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Multimodal deep learning for Alzheimer’s disease
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Worldwide, there are nearly 10 million new cases of dementia annually, of which Alzheimer’s

disease (AD) is the most common. New measures are needed to improve the diagnosis of

individuals with cognitive impairment due to various etiologies. Here, we report a deep

learning framework that accomplishes multiple diagnostic steps in successive fashion to

identify persons with normal cognition (NC), mild cognitive impairment (MCI), AD, and non-

AD dementias (nADD). We demonstrate a range of models capable of accepting flexible

combinations of routinely collected clinical information, including demographics, medical

history, neuropsychological testing, neuroimaging, and functional assessments. We then

show that these frameworks compare favorably with the diagnostic accuracy of practicing

neurologists and neuroradiologists. Lastly, we apply interpretability methods in computer

vision to show that disease-specific patterns detected by our models track distinct patterns of

degenerative changes throughout the brain and correspond closely with the presence of

neuropathological lesions on autopsy. Our work demonstrates methodologies for validating

computational predictions with established standards of medical diagnosis.
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A lzheimer’s disease (AD) is the most common cause of
dementia worldwide1, and future expansions in caseload
due to an aging population are likely to accentuate

existing needs for health services2. This increase in clinical
demand will likely contribute to an already considerable burden
of morbidity and mortality among the elderly3, thus requiring
improvements in the treatment and timely identification of AD.
Significant efforts have been made in recent years towards the
development of cerebrospinal fluid (CSF) biomarkers4, as well as
advanced imaging modalities such as amyloid and tau positron
emission tomography (PET)5–8. Furthermore, novel generations
of disease-modifying therapies for AD are now coming into
clinical purview9, though their efficacy remains controversial.
Despite this progress, many emerging diagnostic and treatment
modalities remain limited to research contexts, and the backbone
of antemortem diagnosis remains traditional clinical assessment,
neuropsychological testing10, and magnetic resonance imaging
(MRI)11. Mild cognitive impairment (MCI), a prodromal stage of
dementia, may also be a subtle early presentation of AD whose
diagnosis similarly requires significant clinical acumen from
qualified specialists. Complicating matters is the presence of a
multitude of other non-Alzheimer’s disease dementia (nADD)
syndromes whose clinical presentations often overlap with AD.
Thus, common causes of dementias outside of AD such as vas-
cular dementia (VD), Lewy body dementia (LBD), and fronto-
temporal dementia (FTD) widen the differential diagnosis of
neurodegenerative conditions and contribute to variability in
diagnostic sensitivity and specificity12.

Reliably differentiating between normal cognitive aging, MCI,
AD, and other dementia etiologies requires significant clinical
acumen from qualified specialists treating memory disorders, yet
timely access to memory clinics is often limited for patients and
families. This is a major problem in remote, rural regions within
developed countries and in still economically developing nations,
where there is a dearth of specialized practitioners. Furthermore,
the need for skilled clinicians is rising, yet the United States is
facing a projected shortage of qualified clinicians, such as neu-
rologists, in coming decades13,14. As increasing clinical demand
intersects with a diminishing supply of medical expertise,
machine learning methods for aiding neurologic diagnoses have
begun to attract interest15. Complementing the high diagnostic
accuracy reported by other groups16, we have previously reported
interpretable deep learning approaches capable of distinguishing
participants with age-appropriate normal cognition (NC) from
those with AD using magnetic resonance imaging (MRI) scans,
age, sex, and mini-mental state examination (MMSE)17. Others
have also demonstrated the efficacy of deep learning in dis-
criminating AD from specific types of nADD18–20. However,
clinical evaluation of persons presenting in a memory clinic
involves consideration of multiple etiologies of cognitive
impairment. Therefore, the ability to successfully differentiate
between NC, MCI, AD, and nADD across diverse study cohorts
in a unified framework remains to be developed.

In this study, we report the development and validation of a
deep learning framework capable of accurately classifying subjects
with NC, MCI, AD, and nADD in multiple cohorts of partici-
pants with different etiologies of dementia and varying levels of
cognitive function (Table 1, Fig. 1). Using data from the National
Alzheimer’s Coordinating Center (NACC)21,22, we developed and
externally validated models capable of classifying cognitive status
using MRI, non-imaging variables, and combinations thereof. To
validate our approach, we demonstrated comparability of our
model’s accuracy to the diagnostic performance of a team of
practicing neurologists and neuroradiologists. We then leveraged
SHapley Additive exPlanations (SHAP)23, to link computational
predictions with well-known anatomical and pathological

markers of neurodegeneration. Our strategy provides evidence
that automated methods driven by deep learning may approach
clinical standards of accurate diagnosis even amidst hetero-
geneous datasets.

Results
We divided the process of differential diagnosis into staged tasks.
The first, which we refer to as the COG task, labeling persons as
having either NC, MCI, or dementia (DE) due to any cause. Of
note, the COG task may be seen as comprising three separate
binary classification subtasks: (i) COGNC task: Separation of NC
and MCI/DE cases (ii) COGMCI task: Separation of MCI from
NC/DE cases, and (iii) COGDE task: Separation of DE from NC/
MCI cases. After completion of the overall COG task, we next
formulated the ADD task, in which we assigned all persons
labeled as DE to a diagnosis of either AD or nADD. Successive
completion of the COG and the ADD tasks allowed execution of
an overarching 4-way classification that fully delineated NC, MCI,
AD, and nADD cases (See Supplementary Information: Glossary
of Tasks, Models, and Metrics).

We also created three separate models: (i) MRI-only model: A
convolutional neural network (CNN) that internally computed a
continuous DEmentia MOdel (DEMO) score to complete the
COG task, as well as an ALZheimer’s (ALZ) score to complete the
ADD task. (ii) Non-imaging model: A traditional machine
learning classifier that took as input only scalar-valued clinical
variables from demographics, past medical history, neu-
ropsychological testing, and functional assessments. As in the
MRI-only model, the non-imaging model also computed the
DEMO and the ALZ scores from which the COG and the ADD
tasks could be completed. We tested multiple machine learning
architectures for these purposes and ultimately selected a CatBoost
model as our final non-imaging model architecture. (iii) Fusion
model: This framework linked a CNN to a CatBoost model. With
this approach, the DEMO and the ALZ scores computed by the
CNN were recycled and used alongside available clinical variables.
The CatBoost model then recalculated these scores in the context
of the additional non-imaging information. We provide defini-
tions of our various prediction tasks, cognitive metrics, and model
types within the Supplementary Information. Further details of
model design may be found within the Methods.

Assessment for confounding. We used two-dimensional t-dis-
tributed stochastic neighbor embedding (tSNE) to assess for the
presence of confounding relationships between disease status and
certain forms of metadata. Using this approach, we observed no
obvious clustering of post-processed MRI embeddings among the
eight cohorts used for testing of MRI-only models (Fig. 2a, b).
Within the NACC cohort, we also observed no appreciable clus-
tering based on individual Alzheimer’s Disease Research Centers
(ADRCs, Fig. 2c, d) or scanner manufacturer (Fig. 2e, f). Relatedly,
although tSNE analysis of CNN hidden layer activations did yield
clustering of NACC data points (Fig. 2b), this was an expected
phenomenon given the selection of NACC as our cohort for
model training. Otherwise, we appreciated no obvious conglom-
eration of embeddings from hidden layer activations due to spe-
cific ADRCs (Fig. 2d) or scanner manufacturers (Fig. 2f). Lastly,
Mutual Information Scores (MIS) computed from the NACC
cohort indicated negligible correlation of diagnostic labels (NC,
MCI, AD, and nADD) between specific scanner manufacturers
(MIS= 0.010, Fig. 2g) and ADRCs (MIS= 0.065, Fig. 2h).

Deep learning model performance. We observed that our fusion
model provided the most accurate classification of cognitive sta-
tus for NC, MCI, AD and nADD across a range of clinical
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diagnosis tasks (Table 2). We found strong model performance
on the COGNC task between both the NACC test set (Fig. 3a, Row
1) and an external validation set (OASIS; Fig. 3b, Row 1) as
indicated by area under the receiver operating characteristic
(AUC) curve values of 0.945 [95% confidence interval (CI): 0.939,
0.951] and 0.959 [CI: 0.955, 0.963], respectively. Similar values for
area under precision-recall (AP) curves were also observed,
yielding 0.946 [CI: 0.940, 0.952] and 0.969 [CI: 0.964, 0.974],
respectively. Such correspondence between AUC and AP per-
formance supports robustness to class imbalance across datasets.
In the COGDE task, comparable results were also seen, as the
fusion model yielded respective AUC and AP scores of 0.971 [CI:
0.966, 0.976]/0.917 [CI: 0.906, 0.928] (Fig. 3a, Row 2) in the
NACC dataset and 0.971 [CI: 0.969, 0.973]/0.959 [CI: 0.957,

0.961] in the OASIS dataset (Fig. 3b, Row 2). Conversely, clas-
sification performance dropped slightly for the ADD task, with
respective AUC/AP values of 0.773 [CI: 0.712, 0.834]/0.938 [CI:
0.918, 0.958] in the NACC dataset (Fig. 3a, Row 3) and 0.773 [CI:
0.732, 0.814]/0.965 [CI: 0.956, 0.974] in the OASIS dataset
(Fig. 3b, Row 3).

Relative to the fusion model, we observed moderate perfor-
mance reductions across classifications in our MRI-only model.
For the COGNC task, the MRI-only framework yielded AUC and
AP scores of 0.844 [CI: 0.832, 0.856]/0.830 [CI: 0.810, 0.850]
(NACC) and 0.846 [CI: 0.840, 0.852]/0.890 [CI: 0.884, 0.896]
(OASIS). Model results were comparable on the COGDE task, in
which the MRI-only model achieved respective AUC and AP
scores of 0.869 [CI: 0.850, 0.888]/0.712 [CI: 0.672, 0.752] (NACC)

Fig. 1 Modeling framework and overall strategy. Multimodal data including MRI scans, demographics, medical history, functional assessments, and
neuropsychological test results were used to develop deep learning models on various classification tasks. Eight independent datasets were used for this
study, including NACC, ADNI, AIBL, FHS, LBDSU, NIFD, OASIS, and PPMI. We selected the NACC dataset to develop three separate models: (i) an MRI-
only CNN model (ii) non-imaging models in the form of traditional machine learning classifiers, which did not use any MRI data (iii) a fusion model
combining imaging and non-imaging data within a hybrid architecture joining a CNN to a CatBoost model. The MRI-only model was validated across all
eight cohorts, whereas external validation of non-imaging and fusion models was performed only on OASIS. First, T1-weighted MRI scans were input to a
CNN to calculate a continuous DEmentia MOdel (DEMO) score to assess cognitive status on a 0 to 2 scale, where “0” indicated NC “1” indicated MCI and
“2” indicated DE. DEMO scores were converted to class labels using an optimal thresholding algorithm, with these assignments constituting the COG task.
For individuals with DE diagnosis, the multi-task CNN model simultaneously discriminated their risk of having AD versus nADD, a classification that we
refer to as the ADD task. We denoted the probability of AD diagnosis as the ALZheimer (ALZ) score. Both MRI-derived DEMO scores and ALZ scores
were then input alongside non-imaging variables to various machine learning classifiers to form fusion models, which then predicted outcomes on the COG
and ADD tasks, respectively. A portion of cases with confirmed dementia (n= 50) from the NACC testing cohort was randomly selected for direct
comparison of the fusion model with an international team of practicing neuroradiologists. Both the model and neuroradiologists completed the ADD task
using available MRI scans, age, and gender. Additionally, a portion of NACC cases (n= 100) was randomly selected to compare the fusion model
performance to practicing neurologists, with both the model and clinicians having access to a common set of multimodal data. Lastly, model predictions
were compared with neuropathology grades from NACC, ADNI and FHS cohorts (n= 110).
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and 0.858 [CI: 0.854, 0.862]/0.772 [CI: 0.763, 0.781] (OASIS). For
the ADD task as well, the results of the MRI-only model were
approximately on par with those of the fusion model, giving
respective AUC and AP scores of 0.766 [CI: 0.734, 0.798]/0.934
[CI: 0.917, 0.951] (NACC) and 0.694 [CI: 0.659,0.729]/0.942 [CI:
0.931, 0.953] (OASIS). For both fusion and MRI-only models, we
also reported ROC and PR curves for the ADD task stratified by
nADD subtypes in the Supplementary Information (Figs. S1 and
S2).

Interestingly, we note that a non-imaging model generally
yielded similar results to those of both the fusion and MRI-only
models. Specifically, a CatBoost model trained for the COGNC

task gave AUC and AP values 0.936 [CI: 0.929, 0.943] /0.936 [CI:
0.930, 0.942] (NACC), as well as 0.959 [CI: 0.957, 0.961]/0.972
[CI: 0.970, 0.974] (OASIS). Results remained strong for the
COGDE task, with AUC/PR pairs of 0.962 [CI: 0.957, 0.967]/0.907
[0.893, 0.921] (NACC) and 0.971 [CI: 0.970, 0.972]/0.955 [CI:

0.953, 0.957] (OASIS). For the ADD task, the non-imaging model
resulted in respective AUC/PR scores of 0.749 [CI: 0.691, 0.807]/
0.935 [CI: 0.919, 0.951] (NACC) and 0.689 [CI: 0.663, 0.715]/
0.947 [CI: 0.940, 0.954] (OASIS). A full survey of model
performance metrics across all classification tasks may be found
in the Supplementary Information (Tables S1–S4). Performance
of the MRI-only model across all external datasets is demon-
strated via ROC and PR curves (Fig. S3).

To assess the contribution of various imaging and non-imaging
features to classification outcomes, we calculated fifteen features
with highest mean absolute SHAP values for the COG (Fig. 3c)
and the ADD prediction tasks using the fusion model (Fig. 3d).
Though MMSE score was the primary discriminative feature for
the COG task, the DEMO score derived from the CNN portion of
the model ranked third in predicting cognitive status. Analo-
gously, the ALZ score derived from the CNN was the most salient
feature in solving the ADD task. Interestingly, the relative

Fig. 2 Site- and scanner-specific observations. Unsupervised clustering of post-processed MRIs and hidden layer activations assessed for systematic
biases in input data and model predictions, respectively. a Two-dimensional (2D) t-distributed stochastic neighbor embedding (tSNE) embeddings of
downsampled MRI scans are shown. The downsampling was performed on the post-processed MRI scans using spline interpolation with a downsampling
factor of 8 on each axis. Individual points represent MRIs from a single subject and are colored according to their original cohort (either NACC, ADNI, AIBL,
FHS, LBDSU, NIFD, OASIS, or PPMI). b We demonstrate 2D tSNEs of hidden-layer activations from the penultimate CNN hidden layer. Individual points
correspond to internal representations of MRI scans during testing and are colored by cohort label. c Plot of 2D tSNE embeddings of downsampled MRI
scans from the NACC dataset is shown. Individual points representing MRI scans are colored by the unique identifier of one of twenty-one Alzheimer
Disease Research Centers (ADRCs) that participate in the NACC collaboration. d tSNE embeddings for penultimate layer activations colored by ADRC ID
are shown. e Plot of 2D tSNE embeddings of downsampled MRI scans from the NACC dataset is shown. Embeddings in this plot are the same as those in
c but colored according to the manufacturer of the scanner used to acquire each MRI, either General Electric (GE), Siemens, or Philips. f Plot of 2D tSNE of
penultimate layer activations is shown for cases in the NACC dataset. Embeddings are equivalent to those visualized in d but are now colored by the
manufacturer of the scanner used for image acquisition. g A tabular representation of disease category counts by manufacturer is presented. Only cases
from the NACC dataset are included. We provide the Mutual Information Score (MIS) to quantify the correlation between disease type and scanner
manufacturer. hWe also provided a tabular representation of disease category counts stratified by ADRC ID in the NACC dataset. MIS is once again shown
to quantify the degree of correlation between diagnostic labels and individual centers participating in the NACC study. Source data are provided as a
Source Data file.
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importance of features remained largely unchanged when a
variety of other machine learning classifiers were substituted to
the fusion model in lieu of the CatBoost model (Fig. 3e, f). This
consistency indicated that our prediction framework was robust

to the specific choice of model architecture, and instead relied on
a consistent set of clinical features to achieve discrimination
between NC, MCI, AD, and nADD classes. Relatedly, we also
observed that non-imaging and fusion models retained predictive

Fig. 3 Performance of the deep learning models. a, b ROC curves showing true positive rate versus false positive rate and PR curves showing the positive
predictive value versus sensitivity on the a NACC test set and b OASIS dataset. The first row in a and b denotes the performance of the MRI-only model,
the non-imaging model, and the fusion model (CNN+ CatBoost) trained to classify cases with NC from those without NC (COGNC task). The second row
shows ROC and PR curves of the MRI-only model, the non-imaging model, and the fusion model for the COGDE task aimed at distinguishing cases with DE
from those who do not have DE. The third row illustrates performance of the MRI-only model, the non-imaging model, and the fusion model focused on
discriminating AD from nADD. For each curve, mean AUC was computed. In each plot, the mean ROC/PR curve and standard deviation are shown as
bolded lines and shaded regions, respectively. The dotted lines in each plot indicate the classifier with the random performance level. c, d Fifteen features
with highest mean absolute SHAP values from the fusion model are shown for the COG and ADD tasks, respectively across cross-validation rounds
(n= 5). Error bars overlaid on bar plots are centered at the mean of the data and extend+ /− one standard deviation. For each task, the MRI scans,
demographic information, medical history, functional assessments, and neuropsychological test results were used as inputs to the deep learning model.
The left plots in c and d illustrate the distribution of SHAP values and the right plots show the mean absolute SHAP values. All the plots in c and d are
organized in decreasing order of mean absolute SHAP values. e, f For comparison, we also constructed traditional machine learning models to predict
cognitive status and AD status using the same set of features used for the deep learning model, and the results are presented in e and f, respectively. The
heat maps show fifteen features with the highest mean absolute SHAP values obtained for each model. Source data are provided as a Source Data file.
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performance across a variety of input feature combinations,
showing flexibility to operate across differences in information
availability. Importantly, however, the addition of MRI-derived
DEMO and ALZ scores improved 4-way classification perfor-
mance across all combinations of non-imaging variables (Figs. S4
and S5).

Neuroimaging signatures of AD and non-AD dementia. The
provenance of model predictions was visualized by pixel-wise
SHAP mapping of hidden layers within the CNN model. The
SHAP matrices were then correlated to physical locations within
each subject’s MRI to visualize conspicuous brain regions
implicated in each stage of cognitive decline from NC to dementia
(Fig. 4a). This approach allowed neuroanatomical risk mapping
to distinguish regions associated with AD from those with nADD
(Fig. 4b). Indeed, the direct overlay of color maps representing
disease risk on an anatomical atlas derived from traditional MRI
scans facilitates interpretability of the deep learning model. Also,
the uniqueness of the SHAP-derived representation allows us to
observe disease suggestive regions that are specific to each out-
come of interest (Table S5 and Fig. S6).

A key feature of SHAP is that a single voxel or a sub-region
within the brain can contribute to accurate prediction of one or
more class labels. For example, the SHAP values were negative in
the hippocampal region in NC participants, but they were
positive in participants with dementia, underscoring the well-
recognized role of the hippocampus in memory function.
Furthermore, positive SHAP values were observed within the
hippocampal region for AD and negative SHAP values for the
nADD cases, indicating that hippocampal atrophy has direct
proportionality with AD-related etiology. The SHAP values
sorted according to their importance on the parcellated brain
regions also further confirm the role of hippocampus and its
relationship with dementia prediction, particularly in the setting
of AD (Fig. 4c), as well as nADD cases (Fig. S7). In the case of
nADD, the role of other brain regions such as the lateral
ventricles and frontal lobes was also evident. Evidently, SHAP-
based network analysis revealed pairwise relationships between
brain regions that simultaneously contribute to patterns indica-
tive of AD (Fig. 4d). The set of brain networks evinced by this
analysis also demonstrate marked differences in structural
changes between AD and nADD (Fig. 4e).

Neuropathologic validation. In addition to mapping hidden
layer SHAP values to original neuroimaging, correlation of deep
learning predictions with neuropathology data provided further
validation of our modeling approach. Qualitatively, we observed
that areas of high SHAP scores for the COG task correlated with
region-specific neuropathological scores obtained from autopsy
(Fig. 5a). Similarly, the severity of regional neuropathologic
changes in these persons demonstrated a moderate to high degree
of concordance with the regional cognitive risk scores derived
from our CNN using the Spearman’s rank correlation test. Of
note, the strongest correlations appeared to occur within areas
affected by AD pathology such as the temporal lobe, amygdala,
hippocampus, and parahippocampal gyrus (Fig. 5b). Using the
one-way ANOVA test, we also rejected a null hypothesis of there
being no significant differences in DEMO scores between semi-
quantitative neuropathological score groups (0–3) with a con-
fidence level of 0.95, including for the global ABC severity scores
of Thal phase for Aβ (A score F-test: F(3, 51)= 3.665, p= 1.813e-
2), Braak & Braak for neurofibrillary tangles (NFTs) (B score F-
test: F(3, 102)= 11.528, p= 1.432e-6), and CERAD neuritic
plaque scores (C score F-test: F(3, 103)= 4.924, p= 3.088e-3)
(Fig. 5c). We further performed post hoc testing using Tukey’s

procedure to compare pairwise group means of DEMO scores,
observing consistently significant differences between individuals
with the highest and lowest burdens of neurodegenerative find-
ings, respectively (Fig. S8). Of note, we also observed an
increasing trend of ALZ score with the semi-quantitative neuro-
pathological scores (Fig. 5d).

Expert-level validation. Lastly, to provide clinical benchmarking
of our modeling approach, both neurologists and neuroradiolo-
gists were recruited to perform diagnostic tasks on a subset of
NACC cases. The approach and performance of the neurologists
and the neuroradiologists indicated variability across different
clinical practices (See Supplementary Information: Neurologist
and Neuroradiologist Accounts), with a moderate inter-rater
agreement as evaluated using pairwise kappa (κ) scoring for all
the tasks. Among neurologists specifically, we observed average
κ= 0.600 for the COGNC task (Fig. 6a, Row 1) and average
κ= 0.601 for the COGDE task (Fig. 6a, Row 2). Among neuror-
adiologists performing the ADD task, we found average κ= 0.292
(Fig. 6b). In the overall 4-way classification of NC, MCI, AD, and
nADD, we observed that the accuracy of our fusion model (mean:
0.558, 95% CI: [0.482,0.634]) reached that of neurologists (mean:
0.565, 95% CI: [0.529,0.601]). Interestingly, a similar level of
4-way accuracy was achieved by a non-imaging CatBoost model
(mean: 0.544, 95% CI: [0.517,0.571]), though not on an MRI-only
model (mean: 0.412, 95% CI: [0.380,0.444]). However, an MRI-
only model did yield a moderate improvement in diagnostic
accuracy (mean: 0.692, 95% CI: [0.649,0.735]) over neuroradiol-
ogists (mean: 0.566, 95% CI: [0.516,0.616]) in the ADD task
(Fig. 6b). Full performance metrics (including accuracy, sensi-
tivity, specificity, F-1 score, and Matthews Correlation Coeffi-
cient) may be found in Tables S6 and S7 for respective
comparison of machine learning models to neurologists and
neuroradiologists in diagnostic simulations. Performance metrics
for simple thresholding of various neuropsychologic test scores
can be found in Table S8. We also sought to correlate region-
specific SHAP values with structural changes observed by the
neuroradiologists throughout the brain, with particular attention
towards limbic and temporal lobe structures. Statistically sig-
nificant correlations between regional SHAP averages and clini-
cally graded atrophy severity suggested a connection between
CNN features and widely known markers of dementia (Fig. 6c).

Discussion
In this work, we presented a range of machine learning models
that can process multimodal clinical data to accurately perform a
differential diagnosis of AD. These frameworks can achieve
multiple diagnostic steps in succession, first delineating persons
based on overall cognitive status (NC, MCI, and DE) and then
separating likely cases of AD from those with nADD. Impor-
tantly, our models are capable of functioning with flexible com-
binations of imaging and non-imaging data, and their
performance generalized well across multiple datasets featuring a
diverse range of cognitive statuses and dementia subtypes.

Our fusion model demonstrated the highest overall classifica-
tion accuracy across diagnostic tasks, achieving results on par
with neurologists recruited from multiple institutions to complete
clinical simulations. Notably, similar levels of performance were
observed both in the NACC testing set, and in the OASIS external
validation set. Our MRI-only model also surpassed the average
diagnostic accuracy of practicing neuroradiologists and main-
tained a similar level of performance in 6 additional external
cohorts (ADNI, AIBL, FHS, NIFD, PPMI, and LBDSU), thereby
suggesting that diagnostic capability was not biased to any single
data source. It is also worth noting that the DEMO and the ALZ
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Fig. 4 Neuroimaging signatures of dementia. a, b SHAP value-based illustration of brain regions that are most associated with the outcomes. The first
columns in both a and b show a template MRI oriented in axial, coronal, and sagittal planes. In a, the second, third and fourth columns show SHAP values
from the input features of the second convolutional block of the CNN averaged across all NACC test subjects with NC, MCI, and dementia, respectively. In
b, the second and third columns show SHAP values averaged across all NACC test subjects with AD and nADD, respectively. c Brain region-specific SHAP
values for both AD and nADD cases obtained from the NACC testing data are shown. The violin plots are organized per lobe and in decreasing order of
mean absolute SHAP values. d, e Network of brain regions implicated in the classification of AD and nADD, respectively. We selected 33 representative
brain regions for graph analysis and visualization of sagittal regions, as well as 57 regions for axial analyses. Nodes representing brain regions are overlaid
on a two-dimensional brain template and sized according to weighted degree. The color of the segments connecting different nodes indicates the sign of
correlation and the thickness of the segments indicates the magnitude of the correlation. It must be noted that not all nodes can be seen either from the
sagittal or the axial planes. Source data are provided as a Source Data file.
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Fig. 5 Neuropathological validation.We correlated model findings with regional ABC scores of neuropathologic severity obtained autopsied participants in
NACC, ADNI, and FHS cohorts (n= 110). a An example case from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset is displayed in sagittal,
axial, and coronal views. The SHAP values derived from the second convolutional block and neuropathologic ABC scores are mapped to brain regions
where they were measured at the time of autopsy. Visually, high concordance is observed between anatomically mapped SHAP values regardless of the
hidden layer from which they are derived. Concordance is observed between the SHAP values and neurofibrillary tangles (NFT) scores within the temporal
lobe. b A heatmap is shown demonstrating Spearman correlations between population-averaged SHAP values from the input features of the second
convolutional layer and stain-specific ABC scores at various regions of the brain. A strong positive correlation is observed between the SHAP values and
neuropathologic changes within several areas well-known to be affected in AD such as the hippocampus/parahippocampus, amygdala and temporal gyrus.
c Beeswarm plots with overlying box-and-whisker diagrams are shown to denote the distribution of ABC system sub-scores (horizontal axis) versus model-
predicted cognitive scores (vertical axis). The displayed data points represent a pooled set of participants from ADNI, NACC, and FHS for whom
neuropathology reports were available from autopsy. Each symbol represents a study participant, boxes are centered at the median and extend over the
interquartile range (IQR), while bottom and top whiskers represent 1st and 3rd quartiles −/+ 1.5 x IQR, respectively. We denote p < 0.05 as *; p < 0.001 as
**, and p < 0.0001 as *** based on post-hoc Tukey testing. d A heatmap demonstrating the distribution of neuropathology scores versus model predicted
AD probabilities. Herein, each column within the map represents a unique individual whose position along the horizontal axis is a descending function of
AD risk according to the deep learning model. The overlying hatching pattern represents the dataset (ADNI, NACC, and FHS), from which everyone is
drawn. Source data are provided as a Source Data file.
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Fig. 6 Expert-level validation. a For the COGNC task (Row 1), the diagnostic accuracy of board-certified neurologists (n= 17) is compared to the
performance of our deep learning model using a random subset of cases from the NACC dataset (n= 100). Metrics from individual clinicians are plotted in
relation to the ROC and PR curves from the trained model. Individual clinician performance is indicated by the blue plus symbol and averaged clinician
performance along with error bars is indicated by the green plus symbol on both the ROC and PR curves. The mean ROC/PR curve and the standard
deviation are shown as the bold line and shaded region, respectively. A heatmap of pairwise Cohen’s kappa statistic is also displayed to demonstrate inter-
rater agreement across the clinician cohort. For the COGDE task (Row 2), ROC, PR, and interrater agreement graphics are illustrated with comparison to
board-certified neurologists in identical fashion. For these tasks, all neurologists were granted access to multimodal patient data, including MRIs,
demographics, medical history, functional assessments, and neuropsychological testing. The same data was used as input to train the deep learning model.
b For validation of our ADD task, a random subset (n= 50) of cases with dementia from the NACC cohort was provided to the team of neuroradiologists
(n= 7), who classified AD versus those with dementia due to other etiologies (nADD). As above, the diagnostic accuracy of the physician cohort is
compared to model performance using ROC and PR curves. Graphical conventions for visualizing model and clinician performance are as described above
in a and, once more, pairwise Cohen’s kappa values are shown to demonstrate inter-rater agreement. c SHAP values from the second convolutional layer
averaged from selected brain regions are shown plotted against atrophy scores assigned by neuroradiologists. Orange and blue points (and along with
regression lines and 95% confidence intervals) represent left and right hemispheres, respectively. Spearman correlation coefficients and corresponding
two-tailed p values are also shown and demonstrate a statistically significant proportionality between SHAP scores, and the severity of regional atrophy
assigned by clinicians. Source data are provided as a Source Data file.
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scores bore strong analytic importance like that of traditional
information used for dementia diagnosis. For instance, in the
ADD task, the ALZ score was shown by SHAP analysis to have a
greater impact in accurately predicting disease status than key
demographic and neuropsychological test variables used in
standard clinical practice such as age, sex, and MMSE score.
These CNN-derived scores maintained equal levels of importance
when used in other machine learning classifiers, suggesting wide
utility for digital health workflows.

Furthermore, post-hoc analyses demonstrated that the per-
formance of our machine learning models was grounded in well-
established patterns of dementia-related neurodegeneration.
Network analyses evinced differing regional distributions of
SHAP values between AD and nADD populations, which were
most pronounced in areas such as the hippocampus, amygdala,
and temporal lobes. The SHAP values in these regions also
exhibited a strong correlation with atrophy ratings from neu-
roradiologists. Although recent work has shown that explainable
machine learning methods may identify spurious correlations in
imaging data24, we feel that our ability to link regional SHAP
distributions to both anatomic atrophy and also semi-quantitative
scores of Aβ amyloid, neurofibrillary tangles, and neuritic plaques
links our modeling results to a gold standard of postmortem
diagnosis. More generally, our approach demonstrates a means by
which to assimilate deep learning methodologies with validated
clinical evidence in health care.

Our work builds on prior efforts to construct automated sys-
tems for the diagnosis of dementia. Previously, we developed and
externally validated an interpretable deep learning approach to
classify AD using multimodal inputs of MRI and clinical
variables17. Although this approach provided a novel framework,
it relied on a contrived scenario of discriminating individuals into
binary outcomes, which simplified the complexity of a real-world
setting. Our current work extends this framework by mimicking a
memory clinic setting and accounting for cases along the entire
cognitive spectrum. Though numerous groups have taken on the
challenge of nADD diagnosis using deep learning18–20,25,26, even
these tasks were constructed as simple binary classifications
between disease subtypes. Given that the practice of medicine
rarely reduces to a choice between two pathologies, integrated
models with the capability to replicate the differential diagnosis
process of experts more fully are needed before deep learning
models can be touted as assistive tools for clinical-decision sup-
port. Our results demonstrate a strategy for expanding the scope
of diagnostic tasks using deep learning, while also ensuring that
the predictions of automated systems remain grounded in
established medical knowledge.

Interestingly, it should be noted that the performance of a non-
imaging model alone approached that of the fusion model.
However, the inclusion of neuroimaging data was critical to
enable verification of our modeling results by clinical criteria (e.g.,
cross-correlation with post-mortem neuropathology reports).
Such confirmatory data sources cannot be readily assimilated to
non-imaging models, thus limiting the ability to independently
ground their performance in non-computational standards.
Therefore, rather than viewing the modest contribution of neu-
roimaging to diagnostic accuracy as a drawback, we argue that
our results suggest a path towards balancing demands for
transparency with the need to build models using routinely col-
lected clinical data. Models such as ours may be validated in high-
resource areas where the availability of advanced neuroimaging
aids interpretability. As physicians may have difficulty entrusting
medical decision-making to black box model in artificial
intelligence27, grounding our machine learning results in the
established neuroscience of dementia may help to facilitate clin-
ical uptake. Nevertheless, we note that our non-imaging model

may be best suited for deployment among general practitioners
(GPs) and in low-resource settings.

Functionally, we also contend that the flexibility of inputs
afforded by our approach is a necessary precursor to clinical
adoption at multiple stages of dementia. Given that sub-group
analyses suggested significant 4-way diagnostic capacity on
multiple combinations of training data (i.e., demographics,
clinical variables, and neuropsychological tests), our overall
framework is likely adaptable to many variations of clinical
practice without requiring providers to significantly alter their
typical workflows. For example, GPs frequently perform cog-
nitive screening with or without directly ordering MRI
tests28–30, whereas memory specialists typically expand testing
batteries to include imaging and advanced neuropsychological
testing. This ability to integrate along the clinical care con-
tinuum, from primary to tertiary care allows our deep learning
solution to address a two-tiered problem within integrated
dementia care by providing a tool for both screening and
downstream diagnosis.

Our study has several limitations. To begin, in cases of mixed
dementia, the present models default to a diagnosis of AD
whenever this condition is present, thus attributing a single
diagnosis to participants with multiple comorbidities. Given the
considerable prevalence of mixed dementias31, future work may
include the possibility of a multi-label classification that may
allow for the identification of co-occurring dementing conditions
(e.g., LBD and AD, VD and AD) within the same individual. Our
cohorts also did not contain any confirmed cases of atypical AD,
which is estimated to affect approximately 6% of elderly-onset
cases and one-third of patients with early-onset disease32. We
must also note that MCI is a broad category by itself that includes
persons who may or may not progress to dementia. When rele-
vant data becomes available across many cohorts, future inves-
tigations could include MCI subjects who are amnestic and non-
amnestic, to understand distinct signatures of those who have
prodromal AD. We also acknowledge that our study data is
predominantly obtained from epidemiologic studies which pri-
marily focus on AD and that variables that optimize the identi-
fication of this illness may in fact detract from the accurate
diagnosis of certain nADDs. For instance, we noted that the
performance of our fusion models was slightly lower than that of
the MRI-only model for distinguishing AD from non-
parkinsonian dementias such as FTD and VD. We speculate
that certain forms of neuropsychological testing such as the
MMSE, which have well-known limitations in specificity33, may
bias predictions towards more common forms of dementia such
as AD. Although we validated the various models using data from
a population-based cohort (i.e., FHS), it is possible that multi-
modal analysis frameworks have the potential to decrease diag-
nostic accuracy for less common dementias. Future modeling
efforts may optimize for the identification of these diseases by
including additional clinical data tailored to their diagnosis: for
instance, the inclusion of motor examination to assess for par-
kinsonism, FLAIR images for vascular injury, or cognitive fluc-
tuations and sleep behavior abnormalities for LBD. Lastly,
although we have compared our model to the performance of
individual neurologists and neuroradiologists, future studies may
consider comparison to consensus reviews by teams of collabor-
ating clinicians.

In conclusion, our interpretable, multimodal deep learning
framework was able to obtain high accuracy signatures of
dementia status from routinely collected clinical data, which was
validated against data from independent cohorts, neuropatholo-
gical findings, and expert-driven assessment. Moreover, our
approach provides a solution that may be utilized across different
practice types, from GPs to specialized memory clinics at tertiary
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care centers. We envision performing a prospective observational
study in memory clinics to confirm our model’s ability to assess
dementia status at the same level as the expert clinician involved
in dementia care. If confirmed in such a head-to-head compar-
ison, our approach has the potential to expand the scope of
machine learning for AD detection and management, and ulti-
mately serve as an assistive screening tool for healthcare
practitioners.

Methods
Study population. This study was exempted from local institutional review board
approval, as all neuroimaging and clinical data were obtained in deidentified for-
mat upon request from external study centers, who ensured compliance with
ethical guidelines and informed consent for all participants. No compensation was
provided to participants.

We collected demographics, medical history, neuropsychological tests, and
functional assessments as well as magnetic resonance imaging (MRI) scans from 8
cohorts (Table 1), totaling 8916 participants after assessing for inclusion criteria.
There were 4550 participants with normal cognition (NC), 2412 participants with
mild cognitive impairment (MCI), 1606 participants with Alzheimer’s disease
dementia (AD) and 348 participants with dementia due to other causes. The eight
cohorts include the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset
(n= 1821)34–36, the National Alzheimer’s Coordinating Center (NACC) dataset
(n= 4822)21,22, the frontotemporal lobar degeneration neuroimaging initiative
(NIFD) dataset (n= 253)37, the Parkinson’s Progression Marker Initiative (PPMI)
dataset (n= 198)38, the Australian Imaging, Biomarker and Lifestyle Flagship
Study of Ageing (AIBL) dataset (n= 661)39–41, the Open Access Series of Imaging
Studies-3 (OASIS) dataset (n= 666)42, the Framingham Heart Study (FHS) dataset
(n= 313)43,44, and in-house data maintained by the Lewy Body Dementia Center
for Excellence at Stanford University (LBDSU) (n= 182)45.

We labeled the participants according to the clinical diagnosis
(See Supplementary Information: Data to clinicians and diagnostic criterion).
Subjects were labeled according to the clinical diagnoses provided by each study
cohort. We kept MCI diagnoses without further consideration of underlying
etiology to simulate a realistic spectrum of MCI presentations. For any subjects
with documented dementia and primary diagnosis of Alzheimer’s disease
dementia, an AD label was assigned regardless of the presence of additional
dementing comorbidities. Subjects with dementia but without confirmed AD
diagnosis were labeled as nADD. Notably, we elected to conglomerate all nADD
subtypes into a singular label given that subdividing model training across an
arbitrary number of prediction tasks ran the risk of diluting overall diagnostic
accuracy. The ensemble of these 8 cohorts provided us a considerable number of
participants with various forms of dementias as their primary diagnosis, including
Alzheimer’s disease dementia (AD, n= 1606), Lewy body dementia (LBD, n= 63),
frontotemporal dementia (FTD, n= 193), vascular dementia (VD, n= 21), and
other causes of dementia (n= 237). We provided a full survey of nADD dementias
by cohort in the Supplementary Information (Table S9).

Data inclusion criterion. Subjects from each cohort were eligible for study
inclusion if they had at least one T1-weighted volumetric MRI scan within
6 months of an officially documented diagnosis. We additionally excluded all
MRI scans with fewer than 60 slices. For subjects with multiple MRIs and
diagnosis records within a 6-month period, we selected the closest pairing of
neuroimaging and diagnostic label. Therefore, only one MRI per subject was
used. For the NACC and the OASIS cohorts, we further queried all available
variables relating to demographics, past medical history, neuropsychological
testing, and functional assessments. We did not use the availability of non-
imaging features to exclude individuals in these cohorts and used K-nearest
neighbor imputation for any missing data fields. Our overall data inclusion
workflow may be found in Fig. S9, where we reported the total number of subjects
from each cohort before and after application of the inclusion criterion. See
Information Availability by Cohort in the Supplementary Information.

MRI harmonization and preprocessing. To harmonize neuroimaging data
between cohorts, we developed a pipeline of preprocessing operations (Fig. S10)
that was applied in identical fashion to all MRIs used in our study. This pipeline
broadly consisted of two phases of registration to a standard MNI-152 template.
We describe Phase 1 as follows:

● Scan axes were reconfigured to match the standard orientation of MNI-
152 space.

● Using an automated thresholding technique, a 3D volume-of-interest
within the original MRI was identified containing only areas with brain
tissue.

● The volume-of-interest was skull-stripped to isolate brain pixels.
● A preliminary linear registration of the skull-stripped brain to a standard

MNI-152 template was performed. This step approximated a linear
transformation matrix from the original MRI space to the MNI-152 space.

Phase 2 was designed to fine-tune the quality of linear registration and
parcellate the brain into discrete regions. These goals were accomplished by the
following steps:

● The transformation matrix computed from linear registration in Phase 1
was applied to the original MRI scan.

● Skull stripping was once again performed after applying the linear
registration computed from the initial volume of interest to isolate brain
tissue from the full registered MRI scan.

● Linear registration was applied again to alleviate any misalignments to
MNI-152 space.

● Bias field correction was applied to account for magnetic field
inhomogeneities.

● The brain was parcellated by applying a nonlinear warp of the Hammer-
smith Adult brain atlas to the post-processed MRI.

All steps of our MRI-processing pipeline were conducted using FMRIB Software
Library v6.0 (FSL) (Analysis Group, Oxford University). The overall preprocessing
workflow was inspired by the harmonization protocols of the UK Biobank (https://
git.fmrib.ox.ac.uk/falmagro/UK_biobank_pipeline_v_1). We manually inspected
the outcome of the MRI pipeline on each scan to filter out cases with poor quality
or significant processing artifacts.

Evaluation of MRI harmonization. We further assessed our image harmonization
pipeline by clustering the data using the t-distributed stochastic neighbor
embedding (tSNE) algorithm46. We performed this procedure in order to ensure
that (i) input data for all models was free of site-, scanner-, and cohort-specific
biases and (ii) such biases could not be learned by a predictive model. To
accomplish (i), we performed tSNE using pixel values from post-processed, 8x-
downsampled MRI scans. For (ii), we performed tSNE using hidden-layer activa-
tions derived from the penultimate layer of a convolutional neural network (CNN)
developed for our prediction tasks (see “Model Development” below). For the
NACC dataset, we assessed clustering of downsampled MRIs and hidden layer
activations based on specific Alzheimer’s Disease Research Centers (ADRCs) and
scanner manufacturers (i.e., Siemens, Philips, and General Electric). We also
repeated tSNE analysis based on specific cohorts (i.e., NACC, ADNI, FHS, etc.)
using all available MRIs across our datasets. We also calculated mutual information
scores (MIS) between ADRC ID, scanner brand, and diagnostic labels (NC, MCI,
AD, and nADD) in the NACC dataset. This metric calculates the degree of simi-
larity between two sets of labels on a common set of data. As with the tSNE
analysis, the MIS calculation helped us to exclude the presence of confounding site-
and scanner-specific biases on MRI data.

Harmonization of non-imaging data. To harmonize the non-imaging variables
across datasets, we first surveyed the available clinical data in all eight cohorts (See
Information Availability by Cohort and Non-Imaging Features Used in Model
Development in the Supplementary Information). We specifically examined
information related to demographics, past medical history, neuropsychological test
results, and functional assessments. Across a range of clinical features, we found the
greatest availability of information in the NACC and the OASIS datasets. Addi-
tionally, given that the NACC and the OASIS cohorts follow Uniform Data Set
(UDS) guidelines, we were able to make use of validated conversion scales between
UDS versions 2.0 and 3.0 to align all cognitive measurements onto a common scale.
We supply a full listing of clinical variables along with missing information rates
per cohort in Fig. S11.

Overview of the prediction framework. We developed predictive models to meet
two main objectives. The first, which we designated the COG task, was to predict
the overall degree of cognitive impairment (either NC, MCI, or dementia [DE]) in
each participant based on neuroimaging. To meet this goal, we predicted a con-
tinuous 0–2 score (NC: 0, MCI: 1, DE: 2), which we denote as the DEmentia
MOdel (DEMO) score. Of note, the COG task may also be regarded as consisting
of three separate subtasks: (i) separation of NC from MCI and DE (COGNC task),
(ii) separation of MCI from NC and DE (COGMCI task), and (iii) separation of DE
from NC and MCI (COGDE task). The second objective, which we designated the
ADD task, was to predict whether a participant held a diagnosis of AD or nADD
given that they were already predicted as DE in the COG task. For ease of reference,
we denoted the probability of a person holding an AD diagnosis as the ALZheimer
(ALZ) score. Following the sequential completion of the COG and ADD tasks, we
were able to successfully separate AD participants from NC, MCI, and nADD
subjects.

MRI-only model. We used post-processed volumetric MRIs as inputs and trained a
CNN model. To transfer information between the COG and ADD tasks, we trained
a common set of convolutional blocks to act as general-purpose feature extractors.
The DEMO and the ALZ scores were then calculated separately by appending
respective fully connected layers to the shared convolutional backbone. We con-
ducted the COG task as a regression problem using mean square error loss between
the DEMO score and available cognitive labels. We performed the ADD task as a
classification problem using binary cross entropy loss between the reference AD
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label and the ALZ score. The MRI-only model was trained using the NACC dataset
and validated on all the other cohorts. To facilitate presentation of results, we
pooled data from all the external cohorts (ADNI, AIBL, FHS, LBDSU, NIFD,
OASIS, and PPMI), and computed all the model performance metrics.

Non-imaging model. In addition to an MRI-only model, we developed a range of
traditional machine learning classifiers using all available non-imaging variables
shared between the NACC and the OASIS datasets. We first compiled vectors of
demographics, past medical history, neuropsychological test results, and functional
assessments. We scaled continuous variables by their mean and standard deviations
and one-hot encoded categorical variables. These non-imaging data vectors were
then passed as input to CatBoost, XGBoost, random forest, decision tree, multi-
layer perceptron, support vector machine and K-nearest neighbor algorithms. Like
the MRI-only model, each non-imaging model was sequentially trained to com-
plete the COG and the ADD tasks by calculating the DEMO and the ALZ scores,
respectively. We ultimately found that a CatBoost model yielded the best overall
performance per area-under-receiver-operating-characteristic curve (AUC) and
area-under-precision-recall curve (AP) metrics. We, therefore, selected this algo-
rithm as the basis for follow-up analyses.

To mimic a clinical neurology setting, we developed a non-imaging model using
data that is routinely collected for dementia diagnosis. A full listing of the variables
used as input may be found in our Supplementary Information. While some
features such as genetic status (APOE ε4 allele)47, or cerebrospinal fluid measures10

have great predictive value, we have purposefully not included them for model
development because they are not part of the standard clinical work-up of
dementia.

To infer the extent to which completeness of non-imaging datasets influenced
model performance, we conducted multiple experiments using different
combinations of clinical data variables. The following combinations were input to
the CatBoost algorithm for comparison: (1) demographic characteristics alone, (2)
demographic characteristics and neuropsychological tests, (3) demographic
characteristics and functional assessments, (4) demographic characteristics and
past medical history, (5) demographic characteristics, neuropsychological tests and
functional assessments, (6) demographic characteristics, neuropsychological tests
and past medical history, and (7) demographic characteristics, neuropsychological
tests, past medical history, and functional assessments.

Fusion model. To best leverage every aspect of the available data, we combined
both MRI and non-imaging features into a common “fusion” model for the COG
and the ADD tasks. The combination of data sources was accomplished by con-
catenating the DEMO and the ALZ scores derived from the MRI-only model to
lists of clinical variables. The resultant vectors were then given as input to tradi-
tional machine learning classifiers as described above. Based on the AUC and the
AP metrics, we ultimately found that a CNN linked with CatBoost model yielded
the highest performance in discriminating different cognitive categories; the
combination of CNN and CatBoost models was thus used as the final fusion model
for all further experiments. Similarly, to our procedure with the non-imaging
model, we studied how MRI features interacted with different subsets of demo-
graphic, past medical history, neuropsychological, and functional assessment
variables. As with our non-imaging model, development and validation of fusion
models was limited to NACC and OASIS only given limited availability of non-
imaging data in other cohorts.

Training strategy and data splitting. We trained all models on the NACC dataset
using cross validation. NACC was randomly divided into 5 folds of equal size with
constant ratios of NC, MCI, AD, and nADD cases. We trained the model on 3 of
the 5 folds and used the remaining two folds for validation and testing, respectively.
Each tuned model was also tested on the full set of available cases from external
datasets. Performance metrics for all models were reported as a mean across five
folds of cross validation along with standard deviations and 95% confident inter-
vals. A graphical summary of our cross-validation strategy may be found within
Fig. S12. Prior to training, we also set aside two specialized cohorts within NACC
for neuropathologic validation and head-to-head comparison with clinicians. In the
former case, we identified 74 subjects from whom post-mortem neuropathological
data was available within 2 years of an MRI scan. In the latter, we randomly
selected 100 age- and sex-matched groups of patients (25 per diagnostic category)
to provide simulated cases to expert clinicians.

SHAP analysis. SHAP is a unified framework for interpreting machine learning
models which estimates the contribution of each feature by averaging over all
possible marginal contributions to a prediction task23. Though initially developed
for game theory applications48, this approach may be used in deep learning-based
computer vision by considering each image voxel or a network node as a unique
feature. By assigning SHAP values to specific voxels or by mapping internal net-
work nodes back to the native imaging space, heatmaps may be constructed over
input MRIs.

Though a variety of methods exist for estimating SHAP values, we implemented
a modified version of the DeepLIFT algorithm49, which computes SHAP by
estimating differences in model activations during backpropagation relative to a

standard reference. We established this reference by integrating over a
“background” of training MRIs to estimate a dataset-wide expected value. For each
testing example, we then calculated SHAP values for the overall CNN model as well
as for specific internal layers. Two sets of SHAP values were estimated for the COG
and ADD tasks, respectively. SHAP values calculated over the full model were
directly mapped back to native MRI pixels whereas those derived for internal layers
were translated to the native imaging space via nearest neighbor interpolation.

Network analysis. We sought to perform a region-by-region graph analysis of
SHAP values to determine whether consistent differences in ADD and nADD
populations could be demonstrated. To visualize the relationship of SHAP scores
across various brain regions, we created graphical representations of inter-region
SHAP correlations within the brain. We derived region-specific scores by averaging
voxel-wise SHAP values according to their location within the registered MRI.
Subsequently, we constructed acyclic graphs in which nodes were defined as spe-
cific brain regions and edges as inter-regional correlations measured by Spearman’s
rank correlation and Pearson correlation coefficient, separately. To facilitate
visualization and convey structural information, we manually aligned the nodes to
a radiographic projection of the brain.

Once correlation values were calculated between every pair of nodes, we filtered
out the edges with p value larger than 0.05 and ranked the remaining edges
according to the absolute correlation value. We used only the top N edges (N= 100
for sagittal view, N= 200 for axial view) for the graph. We used color to indicate
the sign of correlation and thickness to represent the magnitude of correlation. We
used the following formula to derive the thickness:

thickness corr:ð Þ ¼ const: ´ ðabsðcorr:Þ � thresholdÞ ð1Þ
where the threshold is defined as the minimum of the absolute value of all selected
edges’ correlation value. The radius of nodes represents the weighted degree of the
node which is defined as the sum of the edge weights for edges incident to that
node. More specifically, we calculated the radius using the following equation:

radiusðnodeiÞ ¼ 20þ 3� ∑jcorrelationðnodei; nodejÞ
� �

ð2Þ
In the above equation, we used 20 as a bias term to ensure that every node has

at-least a minimal size to be visible on the graph. Note as well that the digit inside
each node represents the index of the region name. Derivation of axial and sagittal
nodes from the Hammersmith atlas is elaborated in Table S5.

Neuropathologic validation. Neuropathologic evaluations are considered to be the
gold standard for confirming the presence and severity of neurodegenerative
diseases50. We validated our model’s ability to identify regions of high risk of
dementia by comparing the spatial distribution of the model-derived scores
with post-mortem neuropathological data from NACC, FHS, and ADNI study
cohorts, derived from the National Institute on Aging Alzheimer’s Association
guidelines for the neuropathologic assessment of AD51. Hundred and ten parti-
cipants from NACC (n= 74), ADNI (n= 25) and FHS (n= 11) who met the study
inclusion criteria, had MRI scans taken within 2 years of death and with neuro-
pathologic data were included in the neuropathologic validation. The data was
harmonized in the format of the Neuropathology Data Form Version 10 of the
NACC established by the National Institute on Aging. The neuropathological
lesions of AD (i.e., amyloid β deposits (Aβ), neurofibrillary tangles (NFTs), and
neuritic plaques (NPs)) were assessed in the entorhinal, hippocampal, frontal,
temporal, parietal, and occipital cortices. The regions were based on those pro-
posed for standardized neuropathological assessment of AD and the severity of the
various pathologies were classified into four semi-quantitative score categories
(0=None, 1=Mild, 2=Moderate, 3= Severe)52. Based on the NIA-AA protocol,
the severity of neuropathologic changes were evaluated using a global “ABC” score
which incorporates histopathologic assessments of amyloid β deposits by the
method of Thal phases:53 (A), staging of neurofibrillary tangles (B) silver-based
histochemistry54, or phospho-tau immunohistochemistry55, and scoring of neuritic
plaques (C). Spearman’s rank correlation was used to correlate the DEMO score
predictions with the A, B, C scores, and ANOVA and Tukey’s tests were used to
assess the differences in the mean DEMO scores across the different levels of the
scoring categories. Lastly, a subset of the participants from ADNI (n= 25) and FHS
(n= 11) had regional semi-quantitative Aβ, NFT, and NP scores, which was also
used to validate the model predictions.

Expert-level validation. We sought to test our model’s predictions against the
diagnostic acumen of clinicians who are involved in care of patients with dementia.
We recruited an international cohort of practicing neurologists and neuroradiol-
ogists to participate in simulated diagnostic tasks using a subset of NACC cases (see
“Training strategy and data splitting” above). Neurologists were provided with 100
cases that included imaging data (T1-weighted brain MRI scans) and non-imaging
data (demographics, medical history, neuropsychological tests, and functional
assessments) and asked to provide diagnostic impressions of NC, MCI, AD, and
nADD. Notably, the model was not directly compared to neurologists for the ADD
task given that our framework only performs this prediction on patients internally
identified as demented. Due to this computational pre-selection, it was not feasible
to consistently compare a common cohort of persons with neurologists who also
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must perform a differential diagnosis of NC, MCI, AD, and nADD. Neuror-
adiologists were provided with imaging data (T1-weighted brain MRI scans), age,
and gender from 50 known DE cases and then asked to provide diagnostic
impressions of AD or nADD. For each case, the neuroradiologists also answered a
questionnaire to grade the extent of atrophy in each sub-region of the brain on a
scale of 0 to 4, where higher values indicate greater atrophy. A case sample and
example questionnaires provided to neurologists and neuroradiologists, respec-
tively, may be found within the Supplementary Information (Data to clinicians and
diagnostic criterion). For both groups of clinicians, we also calculated inter-
annotator agreement using Cohen’s kappa (κ). Additionally, to compare our
machine learning models to neuropsychological assessments, we performed the
COGNC, COGDE, and ADD tasks using all possible whole number cutoffs of
neuropsychiatric test scores available in the NACC dataset. Following this
approach, we performed simple thresholding for binary classifications.

Performance metrics. We presented the performance by computing the mean and
the standard deviation over the model runs. We generated receiver operating char-
acteristic (ROC) and precision-recall (PR) curves based on model predictions on the
NACC test data as well as on the other datasets. For each ROC and PR curve, we also
computed the area under curve (AUC & AP) values. Additionally, we computed
sensitivity, specificity, F1-score and Matthews correlation coefficient on each set of
model predictions. The F1-score considers both precision and recall of a test whereas
the MCC is a balanced measure of quality for dataset classes of different sizes of a
binary classifier. We also calculated inter-annotator agreement using Cohen’s kappa
(κ), as the ratio of the number of times two experts agreed on a diagnosis. We
computed average pairwise κ for each sub-group task that provided an overall measure
of agreement between the neurologists and the neuroradiologists, respectively.

Statistical analysis. We used one-way ANOVA test and the χ2 test for continuous
and categorical variables, respectively to assess the overall levels of differences in
the population characteristics between NC, MCI, AD, and nADD groups across the
study cohorts. To validate our CNN model, we evaluated whether the presence and
severity of the semi-quantitative neuropathology scores across the neuropatholo-
gical lesions of AD (i.e., amyloid β deposits (Aβ), neurofibrillary tangles (NFTs),
and neuritic plaques (NPs)) reflected the DEMO score predicted by the CNN
model. We stratified the lesions based on A, B, and C scores and used Spearman’s
rank correlation to assess their relationship with the DEMO scores. Next using
one-way ANOVA analysis, we evaluated the differences in the mean DEMO scores
across the different levels of the scoring categories for the A, B, and C scores. We
used the Tukey-Kramer test to identify the pairwise statistically significant differ-
ences in the mean DEMO score between the levels of scoring categories (0–3).
Similarly, to analyze the correspondence between SHAP values and a known
marker of neurodegenerative disease, we correlated SHAPs with the radiologist
impressions of atrophy. Utilizing the segmentation maps derived from each par-
ticipant, we calculated regional SHAP averages on each of the 50 test cases given to
neuroradiologists with the 0–4 regional atrophy scales assigned by the clinicians.
We calculated Pearson’s correlation coefficients with two-tailed p values that
indicates the probability that an uncorrelated system producing Pearson’s corre-
lation coefficient as extreme as the observed value in the neuroanatomic regions
known to be implicated in AD pathology. All statistical analyses were conducted at
a significance level of 0.05. Confidence intervals for model performance were
calculated by assuming a normal distribution of AUC and AP values across cross-
validation experiments using t-student distribution with 4 degrees of freedom.

Computational hardware and software. We processed all MRIs and non-imaging
data on a computing workstation with Intel i9 14-core 3.3 GHz processor, and 4
NVIDIA RTX 2080Ti GPUs. Python (version 3.7.7) was used for software develop-
ment. Each deep learning model was developed using PyTorch (version 1.5.1), and
plots were generated using the Python library matplotlib (version 3.1.1) and numpy
(version 1.18.1) was used for vectorized numerical computation. Other Python libraries
used to support data analysis include pandas (version 1.0.3), scipy (version 1.3.1),
tensorflow (version 1.14.0), tensorboardX (version 1.9), torchvision (version 0.6) and
scikit-learn (version 0.22.1). Using a single 2080Ti GPU, the average run time for
training the deep learning model was 10 h, and inference task took less than a minute.
All clinicians reviewed MRIs using 3D Slicer (version 4.10.2) (https://www.slicer.org/)
and recorded impressions in REDCap (version 11.1.3). Additionally, statistics for
neuropathology analysis were completed using SAS (version 9.4).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data from ADNI, AIBL, NACC, NIFD, OASIS and PPMI can be downloaded from
publicly available resources. Data from FHS and LBDSU are available upon request and
will be subjected to institutional approval. Source data for figures are provided with this
paper. Source data are provided with this paper.

Code availability
Python scripts are made available on GitHub (https://github.com/vkola-lab/
ncomms2022).
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