusively excite a discrete band of frequencies. Therefore, it is practically impossible 

to generate a perfectly rectangular profile. It is crucial to appropriately approximate the slice 

profile in SRR as the approximation directly influences the accuracy of the forward model. 

In general, bell-curve profiles with wider bases and narrower central peaks are leveraged, 

and slice thickness is measured as the full width at half maximum (FWHM) signal intensity. 

Gaussian profiles are widely used in MRI reconstruction and have been demonstrated to be 

effective in SRR [8], [20], [25], [43]–[45]. Therefore, we use the Gaussian profile with its 

FWHM is equal to the slice thickness in our approach. Let Δzx denote the slice thickness of 

x, and Δzk the slice thickness of yk. The Gaussian profile incorporated in Hk is constructed 

with an FWHM of 
Δzk
Δzx

 voxels in direction-z.

3) Downsampling: This step isolates the thick slices from the filtered thin slices of x 

to form the LR image yk. As discussed above, the downsampling factor is found by 
Δzk
Δzx

. 

As this factor is not necessarily an integer, we perform the downsampling in the frequency 

domain by a spectrum truncation.

4) Noise: When SNR > 3, εk can be considered to be additive and follows an identical 

Gaussian distribution [46].

C. Algorithm of super-resolution reconstruction

The basic idea of our approach is to generate an HR image using deep neural networks. The 

generation is restricted by the forward model in Eq. (4) based on the N acquired LR images 

{yk}k = 1
N . Specifically, the HR reconstruction x is found by

x = fθ(z), s.t. yk = DkHkTkx + εk, (5)

with a generative function fθ defined by a set of parameters θ based on an initial guess z. 

The nonlinear function fθ is accomplished by learning a deep neural network. The initial 

guess z can be arbitrary due to the power of the deep network in data fitting. Since the 

learning for fθ is tailored to an individual patient, only the N LR scans {yk}k = 1
N , which are 

acquired from a specific patient, are used to train the deep neural network that characterizes 

fθ. Random noise is incorporated in the network input in combination with z, due to the 

small amount of observed data in yk, to enhance the robustness of the learning for fθ and 

to prevent the learning from yielding local optima [47]. The noise, denoted by ν, follows a 

Gaussian distribution, of which each element is independently drawn from ν ~ N (0, σ2). 

Consequently, in combination with the Gaussian noise εk in the acquired LR images as 

discussed above, the learning for fθ is formulated by
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min
x, θ

ℓ(x − fθ(z + ν)) + τ ∑
k = 1

N
yk − DkHkTkx 2

2, (6)

with a loss function ℓ (·) and a weight parameter τ > 0. A similar equation can be achieved if 

we reformulated Eq. (5) by

min
x, θ

∑
k = 1

N
yk − DkHkTkx2

2, s.t. x = fθ(z) . (7)

The above constraint is known as the deep image prior [48] in natural image processing. 

To increase the sharpness of the HR reconstruction, a total variation (TV) criterion [49] is 

imposed on the reconstruction x for image edge preservation. Consequently, the learning for 

fθ is accomplished by

min
x, θ

ℓ(x − fθ(z + ν)) + τ ∑
k = 1

N
yk − DkHkTkx 2

2 + λ ∇x
1
, (8)

where λ > 0 is a weight parameter for the TV regularization and ∇x computes the image 

gradient of x.

The above problem can be solved by either iterative strategies that jointly optimize Eq. (8) 

over (x, θ) or alternate optimization techniques between x and θ. In particular, when the loss 

function ℓ(·) is an ℓ2-loss, we can substitute x with fθ:

min
θ

∑
k = 1

N
yk − DkHkTkfθ(z + ν) 2

2 + λ ∇fθ(z + ν)
1
, (9)

This model characterizes the learning for fθ as the following steps: 1) generate an HR 

image x through a nonlinear function fθ; 2) degrade the generated image into N LR images 

according to the forward model; and 3) update the generation by punishing it on the 

residuals between the degraded images and the acquired LR images through the criterion 

of mean squared error in combination with a cost in edge preservation. With a learned 

generative function, the HR reconstruction x is consequently achieved from

x = fθ(z) . (10)

We implement the generative function fθ by a deep neural network. Fig. 2 shows the design 

of the neural network. The initial guess z is set to an image reconstructed by a standard 

TV-based SRR.

We employ N degradation networks to implement the forward model. Each degradation 

network contains the layers corresponding to the operations in the forward model. The 

filtering and downsampling are accomplished in the Fourier domain. Two additional layers 
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are thus incorporated to provide real-to-complex discrete Fourier transform and complex-to-

real inverse discrete Fourier transform, respectively. The k-th degradation network offers an 

output to fit an LR image yk. Mean squared error is leveraged to quantify the fitting quality.

The TV regularization imposed on the output of the generative network is implemented 

by the layers that calculate image gradients in three orthogonal directions and combine 

them into a scalar measure by an ℓ1-norm. The N mean squared errors in combination with 

the TV cost are summed up as the total loss in the learning. An Adam algorithm [50] is 

used to optimize the network parameters θ. The optimization takes 8K iterations for back 

propagation to reduce learning errors. A piecewise constant decay in learning rate is utilized, 

which is set at 0.01 in the first 4K iterations and then is halved every 1K iterations.

D. Assessment criteria

1) Reconstruction accuracy: The most widely used criteria for the accuracy of image 

reconstruction is peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) [51]. 

However, the two criteria are limited to using in combination with a reference image. We 

therefore assess our approach in terms of PSNR and SSIM on the data where ground truths 

are available.

2) Spatial resolution: In MRI acquisitions, the spatial resolution is determined by the 

voxel size. However, in the post-processing, we can resample the voxels at arbitrary sizes. 

The voxel size is thus no longer an accurate measure for spatial resolution, as the resampled 

voxels are computed from those whose intensities may comprise a mixture of signals from 

multiple tissues, as shown in Eq. (2). This is also known as the partial volume effect (PVE). 

The spatial resolution can thus be quantified by the number of voxels suffering from PVE. 

The higher the spatial resolution, the fewer the voxels with PVE.

We consider three types of brain tissues in our experiments, the cerebrospinal fluid (CSF), 

gray matter (GM), and white matter (WM). As these tissues yield different contrasts, their 

voxel intensities scatter in three clusters. It has been demonstrated in [52] that the intensities 

of the voxels from a pure tissue follow a Gaussian distribution. Consequently, we use a 

Gaussian mixture model (GMM) with three components to represent the distribution of 

voxel intensities in an image. The GMM is obtained from a least squares data fitting to 

the histogram of voxel intensities. We consider the voxels are from the k-th tissue if their 

intensities are in the range of sk ± δk for sk and δk being the mean and the half FWHM of the 

k-th Gaussian component, respectively. Thus, the voxels outside the three ranges defined by 

the three tissues are from the mixture of more than one tissue, and considered as with PVE.

3) SNR: The SNR of an image is computed from the mean signal intensity over the noise: 

SNR = 10log10
∑k = 1

3 wksk
v∑k = 1

3 wk
, where the mean signal intensity sk of the k-th tissue and the 

respective weight wk are mean and maximum of the k-th component of the GMM obtained 

above, respectively, and the noise v is measured by the standard deviation of an image region 

from the background.

Sui et al. Page 8

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4) Contrast: We evaluate the contrast by the metric of contrast-to-noise ratio (CNR), 

which is computed from the difference in the mean signal intensity between two types of 

tissues over the noise: CNR = 10log10 s(1) − s(2) /v .

5) Qualitative assessment: We qualitatively evaluate the HR reconstructions and 

assess the capability of our approach in noise suppression. We qualitatively measure the 

noise by a high-pass filtered image that is obtained by 1) convolve the HR reconstruction 

with a Gaussian filter, and 2) subtract the Gaussian (low-pass) filtered image from the HR 

reconstruction.

E. Baseline methods

We employed five state-of-the-art SRR methods as the baselines, including cubic 

interpolation, non-local upsampling (NLU) [24], TV-regularized SRR (TV) [4], deep image 

prior (DIP) [48], and gradient guidance regularized SRR (GGR) [26]. As our approach 

utilizes the LR data only, we chose the baselines in the same category to conduct fair 

comparisons. Although there are many deep SRR methods in the literature, such as SR-GAN 

[35], [53], [54] and Variational network [30], the amount of data acquired cannot support 

the training for those methods. We applied the DIP method to enhance the through-plane 

resolution slice by slice for each LR image, and then averaged the three super-resolved 

images to obtain an HR reconstruction with an isotropic spatial resolution. We called our 

SRR approach the SSGNN (Scan-Specific Generative Neural Network) in the experiments.

F. Experimental Design

We carried out four experiments to assess our approach on both simulated and clinical data. 

The goal of these experiments is two-fold: 1) to demonstrate that our approach allows for 

the SRR tailored to an individual patient with no requirement of training datasets; and 2) to 

show that our approach enables fast and high quality MRI for the resolution critical use in 

both scientific research and clinical studies.

1) Experiment 1: Simulations on T1W and T2W data: The objective of this 

experiment is to demonstrate that our approach can offer correct reconstructions while 

ensuring high quality. We simulated a dataset based on the structural MRI data from the 

Human Connectome Project (HCP) [55]. We randomly picked twenty subjects for their HR 

T1-weighted scans and twenty subjects for their HR T2-weighted scans. These HR scans 

were magnitude data and were acquired at the resolution of isotropic 0.7mm, and used 

as the ground truths. All simulations followed the process defined in the forward model 

shown in Eq. (4). We simulated three LR images from each HR image by increasing their 

slice thickness to 2mm in the directions-x, y, and z, respectively. Simulated motion with 

random translations and rotations was incorporated, which were randomly drawn from the 

ranges of [−10, 10] mm and [−10, 10] degrees, respectively. Random Gaussian noise, which 

comprised a zero mean and a standard deviation of 10% of the mean voxel intensity of the 

HR image, was added to each LR image. The negative intensities due to the additive noise 

were replaced with their absolute values. We reconstructed the HR image at the resolution of 

isotropic 0.7mm from the three LR images for each subject, and assessed the accuracy and 

quality of our reconstruction in comparison to those of the five baselines.
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2) Experiment 2: Assessment on clinical T2 TSE data: The objective of this 

experiment is to demonstrate that our approach can achieve images of diagnostic quality for 

clinical uses in six minutes of imaging time. To this end, we acquired a dataset from fifteen 

patients on a 3T MRI scanner. For each patient, three T2 TSE LR images were acquired in 

three orthogonal planes. The in-plane resolution was 0.5mm x 0.5mm and the slice thickness 

was 2mm. We used TR/TE=14240/95ms with an echo train length of 16, a flip angle of 

160 degrees, and a pixel bandwidth of 195Hz/pixel. It took about two minutes in acquiring 

a T2 TSE image with this protocol. All scans were performed in accordance with the local 

institutional review board (IRB) protocol. We reconstructed the HR image at the resolution 

of isotropic 0.5mm, and assessed the reconstruction quality in terms of SNR, contrast, and 

spatial resolution.

3) Experiment 3: Generalization of the scan-specific training: We aimed at 

investigating the generalization capability of the generative neural network trained on the 

scan-specific data in this experiment. Although we recommend always training on scan-

specific data for the SRR, it is still helpful to investigate in what scans the scan-specific 

training can be generalized, and what the quality of the generalization is in those scans. 

The successful generalizations with satisfactory quality demonstrated that our approach 

can be applied to the tasks where the spatial resolution is not critical, e.g., showing a 

preview of the HR reconstruction before the training has been completed. In contrast, the 

failed generalizations demonstrated the advantages of the scan-specific training for the SRR. 

Consequently, we randomly selected a subject from the simulated and clinical datasets, 

respectively, and applied the generative neural network trained for this subject to other 

subjects. The generalization was achieved through Eq. (10), where the initial guess z was 

obtained by a standard TV method on the LR data of the testing subject. We assessed 

the quality of these reconstructions and analyzed the relationship between the data from 

these subjects. The expected outcome was that high quality generalized reconstructions were 

achieved for the subjects with similar image data and vice versa. In addition, as the deep 

generative network performs in a local manner on the image through the convolution, we 

investigated similarities between the training and testing data in the generalization mode 

through the local correlation [56], also known as local self-similarity [57]. Our expectation 

was that high quality generalized reconstructions were obtained when high local correlations 

between the training and testing data were observed and vice versa.

4) Experiment 4: Ablation studies and algorithm analyses: The objective of 

this experiment is to investigate the contributions and of each module in our approach to 

the SRR. As shown in Eq. (9), our SRR model incorporates three important modules that 

need to investigate: the generative network fθ the Gaussian noise ν added to the initial 

guess z, and the TV regularization. The contribution of the generative network to the SRR 

was demonstrated by the performance gap between SSGNN to TV. We visualized the 

intermediate reconstructions from different decoder layers to analyze how the generative 

network performed. We assessed our SRR approach by training the generative network on 

different numbers of LR scans, in order to analyze how the number of LR scans affected the 

training and in turn the SRR results. We also investigated how the slice thickness affected 

the performance of our SRR approach by evaluating the reconstruction accuracy over the 
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LR data with different thicknesses. The Gaussian noise ν ~ N (0, σ2) is controlled by the 

parameter σ, while the TV regularization yields the weight parameter λ. The module was 

removed when we set the respective parameter to zero. We investigated how different values 

of the parameters influenced the SRR. We evaluated the reconstruction accuracy with the 

parameters on ten T1W and ten T2W scans that we randomly picked from the HCP dataset.

III. RESULTS

We implemented our SRR in PyTorch [58] and ran it on an NVIDIA Titan RTX GPU. 

It took about six hours to reconstruct an image of size 3843 voxels. We reported the 

quantitative results by box and whisker plots [59], [60]. In each box, the central line 

indicated the median, and the bottom and top edges of the box indicated the 25th and 75th 

percentiles, respectively. The whiskers extended to the most extreme data points.

A. Experiment 1: Simulations on T1W and T2W data

Fig. 3 shows the results of our approach and the five baselines in terms of PSNR and 

SSIM on the HCP dataset. Our approach, SSGNN, achieved a PSNR of 38.11±2.11dB 

and an SSIM of 97.0±0.005 on average. The results show that SSGNN offered the most 

accurate reconstructions of both T1W and T2W images on this dataset, and in particular, 

outperformed the second best method, GGR, with a large margin in SSIM.

Fig. 4 shows the results of our approach and the five baselines in terms of SNR, CNR, 

and PVE on the HCP dataset. Our approach achieved an average SNR of 23.8±2.32dB, 

and considerably outperformed the baselines in terms of SNR and CNR. The percentage of 

voxels with PVE in our reconstructed images was 10.4%±3.5% on average. The results show 

that SSGNN offered the highest spatial resolution on this dataset.

Fig. 5(a) shows the estimation of PVE. The blue curve with markers shows the distribution 

of voxel intensities of a selected image region that contained CSF, GM, and WM. A GMM 

with three components was leveraged to fit the distribution of voxel intensities, as depicted 

by the solid line. The three components of the GMM, represented from left to right the WM, 

GM, and CSF, respectively, are plotted by the dashed lines. Fig. 5(b) shows the converging 

process of our approach in terms of mean squared error and PSNR with 8K iterations. The 

results show that SSGNN converged after 2K iterations in this example.

Fig. 6 shows the qualitative results of our approach and the five baselines on the HCP 

dataset in comparison to the images from direct HR acquisitions. The results in the top line 

show that our approach, SSGNN, performed the best in noise suppression, and considerably 

reduced the noise compared to the direct HR acquisitions. The middle line shows that 

SSGNN offered the best qualitative performance in the image details and noise suppression, 

particularly in the cerebellum as highlighted in the images. The results in the bottom line 

show that SSGNN yielded the best image quality, and in particular, SSGNN offered finer 

anatomical structures of the cerebellum at a lower noise level, and in turn, achieved superior 

reconstructions to the direct HR acquisitions as well as the five baselines.
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B. Experiment 2: Assessment on clinical T2 TSE data

Fig. 7 shows the results of SSGNN and the five baselines in terms of SNR, CNR, and PVE 

on the clinical dataset. SSGNN considerably outperformed the five baselines according to 

SNR and CNR. It yielded an average SNR of 28.1±3.3dB, which was 11.6% (2.9dB) higher 

than obtained by the second best method, GGR, and 34.2% (7.2dB) higher than obtained 

by Cubic. The percentage of voxels with PVE achieved by SSGNN was 9.3%±5.9% on 

average, which was the lowest among those obtained by the six methods. Therefore, SSGNN 

offered the highest spatial resolution on this dataset.

Fig. 8 shows the voxels suffering from PVE in the images reconstructed by the five baselines 

and our approach from a representative subject on the clinical dataset. SSGNN offered 

the lowest number of voxels with PVE, leading to the highest spatial resolution in the 

reconstructed HR image.

Figs. 9–11 show the qualitative results of our approach and the five baselines on the clinical 

dataset. Fig. 9 shows that SSGNN achieved the best result according to the image details 

and sharpness. As highlighted in these slices, SSGNN offered finer anatomical structures 

of the vermis and cerebrocerebellum than the five baselines. As shown in Fig. 10, SSGNN 

generated the best reconstruction according to the image details. In particular, SSGNN 

offered much clearer and sharper image edges in the cerebral cortex than the five baselines. 

The results in Fig. 11 show that SSGNN achieved the sharpest reconstruction and yielded 

the most precise anatomical structures of the cerebrum, particularly in the frontal lobe as 

highlighted in the images.

Fig. 12 shows the reconstructions over iterations obtained by our SRR approach from 

a neonate. The anatomies, such as the hippocampus, were clearly delineated after 1000 

iterations, while in the following iterations, our SRR algorithm fine-tuned the reconstruction 

in the contrasts and SNR.

C. Experiment 3: Generalization of the scan-specific training

Fig. 13 shows the generalization analyses on the HCP dataset. The results show that the 

generalized generative network, denoted by SSGNN-Gen, offered superior reconstructions 

to the initial guess obtained from the TV method but inferior results to SSGNN trained 

on the scan-specific data in terms of PSNR and SSIM. Also, SSGNN-Gen generated better 

results on the T2w scans than on the T1w scans, as the standard deviation of the distributions 

of the T2w intensity is smaller than that of the T1w intensity, as shown in Fig. 13(a).

Fig. 14 shows three HR images reconstructed by our SRR approach (SSGNN) for three 

representative subjects on the clinical dataset. Subjects 1 and 2 were young children at a 

similar age, so their voxel intensity distributions were similar as well, as shown in Fig. 

14(d). Subject 3 was a newborn and had reverse gray matter-white matter contrasts as 

compared to the other two subjects, resulting in a big difference in the voxel intensity 

distribution from Subjects 1 and 2. These results can also be interpreted by the difference in 

the local correlation. We extracted the image patches of size 3x3x3 voxels from all subjects 

and computed the correlations between each patch from Subjects 1 and 2, and from Subjects 

1 and 3. We showed the distribution of the maximum local correlation of each patch, as 
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plotted in Fig. 14(e). The results show that the local correlations between Subjects 1 and 

2 were much higher than between Subjects 1 and 3, leading to better generalization from 

Subject 1 to Subject 2 than to Subject 3.

Fig. 15 shows the generalized reconstructions for Subjects 2 and 3. The generative network 

was trained for Subject 1 and applied to Subjects 2 and 3. The HR images reconstructed by 

SSGNN, as shown in Fig. 14, were used as the gold standards. The results show that the 

generalization for Subject 2 was successful and led to small errors, while failed for Subject 3 

with big errors due to the big difference in intensity distributions between Subjects 1 and 3.

D. Experiment 4: Ablation studies and algorithm analyses

Fig. 16 visualizes the representative intermediate reconstructions in different decoder layers. 

The visualizations show that the decoder captured the image details in different scales with 

different layers.

Fig. 17 shows the results of the investigation on the number of LR scans incorporated in 

our approach on the HCP dataset in terms of PSNR and SSIM. The results show that our 

approach performed better as more LR scans were leveraged.

Fig. 18 shows the results of the investigation on the slice thickness of the LR scans 

incorporated in our approach on the HCP dataset in terms of PSNR and SSIM. The results 

show that the performance of our SRR approach performed better with thinner slices.

Fig. 19 shows the results of the investigation on the standard deviation σ of the Gaussian 

noise ν added to the initial guess z, as shown in Eq. (8), on the HCP dataset in terms of 

PSNR and SSIM. We set the parameter σ at different values in the range of [0, 0.1], and 

performed the SRR at each value. The results show that our approach achieved the highest 

accuracy when setting σ at 0.05. The PSNR and SSIM were 37.3±2.2 dB and 0.96±0.005, 

respectively, at this value of σ. The results in the case of σ = 0 show that adding noise to the 

network input led to an increase in the accuracy of our SRR approach by 5% in PSNR and 

by 4% in SSIM, respectively.

Fig. 20 shows the results of the investigation on the weight parameter λ of the TV 

regularization on the HCP dataset in terms of PSNR and SSIM. We set the parameter λ 
at different values in the range of [0, 0.5], and performed the SRR at each value. The results 

show that our approach achieved the highest accuracy when setting λ at 0.01. The PSNR 

and SSIM were respectively 37.7±2.2dB and 0.97±0.006 on average. The results in the case 

of λ = 0 show that the TV regularization improved the accuracy of our SRR approach by 2% 

in PSNR and by 1% in SSIM, respectively.

IV. DISCUSSION

We have developed a technique that allows for auxiliary dataset-free deep learning-based 

SRR. We have demonstrated that our technique enables the deep SRR model tailored to an 

individual patient. We have applied this technique to perform scan-specific SRR for high 

quality MRI.
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A. Reconstruction quality

We have shown in the simulation experiment that our approach correctly converged, as 

shown in Fig. 5(b), for solving our SRR problem presented in Eq. (8). We have also shown 

in Fig. 3 that our approach generated correct reconstructions, and substantially improved 

the reconstruction accuracy in terms of PSNR and SSIM, as compared to the five baselines. 

These results have demonstrated that our technique ensures the reliability and applicability 

of our SRR approach for use in scientific research studies and clinical practices.

The maximum voxel intensity in the T1W images from the HCP dataset was much higher 

than in the T2W images. As PSNR is proportional to the maximum voxel intensity, the 

PSNR in T1W images were higher than in T2W images, as shown in Fig. 3. Thus, the 

difference in PSNR between T1W and T2W images in the simulation experiment did not 

indicate the performance bias of our approach in different sequences.

We have shown that our approach considerably improved the SNR and CNR of the 

reconstructed HR images in comparison to the five baselines, as reported in Figs. 4 and 

7. This is attributed to the denoising by the encoder-decoder network [48] (the generative 

network) in combination with the image deconvolution (inversion of the forward model) in 

our design, as shown in Eq. (8). GGR and TV also led to improved SNR and CNR as they 

incorporated image deconvolution as well.

We have shown that our approach achieved the highest spatial resolution in terms of PVE 

on both the simulated and clinical datasets, as shown in Figs. 4 and 7. When the resolution 

shifted from 0.7mm on the HCP dataset to 0.5mm on the clinical dataset, as expected, 

the estimated number of voxels with PVE in our SRR decreased from 10.4% to 9.3% on 

average. As shown in Fig. 8, the PVE incurred in those voxels from the boundaries of 

different types of tissues. These results have demonstrated that our approach allows for high 

spatial resolution for delineating the details of anatomical structures.

Our approach enhances the through-plane resolution in the image space, i.e., it processes 

magnitude data for the reconstruction. The major advantage of using image space instead 

of raw data is that it allows for a general SRR beyond imaging platforms and protocols, as 

it is flexible, convenient, and does not require hardware information like coil sensitivities. 

The downside is thus that the phase data is not available in the reconstruction. As the phase 

data in general contains information about magnetic field inhomogeneities, our approach 

is not suitable in those applications such as the characterization of susceptibility-induced 

distortions.

B. Acquisition strategy

We have shown that how the number and thickness of LR scans affected our SRR approach, 

respectively, as shown in Figs. 17 and 18. The results show that our approach performed 

better with more LR scans and thinner slices. These results were consistent with those of 

the majority of SRR techniques, i.e., SRR algorithms benefit from an increased number of 

observations and small downsampling factors. However, acquiring an increased number of 

LR scans increases scan time, while acquiring thin slices lengthens scan times and reduces 

SNR. It has been shown in [1] that the pediatric patients hold their heads still for six minutes 
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on average in brain MRI exams. Our fast acquisition protocol ensured acquiring an LR T2 

TSE image with a thickness of 2 mm in two minutes. We thus acquired three LR images 

for a patient with six minutes of imaging time. Therefore, our acquisition strategy allows 

for high SNR in a single LR scan, while mitigating motion during the scans. Consequently, 

this is a trade-off between the quality of SRR and scan time. The experimental results have 

demonstrated the efficacy of our acquisition strategy.

C. Acquisition time reduction

We have shown that our approach acquired a T2 TSE image at the resolution of 0.5mm 

x 0.5mm x 2mm in two minutes. It is considerably fast to obtain an image with T2 

contrast at the resolution of isotropic 0.5mm in six minutes of total imaging time. As a 

comparison, in six minutes of imaging time, we can only acquire a 3D T2 SPACE image 

at the resolution of isotropic 1mm on our 3T scanner. Acquiring that same data at the 

resolution of isotropic 0.5mm can be carried out, but acquires about 8 times more data, and 

thus requires an extended acquisition time. In addition, the SNR is reduced by a factor of 

8 as each voxel shifts from 1 cubic mm to 0.53 cubic mm. In order to obtain a satisfactory 

SNR, averaging over multiple HR data is required, leading to further extended acquisition 

time. Consequently, our approach offered a fast imaging solution to high-resolution brain 

MRI at a high SNR, which substantially reduced the in-scanner acquisition time.

D. A deconvolution perspective

The generative network offers an HR image as the reconstruction, while the degradation 

networks degrade the HR reconstruction to fit the LR scans. The optimal reconstruction 

is achieved when the residual between the degraded images and the LR scans is 

minimized. The optimization process is essentially a super-resolution strategy that comprises 

upsampling and deconvolution.

Our super-resolution model is presented in Eq. (9). The optimization is accomplished by 

a numerical algorithm based on a gradient descent strategy. Without loss of generality, a 

standard gradient descent algorithm can be leveraged to search in the solution space for 

optimal reconstruction. The derivative of the objective function J in Eq. (9) is found by

∂J
∂θ = ∂J

∂fθ
⋅ ∂fθ

∂θ . (11)

For simplicity, we consider the data fidelity (the ℓ2-norm term) only. Consequently, we have

∂J
∂θ = ∑

k = 1

N
Tk

THk
TDk

T (DkHkTkfθ − yk) ⋅ ∂fθ
∂θ . (12)

The above equation shows the update rule for θ in the numerical algorithm. The HR 

reconstruction fθ is estimated with θ at the current iteration, transformed onto each LR 

scan space by Tk, blurred by Hk, and undersampled by Dk. The degraded image is then 

compared to the LR scan yk and then the residual is upsampled by Dk
T , deconvolved by Hk

T , 
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and transformed back onto the HR image space by Tk
T . These results are summed up and 

then propagated into the network parameter space for a step of update in θ. Therefore, the 

optimization process mainly relies on upsampling and deconvolution for the super-resolution 

reconstruction, which is a typical strategy to solve the super-resolution model [4], [24], [25]. 

The superiority of our approach is accomplished by the dynamically learned regularization 

delivered by the deep neural networks. The generative network yields the HR reconstruction 

with the constraints imposed by its encoding-decoding scheme, while the degradation 

networks offer the upsampling and deconvolution framework and enforce the data fidelity.

E. High-resolution generation

The primitive SRR problem is severely ill-posed as it tries to estimate a large number 

of unknowns (voxel intensities of the HR reconstruction) from a limited number of 

observations (all voxels of the acquired LR images). Priors, also known as regularization, 

are typically incorporated to pick the desired solution (HR reconstruction) from the infinitely 

many feasible solutions (HR reconstructions that can be derived from the observations). The 

priors define certain criteria that measure the desired properties in the candidates of HR 

reconstructions. A candidate that matches these criteria the best is then selected as the HR 

reconstruction.

The forward model defines an inverse problem for the SRR in our approach, which is also 

severely ill-posed as ∑k = 1
N  #yk ≪ #x with # counting the voxels. We use a nonlinear 

function implemented by training a deep neural network to generate the HR reconstruction 

according to the rules defined by the forward model. The neural network comprises a 

number of encoder and decoder layers where the knowledge about the HR generation with 

the underlying degradation process is dynamically embedded based on the acquired LR 

images. A successful application of such knowledge in natural image processing has been 

known as deep image prior [48]. By training the deep SRR model over the LR images, the 

scheme combining the generative neural network and its degradation counterparts defines 

an implicit criterion that distinguishes the HR reconstruction represented the best by the 

networks from the infinitely many candidates. Such an implicit criterion is delivered by 

the network structure through parameterization. As shown in Eq. (7), the regularization is 

applied by the nonlinear function fθ that enforces the mapping from the code vector z to 

the HR reconstruction x. It suggests that the generative network searches the solution space 

by adjusting the parameters of its convolutional filters, in order to explain/represent the 

HR reconstruction x the best. Such an explanation/representation establishes the implicit 

criterion according to the parameterization as well as the data fidelity. Eqs. (11) and (12) 

have shown that the network embeds the knowledge captured by the parameters θ into the 

HR reconstruction. These parameters are optimized during the training according to the 

code vector z and, the LR images yk, and the forward model for each individual learning 

process. Therefore, the criterion for regularization varies in each reconstruction. We address 

the regularization as a dynamically learned prior with an implicit criterion, as the prior in 

fact does not have an explicit form that we can describe in a mathematical or structural 

manner. This conclusion has also been demonstrated in [48].
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The representation-based regularization is often used in super-resolution methods, such as 

dictionary learning-based representation [29] and sparse convolutional representation [61]. 

The techniques in this category typically impose task-specific, handcrafted constraints on 

the feature maps that represent the HR reconstruction. Similarly, in our approach, the 

HR reconstruction is deeply represented by the deep generative neural network. A set 

of encoder layers address the feature maps based on a code vector, and then a set of 

decoder layers restore the HR reconstruction over the learned feature maps. This process is 

fully unsupervised and adaptive over the input data. There is no explicit constraint on the 

representations, but the deep representation of the HR reconstruction promises an implicit 

regularization via the deep network structure. It has been shown in [48] that such an implicit 

criterion delivered by the deep neural network with an “hourglass” structure offers high 

impedance to noise and low impedance to signal. The performance gap between SSGNN 

and TV has shown the contribution of the dynamically learned prior to the quality of the 

SRR.

As an example, we have shown in Fig. 16 that the decoder captured the image details 

in different scales with different layers. All details were integrated into the output of the 

generative network. The integration implicitly delivered the prior that the HR reconstruction 

was the one out of infinitely many candidates, which was represented the best by the 

generative network, or equivalently, approximated the most accurately by the nonlinear 

function fθ.

F. Scan-specific learning v.s. training data-oriented learning

Our scan-specific learning for SRR relies on the LR data only that is acquired from a 

specific patient, in contrast to the training data-oriented learning that requires large-scale 

auxiliary datasets of HR images. Therefore, our technique allows for the SRR tailored to 

an individual patient, resulting in superior HR reconstructions in comparison to training 

data-oriented techniques. Although we recommend always using scan-specific learning with 

our approach, we have still investigated how our SRR performed when working in the 

mode of training data-oriented learning. The underlying scheme that the generalization 

mode works is the local similarity between the training and testing data. The generative 

network offers the HR reconstruction through convolutions that are performed over the local 

patches. So the generative network captures the local features in the reconstruction. When 

the local patches in the training data are sufficiently similar to those in the testing data, 

the generalization on the testing data will be successful. It has been shown in the literature 

that there is such a similarity residing in the local patches of MRI images, referred to as 

self-similarity [57], and also known as the local correlation [56]. Consequently, the training 

captures the statistical properties that are desired to generalize the learned model.

We trained our SRR model on the LR data from a randomly picked subject, and then applied 

this trained model to perform our SRR (to generate HR reconstructions through fθ) for 

other subjects. The results reported in Figs. 13–15 have shown that our SRR model trained 

on the scan-specific data can be generalized to perform in a training data-oriented manner 

when the distributions of voxel intensity yielded small differences. These results can also be 

interpreted by the difference in the local correlation, as plotted in Fig. 14(e). The success of 
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the generalization suggests that our deep model correctly captured the image prior so that 

the prior can be generalized in the reconstructions of other images. This enables applications 

of our technique in the tasks, e.g., showing a preview of the HR reconstruction before the 

scan-specific training has been completed. Also, the generalization failed for the data with 

quite different distributions of voxel intensity and led to incorrect reconstructions, as shown 

in Fig. 15(b). These failures demonstrated the necessity and advantages of our scan-specific 

learning technique.

G. A data fitting viewpoint

The majority of learning methods for deep convolutional networks learn data statistics/

inherent properties over large-scale training data sets. Those learned statistics can then be 

applied for inference tasks over unseen data. Different from the common paradigm used in 

those methods, our approach aims at fitting a generative network to a single (set of) LR 

scan(s). As discussed above, the network weights play a role of parameterization to constrain 

the reconstructed HR image. The image statistics, required to exploit the information lost in 

the degradation process, are captured through the parameterization of the generative network 

in combination with the constraint delivered by the forward model. Therefore, our SRR 

can be regarded as a conditional image generation problem, where the only information 

required to solve the SRR is the input LR scans and the designed structure of the generative 

neural network. As the network weights are initialized randomly, the only prior provided 

is the network structure. As shown in Eq. (9), our purpose is to fit the network weights θ 
to the input LR scans {yk}k = 1

N  according to the degradation defined in the forward model. 

Once the fitting has been maximally accomplished, the image statistics are captured by the 

generative network and the information lost revealed through these statistics is integrated 

into the HR reconstruction. Consequently, the ultimate goal of network training in our 

approach is to fit the network to the input data, rather than to summarize priors over a large 

number of training samples. So our approach does not require auxiliary training sets. On the 

other hand, we have demonstrated that using the “Noise2noise” learning strategy [47] further 

enhanced the SRR performance of the learned generative network by adding Gaussian noise 

to the network input (refer to Fig. 19). Instead of performing in the scan-specific learning 

mode, we have also shown that the fitted network worked in a generalization mode for 

those images that have similar patterns of voxel intensity distributions. However, we cannot 

ensure the fitted network for a set of images still fits the other set of images. Therefore, we 

recommend always using our approach in the scan-specific learning mode.

H. Contributions of major modules

We have investigated the major modules of our SRR approach. The performance gap 

between our approach (SSGNN) and TV depicted the contributions of the generative neural 

network with the scan-specific learning, by referring to Eqs. (8) and (9). It has shown that 

our generative network led to the improvement in SNR by 36.3% (6.33dB) and 17.1% 

(4.1dB), and in spatial resolution by 10.3% and 17.8% on the HCP and clinical datasets, 

respectively. The investigations on the parameters σ and λ have shown that, on the HCP 

dataset, the Gaussian noise added to the initial guess resulted in an increase in PSNR by 

4.7% and SIIM by 3.9% due to the promoted robustness of the training, and that the TV 
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regularization increased the PSNR by 2.1% and SSIM by 0.8% due to the edge preservation 

constraint.

Although TV regularization has been one of the most widely used method in MRI 

reconstruction, it has been shown that it may lead to staircase artifacts in the reconstructed 

image its piecewise constant form [62]–[64]. Our approach incorporates a TV regularization 

in combination with a deep image prior, as shown in Eq. (9), so the staircase artifacts 

were not observed in our HR reconstructions. We included the TV method as a baseline 

to demonstrate the efficacy of the prior dynamically learned by our deep neural networks. 

Considering the improvement by the TV regularization was relatively minor, we recommend 

removing it from the learning presented in Eq. (9) in pursuit of the rapid converge of the 

optimization at the cost of losing accuracy a little bit if reconstruction time is limited.

I. Reconstruction time

It took about six hours to reconstruct an image with 3843 voxels by using our SRR approach. 

Therefore, our approach is suitable in research imaging and those clinical applications where 

the reconstruction time is not critical. As our approach does not make assumptions on the 

quality of LR scans, the reconstruction quality can be predicted according to the quality of 

LR scans. The radiologists or technologists can immediately decide if they complete the 

scans or need to reacquire some data, e.g., due to patient motion, by qualitatively assessing 

the quality of the acquired LR scans with the real-time feedback provided by the scanner. 

If the reconstruction time is critical in some tasks, we recommend reducing the iterations in 

the optimization of Eq. (9). As shown in Figs. 5 and 12, the quality of the reconstructions 

was acceptable after 1000 iterations. So the SRR can be accomplished in 45 minutes with 

satisfactory quality. Although the reconstruction can be obtained in a few seconds when 

performing our SRR in the manner of training data-oriented learning on the data with 

similar intensity distributions, we recommend always using the scan-specific learning mode 

to perform the SRR.

J. Related reconstruction techniques

A related category of techniques is 2D regularized parallel imaging [65]–[68]. These 

techniques allow for substantially reduced acquisition time, as compared to conventional 

imaging methods and 3D acquisition such as T2 SPACE mentioned above. Unfortunately, 

2D parallel imaging acceleration undersamples the data and reduces the measured signal and 

the measured SNR. The widely used pseudo-inverse image space solution and convolution 

k-space solution to exploiting coil sensitivity profiles to estimate unmeasured data both 

amplify measurement noise in a spatially varying manner. This is known as g-factor artifact 

(geometry factor artifact). Regularization reduces the variability of the output voxels given 

change in the measured signal, but it does so in a manner that causes a bias in the signal 

intensities. The reconstructed image thus has the wrong intensity value, instead of zero mean 

noise perturbations around the correct value. The regularization can only provide a good 

image when the prior model used for regularization makes assumptions that are true of the 

anatomy being imaged.
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We take advantage of undersampling which allows us to form three undersampled 

scans with reduced acquisition time. We encode the HR k-space data with three rapid 

undersampled observations of the HR k-space data convolved with a spatially oriented 

low-pass filter (being oriented axial, coronal, and sagittal). Our approach is performed in 

a deconvolution manner, with which the reconstruction benefits from the prior dynamically 

learned through the scheme combining the generative neural network and its degradation 

counterparts. It has demonstrated that such a learned prior is particularly effective in the 

suppression of noise amplification [48], as well as demonstrated in our experiments reported 

in Figs. 4 and 7. Consequently, our approach allows for high SNR in a short acquisition 

time, while 2D regularized parallel imaging has been still struggling in improving SNR 

in the reconstructed images. Furthermore, our generative neural network architecture can 

also be used as a prior in parallel imaging reconstruction by replacing the forward model 

(degradation networks) with the corresponding data consistency term, e.g., the sensitivity 

encoding model [5].

K. Conclusions

In conclusion, we have developed a deep neural network-based technique that enables 

scan-specific learning for SRR with no requirement of training datasets. With this technique, 

we have demonstrated a methodology that allows for constructing high quality images at the 

resolution of isotropic 0.5mm with dramatically reduced imaging time (with only 6 minutes 

of imaging time), as compared to direct HR acquisition. Extensive experimental results have 

demonstrated that our approach offered fast and diagnostic quality MRI for the resolution 

critical use in both scientific research and clinical studies.
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Fig. 1. 
Architecture of our proposed approach to scan-specific learning-based SRR. The gray 

boxes represent the input data, comprising an initial guess of the HR reconstruction, and 

n acquired LR images. All images and representations are volumetric data in the pipeline. 

The generative network offers an HR image based on an initial guess. The degradation 

networks degrade the output of the generative network to fit the LR inputs, respectively, with 

a mean squared error (MSE) loss. A total variation (TV) criterion is used to regularize the 

generative network. All losses are combined as a measure for the optimization. Only the 

generative network is updated during the optimization. The initial guess is obtained from 

an image reconstructed by a standard TV-based SRR method. The training allows for the 

SRR tailored to an individual patient as it is conducted on the LR images acquired from 

a specific patient (no auxiliary datasets of HR images are required). Once the training has 

been completed, the output of the generative network is taken as the HR reconstruction.
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Fig. 2. 
Architecture of our generative neural network. The generative neural network has a structure 

of layers similar to 3D U-Net [41]. It comprises about 1.7M parameters distributed in 

the five encoder blocks, five decoder blocks, five skip blocks, and one output block. The 

number of channels produced by the convolution in each block is shown on the top of 

that block. Each skip block yields additional four channels that are concatenated with the 

output channels of the convolution in the respective decoder block. The filter is of size 

3x3x3 voxels in each convolutional layer from the encoder and decoder blocks, and 1x1x1 

voxels from the skip blocks. Reflection padding strategy is applied for all convolutions. 

The downsampling layers perform decimation through a stride of 2x2x2 voxels, while the 

upsampling layers employ trilinear interpolations with a factor of 2. The output block 

consists of a convolutional layer with a filter of size 1x1x1 voxels, and a sigmoid layer that 

normalizes the network output.
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Fig. 3. 
Results of our approach (SSGNN) and the five baseline methods in terms of PSNR and 

SSIM on the HCP dataset. SSGNN generated the most accurate results on this dataset.
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Fig. 4. 
Results of our approach (SSGNN) and the five baselines in terms of SNR, CNR, and partial 

volume effect (PVE) on the HCP dataset. SSGNN considerably outperformed the baselines 

in terms of SNR and CNR, and offered the highest spatial resolution in terms of PVE on this 

dataset.
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Fig. 5. 
Results in example images from the HCP dataset. (a) Estimation of partial volume effect. 

The blue curve with markers shows the distribution of voxel intensities of a selected image 

region that contained CSF, GM, and WM. A Gaussian mixture model (GMM) with three 

components was leveraged to fit the distribution of voxel intensities, as depicted by the solid 

line. The three components of the GMM, represented from left to right the WM, GM, and 

CSF respectively, are plotted by the dashed lines. (b) Converging process of our approach in 

terms of mean squared error and PSNR with 8,000 iterations.
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Fig. 6. 
Slices from the direct HR acquisitions and HR reconstructions on the HCP dataset. The top 

line shows the comparisons in the axial slices and noise levels. The noise detected from 

the highlighted patches is shown below the axial slices. The results show that our approach 

(SSGNN) performed the best in noise suppression, and considerably reduced the noise 

compared to the HR acquisition. The middle line shows the comparisons in the sagittal slices 

and their noise levels. SSGNN offered the best qualitative results according to the image 

details and noise suppression, particularly in the cerebellum as highlighted in the images. 

The bottom line shows the results in the coronal plane. SSGNN yielded the best image 

quality. In particular, SSGNN offered finer anatomical structures of the cerebellum at a 

lower noise level, and in turn, achieved superior reconstructions to the direct HR acquisitions 

as well as the five baselines.

Sui et al. Page 30

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Results of our approach (SSGNN) and the five baselines in terms of SNR, CNR, and partial 

volume effect (PVE) on the clinical dataset. SSGNN considerably outperformed the five 

baselines according to SNR and CNR, and offered the highest spatial resolution in terms of 

PVE on this dataset.
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Fig. 8. 
Voxels suffering from partial volume effect (PVE) in the images reconstructed by the five 

baselines and our approach (SSGNN) from a representative subject on the clinical dataset. 

SSGNN offered the lowest number of voxels with PVE, leading to the highest spatial 

resolution in the reconstructed HR image.

Sui et al. Page 32

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
Qualitative results of our approach (SSGNN) and the five baselines on the clinical 

dataset. SSGNN performed the best according to the image details and sharpness. As 

highlighted in these slices, SSGNN offered finer anatomical structures of the vermis and 

cerebrocerebellum than the five baselines.
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Fig. 10. 
Qualitative results of our approach (SSGNN) and the five baseline methods on the clinical 

dataset. The results show that SSGNN generated the best reconstruction according to the 

image details. In particular, SSGNN offered much clearer and sharper image edges in the 

cerebral cortex than the five baselines.
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Fig. 11. 
Qualitative results of our approach (SSGNN) and the five baseline methods on the clinical 

dataset. The results show that SSGNN generated the sharpest reconstruction and offered 

the most precise anatomical structures of the cerebrum, particularly in the frontal lobe as 

highlighted in the images.
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Fig. 12. 
Reconstructions over iterations obtained by our approach from a neonate. The anatomies, 

e.g., the hippocampus, were clearly delineated after 1000 iterations, while in the following 

iterations, our SRR algorithm fine-tuned the reconstruction in the contrasts and SNR.
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Fig. 13. 
Generalization analyses on the HCP dataset. (a) Means and standard deviations of 

distributions of voxel intensity on all T1w and T2w ground truths. (b) Accuracy of 

the generalized reconstructions in terms of PSNR and SSIM. The results show that the 

generalized generative network (SSGNN-Gen) offered superior reconstructions to the initial 

guess obtained from TV but inferior results to SSGNN trained on the scan-specific data. 

SSGNN-Gen generated better results on the T2w scans than on the T1w scans as the 

standard deviation of the distributions of the T2w intensity is smaller than that of the T1w 

intensity.
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Fig. 14. 
HR images reconstructed by our SRR approach (SSGNN) for three representative subjects 

on the clinical dataset. Subjects 1 and 2 were young children at the similar age, so their 

voxel intensity distributions were similar as well, as plotted in (d). Subject 3 was a newborn 

and had reverse gray matter-white matter contrasts as compared to the other two subjects, 

resulting in a big difference in the voxel intensity distribution from Subjects 1 and 2. These 

results can also be interpreted by the difference in the local correlation, as plotted in (e), 

where the local correlations between Subjects 1 and 2 were much higher than between 

Subjects 1 and 3.
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Fig. 15. 
Generalized reconstructions for Subjects 2 and 3. The generative network was trained for 

Subject 1 and applied to Subjects 2 and 3. The HR images reconstructed by SSGNN, as 

shown in Fig. 14, were used as the gold standards. The generalization for Subject 2 was 

successful and led to small errors (right column), while failed for Subject 3 with big errors 

due to the big difference in intensity distributions between Subjects 1 and 3.
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Fig. 16. 
Visualization of representative intermediate reconstructions in different decoder layers. The 

visualizations show that the decoder captured the image details in different scales with 

different layers.
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Fig. 17. 
Results of the investigation on the number of LR scans incorporated in our approach on the 

HCP dataset in terms of PSNR and SSIM. The results show that our approach performed 

better as more LR scans were leveraged.
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Fig. 18. 
Results of the investigation on the slice thickness of LR scans incorporated in our approach 

on the HCP dataset in terms of PSNR and SSIM.
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Fig. 19. 
Results of the investigation on the standard deviation σ of the Gaussian noise ν added to the 

network input z on the HCP dataset in terms of PSNR and SSIM. SSGNN achieved the best 

results when setting σ at 0.05.

Sui et al. Page 43

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 20. 
Results of the investigation on the weight parameter λ of the TV regularization on the HCP 

dataset in terms of PSNR and SSIM. SSGNN generated the best results when setting λ at 

0.01.
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