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Abstract

Saccharomyces cerevisiae is used to provide fundamental understanding of eukaryotic genetics, gene product function, and cellular
biological processes. Saccharomyces Genome Database (SGD) has been supporting the yeast research community since 1993, serving as
its de facto hub. Over the years, SGD has maintained the genetic nomenclature, chromosome maps, and functional annotation, and devel-
oped various tools and methods for analysis and curation of a variety of emerging data types. More recently, SGD and six other model
organism focused knowledgebases have come together to create the Alliance of Genome Resources to develop sustainable genome infor-
mation resources that promote and support the use of various model organisms to understand the genetic and genomic bases of human
biology and disease. Here we describe recent activities at SGD, including the latest reference genome annotation update, the develop-
ment of a curation system for mutant alleles, and new pages addressing homology across model organisms as well as the use of yeast to
study human disease.
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Introduction
Saccharomyces cerevisiae is used to provide fundamental under-
standing of eukaryotic genetics, gene product function, and cellu-
lar biological processes. The published scientific literature from
the yeast research community is integrated into the biomedical
knowledgebase Saccharomyces Genome Database (SGD; www.
yeastgenome.org). Biocurators with expertise in genetics, cell bi-
ology, and molecular biology have collected information from
more than 100,000 published papers and combined the results
from diverse experiments into a comprehensive resource for
researchers, educators, and students.

The S. cerevisiae nomenclature has been maintained by SGD
since 1993 (Cherry et al. 1997). Soon thereafter, SGD began provid-
ing the genetic and physical maps for the 16 yeast nuclear chro-
mosomes (Cherry et al. 1997), the catalog of all known yeast
proteins (Chervitz et al. 1999; Weng et al. 2003), biological process
and molecular function annotations using the Gene Ontology
(GO) (Dwight et al. 2002), as well as gene expression data and tools
for analysis (Ball et al. 2001). SGD has maintained the reference
genome from strain S288C, which was the first completely se-
quenced eukaryotic genome (Goffeau et al. 1996), and its annota-
tion since 1998 (Cherry et al. 1998), along with sequence analysis

and retrieval tools for studying that reference genome
(Balakrishnan et al. 2004; Christie et al. 2004; Hirschman et al.
2006), and later broadened the reference panel by adding
genomes of 11 additional highly studied strains to more fully sup-
port the work of the yeast research community (Engel and Cherry
2013). In parallel to these activities, SGD also developed princi-
ples and practices for the extraction and curation of various types
of biological data (Ball et al. 2000; Dwight et al. 2004; Hong et al.
2008; Engel et al. 2010; Costanzo et al. 2011; Park et al. 2012;
Balakrishnan et al. 2013; Skrzypek and Nash 2015). SGD then
turned to further enhancing existing tools and curation practices,
including the development of an automated pipeline for pan-
genome analysis (Song et al. 2015), release of the variant viewer
for analysis of the reference genome panel (Sheppard et al. 2016),
curation of the complete set of yeast metabolic pathways (Cherry
2015), and updated curation methods and data models for the
capture of post-translational modifications (Hellerstedt et al.
2017), regulatory relationships (Engel et al. 2018), macromolecular
complexes (Wong et al. 2019), and the yeast transcriptome (Ng
et al. 2019).

As the de facto hub of the yeast research community, SGD
also engages in a wide range of outreach and communication
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activities to disseminate published results, promote collabora-
tion, facilitate scientific discovery, and inform users about new
tools, data, or other database developments (MacPherson et al.
2017). These activities include participating in conferences and
hosting workshops, direct contact with authors of yeast research
papers, the posting of online help resources, and involvement in
social media, including the production of video tutorials and
webinars, all hosted on SGD’s YouTube channel (https://www.
youtube.com/SaccharomycesGenomeDatabase). To increase
readership and reach a broad audience, content posted on one
outreach platform is often publicized or announced on other out-
reach platforms. We also collaborate with the Genetics Society of
America to annotate online journal articles published in
GENETICS and G3: Genes j Genomes j Genetics to associate yeast
genes listed in these articles to their respective gene pages at
SGD.

More recently, SGD and six other model organism-focused
knowledgebases—Mouse Genome Database (MGD; http://www.in
formatics.jax.org, Bult et al. 2019), Rat Genome Database (RGD;
https://rgd.mcw.edu, Laulederkind et al. 2018), Zebrafish
Information Network (ZFIN; https://zfin.org, Ruzicka et al. 2019),
WormBase (https://wormbase.org, Lee et al. 2018), FlyBase
(https://flybase.org, Thurmond et al. 2019), and the GO
Consortium (http://www.geneontology.org, The Gene Ontology
Consortium 2019)—have created the Alliance of Genome
Resources (“the Alliance”; https://www.alliancegenome.org;
Alliance of Genome Resources Consortium 2019; Alliance of
Genome Resources 2022). Together, we are working to create an
online resource that integrates, develops, and provides harmo-
nized data for all member projects (Alliance of Genome
Resources Consortium 2020). The aim is to more broadly facili-
tate the use of model organisms to understand the genetic bases
of human biology and disease. These efforts build on the well-
established collaborations between these groups, who have long
worked together to enhance data consolidation, dissemination,
visualization, and the application of shared standards (i.e., “data
harmonization”). Working within the Alliance has influenced
SGD’s curation of mutant alleles and human diseases, as well as
our use of homology throughout the SGD website to highlight the
greater biological context of key findings in yeast research.

Genome version R64.3.1
Annotation updates and additions
The S. cerevisiae strain S288C reference genome annotation was
updated for the first time since 2014 (Table 1). The new genome
annotation is release R64.3.1, dated April 21, 2021. Resequencing
of S288C in 2014 indicated that genomic sequence variation was
less than expected between individual laboratory copies of this
strain, illustrating that the underlying genome sequence is stable
and complete. As such, while SGD updated the annotation of the
genomic sequence, the fundamental sequence itself remains
unchanged (Cherry et al. 1998; Engel et al. 2014). All new and
updated annotations are sourced from the primary literature.
The R64.3.1 update included the addition of seven open reading
frames (ORFs), five noncoding RNAs (ncRNAs), two upstream
ORFs (uORFs), and one long terminal repeat (LTR). Three ORFs
had their translation starts shifted to a different methionine, and
one ORF received a newly annotated intron and had its transla-
tion stop shifted. We also changed the Sequence Ontology (SO;
http://www.sequenceontology.org/; Eilbeck et al. 2005) term used
to describe the nontranscribed spacers (NTS1-1, NTS1-2, NTS2-1,
and NTS2-2) in the ribosomal DNA (rDNA) array.

New ncRNA systematic nomenclature
Included in the R64.3.1 update is the establishment of a new sys-
tematic nomenclature for yeast ncRNAs (430 genes; Supplemen-
tary Table S1). For many years, a widely adopted systematic
nomenclature has existed for yeast protein-coding genes, or
ORFs, as many yeast researchers call them (Cherry et al. 1998).
With this most recent genome version, we have established a sys-
tematic nomenclature for yeast ncRNAs that is similar to, but
distinct from, that used for ORFs. All annotated S. cerevisiae
ncRNAs are designated by a symbol consisting of four uppercase
letters, a four-digit number, and another letter, as follows: Y for
“Yeast,” NC for “noncoding,” A-Q for the chromosome on which
the ncRNA gene resides (where “A” is chromosome I, “B” is chro-
mosome II, etc., up to “P” for chromosome XVI, and lastly “Q” for
the mitochondrial chromosome), a four-digit number corre-
sponding to the sequential order of the ncRNA gene on the chro-
mosome (starting from the left telomere and counting toward the
right telomere), and W or C indicating whether the ncRNA gene is
encoded on the “Watson” or “Crick” strand (where “Watson” runs
50 to 30 from left telomere to right telomere, and “Crick” runs 30 to
50). For example, YNCP0002W is the second ncRNA gene from the
left end of chromosome XVI and is encoded on the Watson
strand. Going forward, when evidence is published pointing to
new ncRNA genes, they will be added to the annotation using the
next sequential number available for the specific chromosome
on which the ncRNA gene resides. In cases in which more than
one ncRNA gene is added to any particular chromosome during
the same annotation update (i.e., same genome revision), they
will be named using the next sequential number starting
with the leftmost ncRNA gene and proceeding to the right of the
chromosome.

Nomenclature updates—“legacy” gene names
SGD has long been the keeper of the official S. cerevisiae gene
nomenclature (Cherry 1998). Robert Mortimer handed over this
responsibility to SGD in 1993 after maintaining the yeast genetic
map and gene nomenclature for 30 years (Hawthorne and
Mortimer 1960; Mortimer and Schild 1980). The accepted format
for gene names in S. cerevisiae comprises three uppercase letters
followed by a number. The letters typically signify a phrase (re-
ferred to as the “Name Description” in SGD) that provides infor-
mation about a function, mutant phenotype, or process related
to that gene, for example, “ADE” for “ADEnine biosynthesis” or
“CDC” for “Cell Division Cycle.” Gene names for many types of
chromosomal features follow this basic format regardless of the
type of feature named, whether an ORF, a tRNA, another type of
noncoding RNA, an ARS, or a genetic locus. Some S. cerevisiae
gene names that pre-date the current nomenclature standards
do not conform to this format, such as MRLP38, RPL1A, and OM45.
A few historical gene names predate both the nomenclature
standards and the database, and are less computer-friendly than
more recent gene names, due to the presence of punctuation.
SGD recently updated these gene names to be consistent with
current standards and to be more software-friendly by removing
punctuation (Table 2).

Although nonstandard historical names are maintained in
SGD, any new names for yeast genes must conform to the stan-
dard format. The SGD Gene Registry (https://www.yeastgenome.
org/reserved_name/new) is the agreed-upon system used by the
S. cerevisiae community and SGD to reserve standard names for
newly characterized genes. We have developed a set of Gene
Naming guidelines and procedures in order to assist researchers
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in gene naming. We urge researchers to contact SGD prior to the
publication of a new gene name (even if they have previously re-
served it) to ensure that the gene name they wish to use is still
appropriate. To date, 1363 currently annotated S. cerevisiae genes
still have no standard gene name and are identified solely via
their systematic names (ex. YFL019C). All S. cerevisiae ORFs are
categorized into one of three groups: “verified” ORFs are those for
which there is clear experimental evidence for the presence of

expression of a protein-coding gene; “uncharacterized” ORFs are
likely, but not yet established, to encode a protein; and “dubious”
ORFs are unlikely to encode a protein (Fisk et al. 2006). Of the 1363
currently annotated S. cerevisiae ORFs without a standard gene
name, 131 are verified, 571 are uncharacterized, and the remain-
ing 661 are classified as dubious.

Alleles
To serve the needs of the yeast community more completely, and
influenced by our active participation in the Alliance, SGD has re-
cently revamped the way we curate mutant alleles of genes and
has released new allele web pages. For over a decade, SGD has
been recording mutant allele information as descriptive proper-
ties of phenotype annotations (Costanzo et al. 2009). We have re-
cently elevated alleles in the database from phenotype properties
to primary data objects, i.e., standalone entities to which other

Table 1 The Saccharomyces cerevisiae strain S288C reference genome annotation was updated

Chromosome Feature Description of change Reference

II YNCB0008W aka GAL10-ncRNA New ncRNA antisense to GAL10: coordi-
nates 276,805–280,645

Houseley et al. (2008); Pinskaya et al.
(2009); Geisler et al. (2012)

II YNCB0014W aka TBRT/XUT_2F-154 New ncRNA antisense to TAT1: coordi-
nates 376,610–378,633

Awasthi et al. (2020)

III RE/RE301 New recombination enhancer: coordi-
nates 29,108–29,809

Wu and Haber (1996)

V YELWdelta27 New Ty1 LTR: coordinates 449,
274–449,626

Nene et al. (2018)

V HPA3/YEL066W Moved translation start to Met19: old
coordinates 26,667–27,206; new coor-
dinates 26,721–27,206

Sampath et al. (2013)

VII OTO1/YGR227C-A New ORF: coordinates 949052–949225
Crick

Makanae et al. (2015)

VII ROK1/YGL171W Two new uORFs: coordinates uORF1
182,286–182,407; coordinates uORF2
182,291–182,329

Jeon and Kim (2010)

VIII YHR052C-B New ORF: coordinates 212,519–212,692
Crick

He et al. (2018)

VIII YHR054C-B New ORF: coordinates 214,517–214,690
Crick

He et al. (2018)

VIII SUT169/YNCH0011W New ncRNA: coordinates 378,
254–379,237

Xu et al. (2009); Geisler et al. (2012);
Huber et al. (2016); Bunina et al.
(2017)

X YJR012C Moved start to Met76: old coordinates
459,795–460,418 Crick; new coordi-
nates 459,795–460,193 Crick

Sadhu et al. (2018)

X YJR107C-A New ORF: coordinates 628,457–628,693
Crick

Yagoub et al. (2015);
He et al. (2018)

XI YKL104W-A New ORF: coordinates 245,032–245,286 He et al. (2018)
XII YLR379W-A New ORF: coordinates 877,444–877,716 Internal reanalysis of results from

Song et al. (2015) to find and anno-
tate missing S288C ORFs

XII NTS1-2, NTS2-1, NTS2-2 Change feature_type/SO_term from
SO:0001637 rRNA_gene to SO:0000183
non_transcribed_region

XIII LDO45/YMR147W Shift stop to be same as LDO16/
YMR148W, add intron: old coordi-
nates 559,199–559,870; new coordi-
nates 559,199–559,780, 560,156–
560,812

Eisenberg-Bord et al. (2018)

XIII YMR008C-A New ORF: coordinates 283,081–283,548
Crick

Internal reanalysis of results from
Song et al. (2015) to find and anno-
tate missing S288C ORFs

XIII YNCM0001W aka PHO84 lncRNA New ncRNA: coordinates 23,564–26,578 Camblong et al. (2007)
XIV LTO1/YNL260C Move start to Met37: old coordinates

156,859–157,455 Crick; new coordi-
nates 156,859–157,347 Crick

Paul et al. (2015)

XVI YNCP0002W aka GAL4 lncRNA New ncRNA: coordinates 79,562–82,648 Geisler et al. (2012)

The new genome annotation is release R64.3.1, dated April 21, 2021.

Table 2 “Legacy” gene names which predate the database have
been updated to be more software-friendly by removing
unnecessary punctuation

ORF Old gene name New gene name

YGL234W ADE5,7 ADE57
YER069W ARG5,6 ARG56
YBR208C DUR1,2 DUR12
YIL154C IMP2’ IMP21
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annotations, such as phenotypes or genetic interactions, can be
attached, and that have their own detailed web pages.

Previously, as part of phenotype curation, only allele names,
mutant types, and free-text descriptions were collected. We now
have expanded the information gathered and displayed for
alleles to include affected gene, alias names, description in free
text including relevant nucleotide and/or amino acid changes
and correspondence to human alleles when known, and allele
type. Allele type, which is captured using the structural_variant
(SO:0001537) branch of the Sequence Ontology, describes the
change to the relevant sequence feature with terms like missen-
se_variant (SO:0001583), stop_gained (SO:0001587), and frameshift_-
variant (SO:0001589). To further describe the functional effect of
the structural change within the context of phenotype annota-
tions, SGD uses the functional_effect_variant (SO:0001536) branch

of the SO, which contains terms like null_mutation (SO:0002055),
loss_of_function_variant (SO:0002054), and dominant_negative_var-
iant (SO:0002052).

New allele pages
The new allele pages at SGD contain different types of informa-
tion divided into several sections: Overview, Phenotypes, Genetic
Interactions, Shared Alleles Network, External Resources, and
Relevant Literature (Figure 1). The Allele Overview provides gen-
eral information about the allele, including its name, the affected
gene, the type of allele (e.g., missense_variant, as described above),
and a description of sequence change and/or domain mutated.
The phenotype annotations for an allele include an observable
feature (e.g., “cell shape”), a qualifier (e.g., “abnormal”), a mutant
type (e.g., null), strain background, and a reference. In addition,

Figure 1 SGD allele pages include (A) Overview with name, affected gene, type of allele, and a description of sequence change and/or domain mutated;
phenotype annotations; (B) genetic interaction annotations; and (C) shared alleles network diagram depicting shared phenotypes and interactions with
other alleles.
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annotations are classified as classical genetics or high-
throughput (e.g., large-scale survey, systematic mutation set).
The Genetic Interactions for an allele are defined as experimen-
tally observed genetic interactions between that allele and an-
other of a different gene. All interactions listed in SGD are
curated by BioGRID (Oughtred et al. 2021). The Shared Alleles
Network displays positive genetic interactions, negative genetic
interactions, and phenotypes that are shared between the given
allele and other alleles (Figure 1). The resources section provides
links to allele-related information, such as mutant strain reposi-
tories, external phenotype and interaction databases, and infor-
mation about the yeast phenotype ontology. In addition, all
literature associated with an allele can be found on its literature
page (Figure 1).

Updates to interactions data/pages
To further accommodate the enhanced focus on alleles and for
improved clarity, SGD has made recent updates to the way we
present Interaction data. Previously, genetic and physical interac-
tion annotations were combined in one table. These annotations
are now displayed in separate annotation tables on Interactions
pages (ex. https://www.yeastgenome.org/locus/S000003424/inter
action), Reference pages (ex. https://www.yeastgenome.org/refer
ence/S000305076), and in YeastMine (https://yeastmine.yeastge
nome.org/yeastmine/templates.do) to allow for the listing of
allele designations, synthetic genetic analysis (SGA) scores, and
P-values from the global genetic interactions paper by Costanzo
et al. (2016).

Searching for alleles
All alleles for a specific gene can be accessed via the Alleles
section on the Locus Summary Page or downloaded from
YeastMine using the Genes -> Alleles template (https://yeast
mine.yeastgenome.org/yeastmine/template.do?name¼Gene_Alle
les&scope¼all). The alleles have also been added to SGD’s
Elasticsearch, with ‘facets’ for publications, allele types, affected
genes, and phenotypes, which allow for the browsing, partition-
ing, and viewing of the approximately 14,000 yeast alleles anno-
tated so far in SGD.

Homology and the alliance of genome
resources
SGD and six other model organism focused knowledgebases—
MGD, RGD, ZFIN, WormBase, FlyBase, and the GO Consortium—
have recently created a new knowledgebase for model organisms.
These major community-driven model organism projects have
taken up the mission of harmonizing common data types and
creating an integrated web resource. The Alliance of Genome
Resources has brought together biocurators and software engi-
neers from all the MODs to build a new central resource. Teams
have been created to define data models for the major data types
provided by the MODs. These teams also define how the informa-
tion should be presented. Software engineers from the MODs
work together to create the cloud computational environment,
component tools, and web pages that define such an important
resource. Gene products, proteins, ncRNAs, and pseudogenes are
connected by their homology, molecular functions, biological
processes, cellular component location, anatomical expression,
and association with disease. Human gene details are provided
by RGD.

One of the first work products to come out of the Alliance was
a consolidated set of orthologs, using data from several different

computational and manually curated sources (Howe et al. 2018).
Many aspects of data integration presented at the Alliance re-
quire a common set of orthology relationships among genes for
the organisms represented, including human. The Alliance pro-
vides the results of all methods that have been benchmarked by
the Quest for Orthologs Consortium (QfO; https://questforortho
logs.org/, Linard et al. 2021). The homolog inferences from the dif-
ferent methods have been integrated using the DRSC Integrative
Ortholog Prediction Tool (DIOPT; Hu et al. 2011), which integrates
a number of existing methods including those used by the
Alliance: Ensembl Compara (Vilella et al. 2009), HUGO Gene
Nomenclature Committee (HGNC; Povey et al. 2001), Hieranoid
(Kaduk and Sonnhammer 2017), InParanoid (O’Brien et al. 2005),
the Orthologous MAtrix project (OMA; Schneider et al. 2007),
OrthoMCL (Li et al. 2003), OrthoFinder (Emms and Kelly 2015),
OrthoInspector (Linard et al. 2011), PANTHER (Mi et al. 2019),
PhylomeDB (Huerta-Cepas et al. 2008), Roundup (Deluca et al.
2006), TreeFam (Li et al. 2006), and ZFIN (Westerfield et al. 1997).
This set of assertions (the “orthology set”) is key because it allows
the inference of function from one species to another, and is es-
pecially helpful because work using a highly studied and experi-
mentally tractable organism such as yeast can be informative
regarding the biology of other organisms in which targeted
experiments are not possible, such as human (Dolinski and
Botstein 2007). Currently included in the Alliance and in the
orthology set are five other leading model organisms in addition
to S. cerevisiae (yeast): Caenorhabditis elegans (worm), Drosophila mel-
anogaster (fruit fly), Danio rerio (zebrafish), Rattus norvegicus (rat),
and Mus musculus (mouse).

SGD takes advantage of the homology data from the Alliance
to provide easy access to information about homologous genes in
just one click. At SGD, we have used the orthology set to provide
links between SGD gene pages and those for orthologous genes at
the Alliance (Figure 2). On SGD gene pages, users will find hexag-
onal icons representing each model organism (human, mouse,
rat, zebrafish, fly, worm, and yeast) for which there is homolo-
gous gene information at the Alliance. Clicking on the icon imme-
diately directs the user to the gene page for the selected model
organism on the Alliance website. The Alliance gene pages pre-
sent a variety of data types for all of the various organisms, in-
cluding functional annotations using the GO, phenotypes,
disease associations, alleles, variants, sequence features, expres-
sion information, and both physical and genetic interactions.
Data for individual genes can be downloaded directly from
Alliance gene pages, and bulk downloads are available from the
Alliance Downloads site (https://www.alliancegenome.org/down
loads).

Homology pages
We have also used the Alliance orthology set to establish new
Homology pages at SGD for protein-coding genes. The informa-
tion displayed on the Homology Pages is divided into several
sections: Homologs, Functional Complementation, Fungal
Homologs, and External Identifiers (Figure 3). The Homologs sec-
tion lists information about genes in the Alliance orthology set,
including species, gene ID, and gene name, with links to the cor-
responding gene page at the Alliance. The Functional
Complementation section presents data about cross-species
complementation between yeast and other species, as curated by
SGD and including legacy data from the Princeton Protein
Orthology Database (P-POD; Heinicke et al. 2007). These curated
Functional Complementation data are also displayed on SGD
Reference pages. The Fungal Homologs section shows curated
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information including species, gene ID, and database source for
orthologs in 24 additional species of fungi, such as those in
Candida, Neurospora, and Aspergillus, among others. The External
Identifiers section lists identifiers for the protein from various
database sources.

Disease pages
To promote the use of yeast as a catalyst for biomedical research,
SGD utilizes the Disease Ontology (DO; Schriml et al. 2019) to de-
scribe human diseases that are associated with yeast homologs.
Disease Ontology annotations to yeast genes are now available
through SGD’s new Disease pages, each of which corresponds to
a Disease Ontology term, such as amyotrophic lateral sclerosis
(DOID: 332), and lists out all yeast genes annotated to the term by
SGD. Yeast genes with one or more human disease associations
also have a new Disease tab accessible from the genes’ respective

locus pages (Figure 4). The Disease tab shows all manually cu-
rated, high-throughput, and computational disease annotations
for the yeast gene. In addition, these pages feature a network dia-
gram that depicts shared disease annotations for other yeast
genes and their human homologs.

While the Alliance will provide much of the information
researchers will want to explore, there will continue to be data
that cannot be harmonized across organisms because of its
unique characteristics, such as an aspect of biology only found in
one of the species or the nuance of an experimental assay that is
unique to one community. In time, these unique bits of informa-
tion will be provided directly from the Alliance site. However, un-
til then, the main knowledgebases are essential. All of the MODs
look forward to the common user interface and ease of discover-
ing common associations between genes in other organisms.
This is an important step to allow researchers, educators, and

Figure 2 (A) SGD provides links between SGD gene pages and those for orthologous genes at the Alliance of Genome Resources. Hexagonal icons
represent each organism (human, mouse, rat, zebrafish, fly, worm, and yeast) for which there is gene information at the Alliance. (B) Curated
information from SGD is presented on yeast gene pages at the Alliance of Genome Resources. The various types of yeast data that can be found at the
Alliance can be viewed using the menu on the left side of the gene page, and include orthologs, functional annotations using the GO, cellular pathways,
phenotypes, disease associations, alleles, variants, sequence features, expression, and interactions. Data can be downloaded in bulk from https://www.
alliancegenome.org/downloads.
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students to have access to the gold standard of expertly
curated information on each of these foundations of biological
science.

Other updates
Supplementary data and published datasets on
reference pages
SGD procures and displays Supplementary materials for referen-
ces stored in our database. We are hosting data from past, pre-
sent, and future papers on our literature pages. To access these
data, simply search SGD with the PubMed ID and then look for
the “Downloadable Files.” In addition, published large-scale data-
sets from gene expression omnibus (GEO) are displayed in the
“Published Datasets” section. The dataset title is linked to a
dataset-specific page and a controlled vocabulary of terms is
used to bin similar datasets into broad categories.

Submit data form
Authors can submit data and information about their publica-
tions, including novel results, datasets (including accession IDs),
or other important information, using SGD’s simple “Submit
Data” form (https://www.yeastgenome.org/submitData).

Explore button
SGD introduced a new “Explore SGD” button on our homepage,
which allows users to peruse SGD data and pages without an ini-
tial search query. After selecting the “Explore SGD” button, users
are redirected to a search results page where they can browse all
of the information in SGD. The tool is designed for both new and
veteran users alike, as new users are provided a glimpse into the
warehouse of information SGD contains, while seasoned users
may discover something new. After clicking on the “Explore SGD”
button, use the categories on the left to navigate through the var-
ious pages and examine areas of interest. An “Explore” link has

Figure 3 SGD homology pages (A) include an overview of general information about the yeast gene, with links to homologous gene pages at the
Alliance; (B) information about known homologs including species corresponding Gene ID, and name of the homolog; and (C) data about cross-species
functional complementation between yeast and other species. Also included on the page, but not shown here, are Fungal Homologs, gene identifiers in
other databases, and links to external resources.
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also been added to the selection of links available in the black bar
at the top of every SGD webpage, giving users the ability to access
the search results page from anywhere on the SGD website.

microPublication Biology
SGD has partnered with microPublication Biology (https://www.
micropublication.org) to promote the growing model of rapid
publication of research results. microPublication further expands
this rapid-release model by coupling publication with curation
and deposition into community-directed authoritative data-
bases such as SGD and the other Alliance member databases
mentioned above. Each publication is peer-reviewed, assigned a
digital object identifier (DOI), published online, indexed in
PubMed (https://pubmed.ncbi.nlm.nih.gov), and then integrated
into the relevant databases, speeding information

dissemination and scientific discovery. SGD encourages authors
to utilize microPublication for new research findings or reagents,
experimental results that do not fit into a larger existing or fu-
ture narrative, negative results, successful replications of recent
work, cautionary findings regarding unsuccessful attempts at
replication of recent work, “data not shown” from other publi-
cations, and data from student projects. All published yeast
articles are immediately available in SGD (https://www.yeastge
nome.org/search?category¼reference&journal¼
microPublication.%20Biology).

Sequence accessions
NCBI RefSeq accession numbers corresponding to the
Saccharomyces cerevisiae S288C reference genome version R64.3.1.

Figure 4 SGD disease pages use the Disease Ontology to describe human diseases that are associated with yeast homologs, and include (A) disease
annotation summary and individual annotations; and (B) shared annotation network that depicts shared disease annotations for other yeast genes and
their human homologs.
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Data availability
All information and materials provided by SGD are available with
the Creative Commons Attribution 4.0 International (CC BY 4.0)
license. This license allows others to distribute, remix, adapt, and
build upon the information or materials, even commercially, as
long as credit to the source is provided.

Supplementary material is available at GENETICS online.
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