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Tobacco ubiquitin-specific protease 12 (NbUBP12) positively modulates drought 
resistance
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ABSTRACT
Deubiquitination, a type of post-translational modification, cleaves ubiquitin from target proteins, thereby 
regulating their stability or activity. Deubiquitination enzymes, ubiquitin-specific proteases (UBP/USP), 
have been reported to be involved in numerous cellular processes in plants, including meristem devel-
opment, circadian clock regulation, and immunity. In contrast to model plants, however, the functions of 
UBP in other higher plants remain poorly understood. Here, we isolated a deubiquitination enzyme, 
ubiquitin-specific protease 12 (NbUBP12), from Nicotiana benthamiana, which shows high sequence 
homology with the core enzyme regions of UBP12 from other plants. Quantitative reverse-transcription 
PCR analysis revealed that NbUBP12 gene expression was significantly induced after drought treatment, 
and its level was higher in seed than in other tissues. Using a virus-induced gene silencing technique, we 
generated NbUBP12-silenced tobacco plants to analyze NbUBP12 gene function in response to drought 
stress and found that compared with control plants, NbUBP12-silenced plants exhibited a lower survival 
rate after exposure to drought stress. In addition, they were characterized by lower leaf surface tempera-
tures and larger stomatal pore size following abscisic acid (ABA) treatment. On the basis of these 
observations, we suggest that NbUBP12 is involved in modulating drought resistance in 
N. benthamiana, which is associated with ABA-mediated stomatal closure.
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Text

As sessile organisms, plants have evolved a range of mechan-
isms designed to conserve and efficiently utilize water, thereby 
enabling them to survive in adverse environments, especially 
water deficit. In this regard, numerous proteins known to be 
involved in the adaptation to changing environments are regu-
lated by post-translational modification mechanisms (PTMs), 
which contribute to controlling enzymatic activity by modify-
ing protein structure or stability, regulating entire plant life 
cycles, or promoting rapid responses to the surrounding 
environment.1,2 Among these PTMs, ubiquitination is one of 
the most conserved processes in eukaryotic cells. It occurs in 
three sequential steps, catalyzed by E1-activating, E2- 
conjugating, and E3 ligase enzymes,3 which contribute to mod-
ifications that trigger the degradation of the target proteins. In 
contrast to ubiquitination, deubiquitination is mediated by 
deubiquitination enzymes (DUBs) and entails the removal of 
the attached ubiquitin from the target proteins.4 The quality 
control of proteins via the ubiquitination–deubiquitination 
regulatory system in plants conceivably represents an effective 
mechanism enabling the adaptation to a changeable 
environment.

DUBs are classified into two groups, namely, metallopro-
teases and cysteine proteases, the latter of which comprise the 
majority of DUBs.5,6 Cysteine proteases can be further divided 
into four families based on their functional domains and 

structures: ubiquitin-specific proteases (UBPs/USPs), ubiquitin 
C-terminal hydrolases, ovarian tumor proteases, and 
Machado–Joseph disease protein domain proteases.5–9 

Among these, UBPs form the largest subfamily of DUBs in 
eukaryotes, which in plants function via diverse pathways. In 
Arabidopsis, 27 genes have been found to encode UBPs,10,11 

which are involved in a range of biological processes associated 
with responses to different environmental stimuli as well as in 
normal growth and development.10–12 For example, AtUBP12 
and its homolog AtUBP13 function in plant immunity, circa-
dian clock regulation, flowering, seed development, jasmonate 
signaling, and leaf senescence,13–18 in which their target pro-
teins such as MYC215 and ROOT GROWTH FACTOR 
RECEPTOR 1 and ORESARA 116 are stabilized via AtUBP12/ 
13-mediated deubiquitination. As a Solanaceous orthologue of 
AtUBP12, Nicotiana tabacum UBP12 (NtUBP12) has also been 
found to influence Cf-9-triggered hypersensitive responses 
negatively.13 Recently, we isolated CaUBP12, which has high 
sequence homology with AtUBP12/13 and NtUBP12 from 
Capsicum annuum belonging to the same Solanaceae family 
as tobacco.19 CaUBP12 plays a positive role in the drought 
resistance of pepper plants, in which it appears to enhance 
the protein stability of CaSnRK2.6, an orthologue of 
AtSnRK2.6/OST1 that functions as a positive regulator of 
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ABA signaling.20 These observations indicate that UBP12 func-
tions in the responses of plants to biotic and abiotic stresses via 
its deubiquitination activity.

In this study, we isolated the UBP12 gene from another 
Solanaceae plant, N. benthamiana. This NbUBP12 gene con-
sists of a 3,351-bp open reading frame that encodes a 1,116- 
amino acid protein of molecular weight 130.75 kDa and an 
isoelectric point of 5.58. Multiple alignment and phylogenetic 
tree analyses showed that NbUBP12 was clustered with 
AtUBP12/13, CaUBP12, and NtUBP12 proteins (Figure 1a). 
We searched conserved motifs and domains in NbUBP12 

using the webtools, Motif Scan (https://myhits.sib.swiss/cgi- 
bin/motif_scan) and InterProSan (https://www.ebi.ac.uk/inter 
pro). Like other UBP12 proteins, NbUBP12 also contains 
highly conserved sequence regions, including a unique meprin 
and TRAF homology domain and specific catalytic Cys- and 
His-boxes essential for DUB activity (Figure 1b).13,14 Since the 
function of protein is associated with its subcellular localiza-
tion in cells, we analyzed subcellular location of NbUBP12 
protein. When continuously expressed in the leaf epidermal 
cells of N. benthamiana plants, green fluorescent protein 
(GFP)-tagged NbUBP12 predominantly targeted to the nucleus 

Figure 1. (a) Phylogenetic tree analysis of NbUBP12 with UBP proteins. The phylogenetic tree was drawn using MEGA software (version 10.1) using the deduced amino 
acid sequences of UBP12 from Arabidopsis, pepper, and tobacco plants. (b) Multiple alignment of UBP12 enzymatic domain within Nicotiana benthamiana UBP12 
(NbUBP12) with Nicotiana tabacum (NtUBP12), Capsicum annuum (CaUBP12), and Arabidopsis thaliana (AtUBP12) using MEGA system and the web tool Clustal Omega 
(http://www.ebi.ac.uk/Tools/msa/clustalo). Red box indicates the Cys residue that is required for enzymatic activity. (c) Subcellular localization of NbUBP12 in the leaf 
epidermal cells of Nicotiana benthamiana plants. The scale bar represents 20 μm. (d) Quantitative RT-PCR analysis of NbUBP12 expression in the various tissues (left), 
ABA treatment (middle), and under the drought stress by withholding water (right). Total RNAs from the stressed samples were extracted from the third leaf of each 
plant. All data represent the mean ± standard deviation of three independent experiments. Asterisks indicate significant differences than 0 h (Student’s t-test; *P < .05).
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and cytoplasm (Figure 1c). Next, we investigated expression 
patterns of NbUBP12 gene. Quantitative reverse transcription- 
polymerase chain reaction (qRT-PCR) analysis revealed that 
the NbUBP12 gene was expressed in all examined tissues of 
tobacco plants (Figure 1d left). The expression level was rela-
tively lower in petioles and flowers and significantly higher in 
seeds. Furthermore, in the leaves of tobacco plants, the 
NbUBP12 gene was found to be highly induced at 24 h after 
subjecting plants to drought stress, but not in response to 
abscisic acid (ABA) treatment (Figure 1d right). This drought 
stress-induced expression was consistent with that observed for 
CaUBP12,19 suggesting that NbUBP12 may also be associated 
with drought resistance.

NbUBP12 shows high sequence homology with CaUBP12 
(89.6% identity and 94.5% similarity), and given the known 
function of CaUBP12, we speculated as to whether NbUBP12 
might function similarly under drought stress. To verify this 
assumption, we initially performed a TRV-based virus-induced 

gene silencing (VIGS) assay to generate NbUBP12-knockdown 
plants. We designed a gene-specific target region (1000–1300 
bp) for silencing NbUBP12 using the VIGS tool available from 
the Solanaceae Genomics Network (http://solgenomics.net; 
Nicotiana benthamiana ver.1.0 database) (Figure 2a). Two 
weeks after agroinfiltration, there were no phenotypic differ-
ences between NbUBP12-silenced (TRV2:NbUBP12) and con-
trol (TRV:00) plants (Figure 2b). To ascertain the efficacy of the 
TRV-based VIGS system in N. benthamiana plants, we used 
the phytoene desaturase (PDS) gene as a positive control, as the 
silencing of PDS typically leads to photobleaching.21 In line 
with the expectations, we observed that TRV2:PDS plants 
exhibited a leaf-bleached phenotype (Figure 2b). The VIGS 
system accordingly proved successful in inducing the silencing 
of the NbUBP12 gene, and qRT-PCR analysis revealed that the 
levels of NbUBP12 expression were approximately 70% lower 
in the leaves of TRV2:NbUBP12 plants than in those of 
TRV2:00 plants (Figure 2c).

Figure 2. (a) Graphical representation of the virus-induced gene silencing (VIGS) target region of NbUBP12. Analyses were performed using the SGN VIGS tool (http:// 
vigs.solgenomics.net/) with red bars indicating the siRNA of off-target genes. (b and c) NbUBP12 VIGS system analysis using empty vector control tobacco plants 
(TRV:00) and tobacco plants containing a widely used VIGS system positive control gene (TRV2:PDS). (b) Photographs showing the phenotypes of control and 
knockdown plants at 2 weeks after agroinfiltration. (c) Confirmation of the knockdown of NbUBP12 transcripts based on RT-PCR analysis. The total RNA used for analysis 
was extracted from the third leaf of each plant line at 2 weeks after agroinfiltration. Asterisks indicate significant differences between TRV2:NbUBP12 and TRV2:00 plants 
(Student’s t-test; *P < .05).
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Using NbUBP12-silenced tobacco plants, we examined 
whether NbUBP12 plays a role in drought stress response 
(Figure 3). At two weeks after agroinfiltration, we subjected 
TRV2:NbUBP12 and TRV:00 plants to drought stress by with-
holding watering for 13 days. Under well-watered conditions, 
we detected no differences in the phenotypes of the two 
tobacco lines (Figure 3a, left panel). However, compared with 
the control plants, TRV2:NbUBP12 plants showed significantly 
wilted phenotypes in response to drought treatment and rewa-
tering (Figure 3a, middle and right panels). Consistently, 
38.75% of the TRV2:NbUBP12 plants resumed growth at 
3 days after rehydration, whereas TRV2:00 plants showed 
a 72.5% survival rate (Figure 3a and b). Since the phenotypic 
difference between TRV2:NbUBP12 and TRV:00 plants was 
easily observed 8 days after drought stress, we harvested leaf 
samples at this time, and measured the level of malondialde-
hyde (MDA), which is widely used as a membrane lipid per-
oxidation marker. As shown in Figure 3c, the MDA content 
was higher in TRV2:NbUBP12 than in TRV:00 only after 
drought stress treatment. We also measured delayed fluores-
cence (DF) of TRV2:NbUBP12 and TRV:00 leaves. DF, emitted 

from photosystem II, can be used as a sensitive indicator for 
chlorophyll content as well as the physiological state of the 
plants exposed to environmental stresses, such as drought and 
salinity, and generally DF is reduced by drought stress.22–25 At 
8 days after drought stress, DF intensity was much lower in 
TRV2:NbUBP12 leaves than in TRV:00 leaves, indicating that 
drought stress severely reduced the photosynthetic rate of 
TRV2:NbUBP12, compared to the control (Figure 3d and e). 
These results suggested that NbUBP12 plays a positive role in 
the regulation of drought stress tolerance mechanisms.

We further speculated as to whether this enhanced drought 
sensitivity of TRV2:NbUBP12 is associated with ABA-mediated 
stomatal responses. In this regard, it has previously been demon-
strated that stomatal closure is associated with an increase in the 
surface temperature of leaves, as a consequence of reduced 
evaporative cooling.26,27 Accordingly, to verify our conjecture, 
we measured the leave surface temperature of TRV2:NbUBP12 
and TRV:00 plants subsequent to spraying with 100 μM ABA. 
Prior to ABA treatment, we detected no apparent difference in 
the leaf temperatures of the two lines (Figure 4a and b). 
However, at 6 h after ABA treatment, we found that leaf 

Figure 3. (a and b) Drought sensitivity of NbUBP12-silenced (TRV2:NbUBP12) and control (TRV2:00) plants. Two weeks after agroinfiltration, healthy plants of each line 
(n = 32) were subjected to drought stress by withholding watering for 13 days and rewatering for 3 days. Representative images of plants were obtained at 0 and 8 days 
after drought stress, and 3 days after rewatering (a), and the percentages of surviving plants were calculated (b). All data represent the means ± standard deviation of 
three independent experiments. (c) Measurement of malondialdehyde (MDA) in the leaves of TRV2:NbUBP12 and TRV2:00 plants treated with drought stress for 8 days. 
(d and e) Delayed fluorescence (DF) of the leaves of TRV2:NbUBP12 and TRV2:00 plants treated with drought stress for 8 days. Using NightShade LB 985 In vivo Plant 
Imaging System, representative images were obtained (d) and DF intensity was calculated (e). The closer the color is to red (high intensity), the higher the chlorophyll 
content. The data represent the means ± standard error of three independent experiments. Asterisks indicate significant differences between TRV2:NbUBP12 and 
TRV2:00 plants (Student’s t-test; *P < .05).
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temperatures were significantly higher in TRV:00 plants than in 
TRV2:NbUBP12 plants. We subsequently measured stomatal 
pore sizes on the leaves of TRV2:NbUBP12 and TRV:00 plants 
in the absence and presence of ABA. Leaf peels were harvested 
from these plant lines 2 weeks after infiltration and then incu-
bated in a stomatal opening solution containing 0, 10, or 20 μM 
ABA. While no significant differences between TRV2:00 and 
TRV2:NbUBP12 plants were detected in the absence of ABA 
(Figure 4 c and d), ABA treatment was found to promote 
stomatal closure in both plant lines. However, consistent with 
the leaf temperature data, we observed that stomatal pore sizes 
in TRV2:NbUBP12 plants were notably larger than those in 
TRV2:00 plants. Moreover, we analyzed expression levels of 

ABA-responsive genes, such as RAB18, RD29B, DREB, and 
LEA homologs from tobacco, in both plant lines. After treatment 
with 100 μM ABA, TRV2:NbUBP12 leaves showed lower induc-
tion of all the genes than those of TRV2:00, but not before 
treatment (Figure 4e). These observations thus indicate that 
NbUBP12 contributes to drought resistance by modulating 
ABA-mediated stomatal closure and ABA-resposive gene 
expression.

In conclusion, we demonstrated that NbUBP12 functions as 
a positive regulator of drought resistance and that this regulatory 
effect is associated with ABA-mediated stomatal regulation, 
which is consistent with the previously established function of 
CaUBP12. Our data would accordingly tend to imply the 

Figure 4. (a and b) Leaf temperatures of TRV2:NbUBP12 and TRV2:00 plants after exposure to abscisic acid (ABA). Representative thermographic images were obtained 
at 6 h after treatment with 100 μM ABA (a) and mean leaf temperatures were determined from the three largest leaves of plants from each line (n = 12) (b). (c and d) 
ABA-induced stomatal closure in TRV2:NbUBP12 and TRV2:00 plants. Stomatal apertures were measured 3 h after treatment with 0, 10, or 20 μM ABA. Representative 
images of the stomata were obtained for the leaves of each line (c) and the apertures of 100 randomly selected stomata were measured (d). The scale bar represents 
10 μm. (e) Quantitative RT-PCR analysis of ABA-responsive genes in TRV2:NbUBP12 and TRV2:00 plants after treatment with ABA. Total RNAs from the stressed samples 
were extracted from the third leaf of each plant. All data represent the mean ± standard deviation of three independent experiments. Asterisks indicate significant 
differences between TRV2:NbUBP12 and TRV2:00 plants (Student’s t-test; *P < .05).
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functional conservation of UBP12 proteins across the members 
of the Solanaceae family, at least with respect to the drought 
stress response. Moreover, it is conceivable that these UBP12 
proteins target common substrates, including SnRK2.6/OST1, to 
modulate drought resistance. We thus speculate that gaining an 
understanding of the detailed mechanisms through which 
UBP12-mediated deubiquitination stabilizes substrate proteins 
will contribute to developing a novel approach for the modula-
tion of drought resistance. Furthermore, given the negative role 
played by NbUBP12 in plant immunity, the functional differ-
ences of NbUBP12 with respect to biotic and abiotic stress 
responses could be resolved by isolating stress-specific substrates.
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