
1.  Introduction
Dengue is the most widespread arthropod-borne disease, that has become endemic in more than 100 countries 
(World Health Organization, 2020). It is usually found in tropical and sub-tropical climates, with a vast majority 
of dengue cases occurring in the Americas and in South-East Asia (World Health Organization, 2020). In India, 
dengue has witnessed an alarming upsurge in the past decade, with more than fivefold increase from 28,066 cases 
in 2010 (NVBDCP, 2010) to 157,315 cases in 2019 (NVBDCP, 2020).

The two arthropod vectors of dengue are Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus 
(Skuse), which are also responsible for the transmission of several other arboviruses such as the chikungunya 
virus, yellow fever virus and Zika virus. Aedes aegypti exhibits an indoor resting behavior and primarily feeds on 
humans during the day (Scott & Takken, 2012). It is mostly found in urban areas and usually breeds in man-made 
water receptacles such as plastic containers and rubber tyres (Vijayakumar et al., 2014). Aedes albopictus prefers 
to rest outdoors and is an opportunistic feeder (Paupy et al., 2009), though strong anthropophagic behavior has 
also been observed in some studies (Delatte et al., 2010; Ponlawat & Harrington, 2005). The presence and popu-
lation size of these arthropod vectors is highly dependent on climatic factors such as temperature, rainfall and 
relative humidity. The poikilothermic physiology of mosquitoes renders them sensitive to temperature extrem-
ities, which affects larval development as well as vector mortality (Farjana et al., 2012). Rainfall also supports 
vector populations by providing suitable habitat for development of the aquatic larval stages (Farjana et al., 2012).
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localized distribution along the eastern and western coastlines, north eastern states and in the lower Himalayas. 
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Thar desert, whereas Aedes albopictus is projected to expand to the upper and trans Himalaya regions of the 
north. Overall, the results provide a reliable assessment of vectors prevalence in most parts of the country that 
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Plain Language Summary  Climatic parameters derived from temperature and humidity affect 
the development and survival of mosquitoes that spread diseases. In the past decade, India has witnessed an 
alarming rise in dengue, a viral disease that spreads through the bite of the mosquitoes Aedes aegypti and Aedes 
albopictus. We used machine learning based modeling algorithm to predict the present and future abundance 
of these mosquitoes in India, based on biologically relevant climatic factors. The results project expansion of 
Aedes aegypti in the hot arid regions of the Thar Desert and Aedes albopictus in cold upper Himalayas as a 
result of future climatic changes. The results provide a useful guide for strengthening efforts for entomological 
and dengue surveillance.
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The drastic rise in dengue cases in India warrants a more concerted effort for dengue management and gener-
ation of suitable knowledge to support vector control. At present, no known vaccine or specific treatment for 
dengue exists (Gupta & Reddy, 2013). Dengue control in India is based on vector control practices such as indoor 
space spraying, fogging, environmental management and promotion of personal protection (NVBDCP, 2014). 
However, the nation-wide distribution of dengue vectors in India is not known and the presence of aedine species 
has been established only in some parts of the country based on local vector surveillance such as in southern 
peninsular India (Selvan et al., 2016), North eastern states (Soni et al., 2018) as well as the western and eastern 
coastlines (Chatterjee et  al.,  2015; Shil et  al.,  2018). Moreover, climate change could significantly affect the 
known distribution of vectors. In recent years, Species distribution modeling (SDM) has emerged as an impor-
tant tool for identifying the ecological niche and climate change induced range shifts in different species. This is 
particularly important for species that are vectors for pathogens and pose a human health risk. Maximum Entropy 
(MaxEnt v3.3.3) is a machine learning algorithm for modeling species distributions using presence-only records. 
Its predictive performance is highly competitive as compared to other SDMs and has been used extensively since 
becoming available in 2004 (Elith et al., 2011). Therefore, in this study we used the MaxEnt model for predicting 
the present and future distributions of Aedine vectors of dengue in India under different climate change scenarios.

2.  Data and Methods
2.1.  Species Occurrence Data

Primary occurrence data for the two primary vectors of dengue in India – Aedes aegypti and Aedes albopictus 
were obtained from the Global Biodiversity Information Facility (GBIF - https://www.gbif.org/). The records 
contain 562 points of occurrence of Aedes aegypti (GBIF.org,  2021) and 207 points of occurrence of Aedes 
albopictus (GBIF.org, 2020) in India, most of which come from a recent large-scale study that compiled a global 
geographic database of Aedes aegypti and Aedes albopictus locations, derived from peer reviewed literature, 
national entomological surveys and expert networks (Kraemer et al., 2015). As the study included literature only 
up to 2014, there was a need to update the occurrence points based on new literature since 2015.

An extensive survey of all dengue entomological studies conducted in India after 2014 was carried out (Dhiman 
& Hussain,  2021). The search terms ‘‘India’’, ‘‘aegypti’’ and ‘‘albopictus’’ were used to find relevant peer 
reviewed literature in NCBI - PubMed (https://www.ncbi.nlm.nih.gov/pubmed), Science Direct (https://www.
sciencedirect.com/) and gray literature in Google Scholar https://scholar.google.com/. Only those studies were 
included where the exact coordinates of the survey were clearly mentioned. After adding these to the initial 
database, in total 690 occurrence points of Aedes aegypti and 330 occurrence points of Aedes albopictus were 
obtained. The species occurrence points were plotted in GIS environment using ArcGIS software.

2.2.  Climatic Predictors

Climatic parameters like temperature and precipitation, are important determinants for the life cycle and survival 
of arthropod vectors, as well as transmission of pathogens (Farjana et al., 2012). Therefore, 19 bioclimatic vari-
ables (Table 1) that indicate the general trend, extremity and seasonality of temperature and precipitation were 
used as the potential predictors of vector abundance and distribution. These predictors capture information about 
annual and seasonal climatic conditions which are best related to species physiology, and have been used exten-
sively for ecological niche modeling.

Baseline (1970–2000) and future (2030, 2050 and 2070s) climatic data for bioclimatic variables under three RCP 
scenarios (RCP 2.6, RCP 4.5 and RCP 8.5), was obtained from WorldClim website (Fick & Hijmans, 2017) with 
a spatial resolution of 2.5 arc min (∼5 km). Future projections of climate change thus obtained, were based on the 
CNRM-CM6-1 (Voldoire et al., 2019) general circulation model developed from the Coupled Model Intercom-
parison Project Phase six (CMIP-6; Eyring et al., 2016).

2.3.  Data Processing

Data processing and modeling steps were conducted using a combination of R-statistics (R Core Team. R, 2013), 
within the RStudio interface (RStudio Team, 2020), and ArcGIS® software by Esri.
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Duplicate records in the species occurrence data were analyzed and removed 
accordingly. To account for spatial autocorrelation, spatial thinning was 
applied to the species occurrence records at 5  km intervals (equivalent to 
the resolution of environmental datasets) using the R-package spThin (Aiel-
lo-Lammens et  al.,  2015). The final species occurrence data contained 
383 and 205 spatially explicit records of Aedes aegypti and Aedes albop-
ictus respectively. The species occurrence records, were used to construct 
a sampling bias layer in order to account for differences in sampling efforts 
across different locations.

In order to reduce model complexity, highly collinear variables that did not 
contribute significantly to the model output were eliminated. A cross-correla-
tion table (Table S1 in Supporting Information S1) was used to identify varia-
bles that show strong collinearity (>0.8), and a cluster dendrogram of varia-
bles grouped based on collinearity was constructed (Figure S1 in Supporting 
Information S1). Initial models were run using all bioclimatic variables, and 
the contribution of each variable to model output was determined. Variables 
with low contribution to model outputs and strong collinearity (>0.8) with 
other variables were eliminated one by one in subsequent models to obtain 
the final list of non-collinear bioclimatic variables. At each stage, the effect 
of eliminating a variable on model performance was assessed based on the 
AUC value - area under the ROC (Receiver operating characteristic) curve. 
The selected variables were finally reviewed and approved through expert 
opinion (Table 1).

2.4.  Predictive Modeling

Present and future distribution of Aedes aegypti and Aedes albopictus was 
evaluated using Maxent (v 3.4.1; Philips et al., 2004) with the help of the R 

package ENMTML (Andrade et al., 2020). Maxent is a presence-only species distribution model that employs a 
machine learning algorithm to generate a probability distribution of the selected species, and has been shown to 
be effective even with low number of sampling points (Townsend Peterson et al., 2007). The Maxent model relies 
on Baye's rule (Equation 1) to estimate the probability density of the species distribution in covariate space, by 
maximizing the entropy/dispersion across the geographic space (Elith et al., 2011).

𝑃𝑃 (𝑦𝑦 = 1|𝑥𝑥) =
𝑃𝑃 (𝑥𝑥|𝑦𝑦 = 1)𝑃𝑃 (𝑦𝑦 = 1)

𝑃𝑃 (𝑥𝑥)
� (1)

where, y denotes the presence (y = 1) or absence of the species (y = 0). P(x = 1|y) = π(x) is the probability 
density of covariates across the presence locations of species. P(y = 1|x) is the probability of presence of species, 
given the covariate density. P(y = 1) is the prevalence of the species. P(x) = 1/|x| is the probability density of the 
covariates. As Maxent relies on presence records only, P (y = 1|x) cannot be determined directly, and hence an 
estimation of the distribution of π(x) is made (Philips et al., 2004). The Maxent distribution is a Gibbs distribution 
derived from a set of features fi, with feature weights λi, and is defined by the equation

𝑞𝑞𝜆𝜆(𝑥𝑥) =
exp

(∑𝑛𝑛

𝑖𝑖=1
𝜆𝜆𝑖𝑖𝑓𝑓𝑖𝑖(𝑥𝑥)

)

𝑍𝑍𝜆𝜆

� (2)

where Zλ is the normalization constant. In order to estimate this distribution, Maxent employs the principle of 
maximum entropy to Shannon's information theory based on the equation

𝐻𝐻 = 𝑞𝑞𝜆𝜆(𝑥𝑥)ln 𝑞𝑞𝜆𝜆(𝑥𝑥)� (3)

where H is the maximum entropy of the system.

Model parameters were determined by hit and try method, wherein initial models were run with five levels of 
complexity (linear, linear-quadratic, hinge, linear-quadratic-hinge and linear-quadratic-hinge-polynomial) and 20 

Variable ID Variable name
Selected in 
final model

bio 1 Annual mean temperature No

bio 2 Mean diurnal range Yes

bio 3 Isothermality Yes

bio 4 Temperature seasonality Yes

bio 5 Max. Temperature of warmest month No

bio 6 Min. Temperature of coldest month Yes

bio 7 Temperature annual range No

bio 8 Mean temperature of wettest quarter No

bio 9 Mean temperature of drienst quarter No

bio 10 Mean temperature of warmest quarter No

bio 11 Mean temperature of coldest quarter No

bio 12 Annual precipitation No

bio 13 Precipitation of wettest month No

bio 14 Precipitation of driest month No

bio 15 Precipitation seasonality Yes

bio 16 Precipitation of wettest quarter Yes

bio 17 Precipitation of driest quarter Yes

bio 18 Precipitation of warmest quarter Yes

bio 19 Precipitation of coldest quarter Yes

Table 1 
Selected Bioclimatic Variables
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regularization multipliers from 1 to 10 with a half step interval in between. 
The outputs were analyzed based on the omission rate with respect to the 
testing data, Akaike Information Criterion score and AUC values. Based on 
these, the best set of parameters for the maxent model was selected. Pseudo 
absences were allocated randomly after applying appropriate environmental 
and geographical constraints (50 km buffer). For validation of model outputs, 
k-fold cross validation was used to partition the presence data into five 
subsets. The outputs were obtained in the form of GeoTiff rasters containing 
the logistic suitability score as the values of the pixels for the baseline and 
each of the future projections.

The continuous logistic outputs were then converted to binary outputs using 
the ‘‘maximum test for sensitivity and specificity (MAXTSS)’’ in MaxEnt, 
which has been identified as the best method for threshold selection in pres-
ence only models (Liu et al., 2005). The results were plotted in ArcGIS to 
assess the risk of range expansion in the vectors.

2.5.  Validation of Model Outputs

A number of different evaluation metrics were used for assessing the model performance. The traditional accu-
racy measures (AUC and Kappa/True Skill Statistic - TSS) have often been criticized due to their over-depend-
ence on species prevalence and can give misleadingly high values by not penalizing over prediction (Allouche 
et al., 2006). Therefore, similarity indices – namely Jaccard and Sorensen, which are not biased by true negatives 
were also evaluated. Most evaluation metrics are constructed for presence-absence models and modified accord-
ingly for presence-only models. Therefore, to ensure model reliability, the Boyce index which is specifically a 
presence-only metric, was also computed. The significance of selected bioclimatic variables in model outputs 
was assessed by permutation importance contribution.

3.  Results
3.1.  Variables' Contribution and Selection

The cross-correlation table and cluster dendrogram revealed groups of variables which showed very high collin-
earity. Low contributing and collinear variables were eliminated one by one, after running multiple preliminary 
models. The final list of variables with low collinearity and significant contribution to outputs is presented in 
Table 1.

3.2.  Evaluation of Model Performance

Three types of evaluation metrics were computed for Aedes aegypti and Aedes albopictus model outputs (Table 2) –  
accuracy metrics (AUC and TSS), similarity indices (Jaccard and Sorensen) and reliability metrics (Continuous 
Boyce Index).

The AUC values for both Aedes aegypti and Aedes albopictus were significantly high (0.94 and 0.95 respectively) 
indicating strong agreement between the training and testing datasets. The threshold dependent TSS values were 
also significantly high for the two species (0.77 and 0.84) indicating that model performance was very good. 
Similarity indices such as Jaccard and Sorensen were identified as an alternative to the traditional accuracy 
metrics that measure the similarity between the model outputs and validation datasets. Significantly high values 
of the Jaccard (0.80 and 0.85) and Sorensen indices (0.89 and 0.92) for both the vectors also indicate that the 
model was able to accurately predict vector prevalence. Similarly, high values of Boyce index (0.86 and 0.84) for 
the model outputs indicates that model performance was excellent.

The variables which contributed most to model outputs (Figure 1) for Aedes aegypti were found to be the isother-
mality (bio3), temperature seasonality (bio4) and the minimum temperature of the coldest month (bio6). On the 
other hand, for the prevalence of Aedes albopictus mean diurnal range (bio2), precipitation of the driest quarter 
(bio17) and precipitation of the warmest quarter (bio18) were found as important variables. This indicates that 

Variable

Aedes aegypti Aedes albopictus

Coefficient Sd Coefficient Sd

AUC 0.94 0.01 0.95 0.04

TSS 0.77 0.04 0.84 0.11

Jaccard 0.80 0.03 0.85 0.09

Sorensen 0.89 0.02 0.92 0.05

OR 0.06 0.03 0.07 0.06

Boyce 0.86 0.03 0.84 0.08

Table 2 
Accuracy and Reliability Metrics for the Validation of Model Outputs
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temperature may be an important limiting factor for Aedes aegypti, whereas precipitation is the limiting factor 
for Aedes albopictus.

3.3.  Baseline and Projected Future Distribution of Aedes aegypti and Aedes albopictus

Based on the probability distribution maps generated from maxent logistic output (Figure 2), the baseline distri-
bution of Aedes aegypti was found very high in the Kashmir valley (0.63–0.91), Malwa plains of Punjab (0.59–
0.76) and Haryana (0.65–0.88), Saurashtra region of Gujarat (0.4–0.79), upper Brahmaputra and Barak valley in 
Assam (0.69–0.88), the Konkan coastline (0.75–0.95) and the southern peninsular plains (0.61–0.96). The vector 
had high focal prevalence in the urbanized western regions of Uttar Pradesh (UP; 0.51–0.65), Delhi (0.76–0.88), 
some northern districts of Bihar (0.48–0.67) and the northern Jalpaiguri division of West Bengal (0.56–0.93).

A few regions of the Deccan plateau and northern Indo-Gangetic plains also had moderate to high (0.25–0.75) 
distribution of Aedes aegypti. Most of the central highlands, the Thar Desert region and the greater Himalayan 
regions of Jammu & Kashmir have very low prevalence (>0.25) of Aedes aegypti. The vector is found absent in 
the trans-Himalayan regions of Jammu & Kashmir and Ladakh (Figure 2a).

The prevalence of Aedes albopictus was found very high along the Coromandel (0.63–0.98), Malabar (0.88–
0.97), and Konkan coastline (0.62–0.81), southern Western Ghats (0.79–0.99), Kashmir valley (0.68–0.85), lower 
Brahmaputra valley, Kamrup and Goalpara hills in Assam (0.71–0.8) as well as the Himalayan and terai regions 
of West Bengal (0.74–0.89). In the north eastern region, both vectors are prevalent but, Aedes albopictus appears 
to be the dominant vector with more widespread distribution (Figure 2b). For example, in Arunachal Pradesh, 
Aedes albopictus was significantly more abundant than Aedes aegypti, which is restricted only to the lesser Hima-
layas. In the Indo-Gangetic plains and Eastern Ghats (0.28–0.54), Aedes albopictus had mostly moderate (0.29–
0.49) prevalence in the baseline years, whereas a large part of India, that is, arid/semi-arid regions of Rajasthan, 
Gujarat, most parts of Deccan plateau and the central highlands show low prevalence (0.04–0.18) of Aedes 
albopictus. Future projections of climate change were based on three scenarios – the low emissions scenario 
(RCP 2.6), moderate emissions scenario (RCP 4.6) and high emissions scenario (RCP 8.5). The RCP 2.6 scenario 
of climate change projects a twofold increase in geographic area with very high prevalence of Aedes aegypti in 
Punjab and Haryana, and a further 18.3% increase in area by 2070s. However, an initial reduction in suitability of 
Aedes aegypti is projected in the Saurashtra and Kachchh regions of Gujarat (12%–32%), Jalpaiguri division of 
West Bengal (5%–9%) and north eastern states (10%–16%) by 2030s. This is followed by a substantial increase 
in suitability by 2050 and 2070s in Gujarat (9%–34% and 10%–40%) and in the Barak valley region of the north 
east (10%–21% and 10%–24%) (Figure 3). Some reduction in suitability is also observed in the Rohilkhand and 
Awadh plains of Uttar Pradesh (10%–28% in 2030s, 10%–19% in 2050s and 11%–24% in 2070s). The RCP 4.5 
scenario projects a significant reduction in suitability for Aedes aegypti by 2030s in Haryana (10%–15%), Punjab 
(3%–13%), Delhi (9%–15%), Rohilkhand and Awadh plains of Uttar Pradesh (10%–26%), Saurashtra regions of 

Figure 1.  Variable Contributions to model outputs for (a) Aedes aegypti and (b) Aedes albopictus.
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Gujarat (11%–21%), Tripura (14%–16%), Meghalaya (11%–16%) and the upper Brahmaputra valley of Assam 
(7%–13%). The suitability for Aedes aegypti reduces further in western UP (11%–26% in 2050s, 11%–28% in 
2070s), but increases considerably in Gujarat by 2050s (15%–34%) as well as in Punjab (13%–31%) and Hary-
ana (10%–31%) by 2070s. Similarly, under RCP 8.5, a significant reduction in suitability for Aedes aegypti is 

Figure 2.  Baseline and projected future suitability of (a) Aedes aegypti and (b) Aedes albopictus under different climate change scenarios, based on the nine selected 
bio-climatic variables, using MaxEnt species distribution modeling. Local changes in the distribution of Aedes aegypti are visible in Gujarat, Haryana, Punjab, north 
east and the southern peninsular plateau. In contrast, Aedes albopictus witnesses local variations in distribution in north east and the Himalayan regions.
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projected in Punjab, Haryana, the Indo-Gangetic plains, most of Gujarat, north east and eastern regions as well 
as in the southern peninsular plateau by 2030s. The reduction in suitability continues in 2050 and 2070s in the 
southern peninsular plateau, with a 13.4% contraction in very high suitability areas by 2070s. However, the suit-
ability for Aedes aegypti increases considerably in 2050 and 2070s in Punjab (12%–60%), Haryana (22%–65%), 
Gujarat (10%–40%), Meghalaya (10%–24%) and Mizoram (17%–36%). In Nagaland and the Konkan coast of 
Maharashtra, suitability for Aedes aegypti increases under all future years, with most significant rise in 2070s 
(13%–31% and 15%–32% respectively). Furthermore, Aedes aegypti is projected to invade several regions of 
Leh (Ladakh) and northern Himachal Pradesh which are unsuitable for Aedes aegypti in baseline years. Increase 
in the suitability for Aedes aegypti in Punjab, Haryana, Gujarat and the North East under most future scenarios 
may be attributable to the decline in DTR - Diurnal Temperature Range (bio 2), based on the results from the 
model. Earlier research has also highlighted the detrimental role of high daily temperature fluctuations on vector 
survival, which is the most likely cause for increased suitability (Lambrechts et al., 2011). Reduced suitability in 
the Central Highlands and the southern peninsular plateau under future years may be linked with decrease in the 
minimum temperature of the coldest month (bio 6), which coupled with notable increase in temperature season-
ality (bio 4) is likely to promote seasonal prevalence of Aedes aegypti in this region.

The suitability for Aedes albopictus is not expected to change substantially in the country, though some local 
changes in suitability are visible from the logistic distribution and change maps (Figure 3). Under RCP 2.6, the 
suitability for Aedes albopictus increases gradually in the upper Brahmaputra valley of Assam, with as much as 
40% and 122% increase in geographic area of very high suitability in the 2050 and 2070s respectively. Minor 
reduction in suitability is also observed in the terai regions of Uttarakhand (5%–12%). Similar changes are 
projected in RCP 4.5. However, under RCP 8.5 significant increase in suitability is projected in Meghalaya and 
lower Brahmaputra valley (11%–19%), in addition to the upper Brahmaputra valley. Suitability for Aedes albopic-
tus does not change significantly in future years in the semi-arid and arid regions and the central highlands under 
all three scenarios of climate change. Reduced suitability in terai region of Uttarakhand under future years is 
likely due to a decline in rainfall in the region under most climate change scenarios, projected in the precipitation 

Figure 3.  Change in suitability for (a) Aedes aegypti and (b) Aedes albopictus in future scenarios of climate change as compared to the baseline suitability. While 
Aedes aegypti is projected to witness significant changes in many parts of the country, substantial changes in distribution of Aedes albopictus are mostly limited to a few 
regions in the north east and Jammu & Kashmir.
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of wettest quarter (bio 16), precipitation of driest quarter (bio 17) and the precipitation of the warmest quarter (bio 
18) variables. On the other hand, increasing precipitation of the warmest quarter (bio 18) in the north east under 
all future scenarios is associated with an increase in suitability for Aedes albopictus. Unlike Aedes aegypti, which 
has adapted to urban environments and can grow in household containers, Aedes albopictus is more dependent on 
water availability, and is therefore sensitive to changes in precipitation under future scenarios (Mogi et al., 2015).

3.4.  Projected Range Expansion of Vectors

The binary outputs generated by using the MaxTSS as the presence threshold (Figure 4), project an expansion 
in the distribution of Aedes aegypti at the edges of the Thar Desert in Rajasthan, by 2030, 2050 and 2070s. 
This expansion is most prominent in the RCP 8.5 scenario, and by 2070s, almost all of Rajasthan is projected 
to be suitable for Aedes aegypti. Earlier studies have also observed the persistence of Aedes aegypti in arid 

Figure 4.  Projected range expansion of (a) Aedes aegypti and (b) Aedes albopictus in future years under different climate change scenarios using the maximum of 
sensitivity and specificity as the threshold values for vector range.
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urban environments (Kaul & Rastogi, 1997; Marinho et al., 2016). Their close association with human habitats, 
tendency to breed in small containers and ability of eggs to withstand dessication have been theorized as the 
possible causes for this (Coalson et al., 2018; Reinhold et al., 2018). Minor increase in range of Aedes aegypti is 
also projected in the upper Himalayas of Arunachal Pradesh.

On the other hand, the results project a substantial expansion of Aedes albopictus in the Leh (Ladakh) regions 
comprising of the upper and trans-Himalayas (Figure 4). Aedes albopictus has been established as a cold adapted 
species (Reinhold et al., 2018). Under present conditions it is already predicted to have a sizable population in the 
lesser Himalayan region of Jammu and Kashmir. Climate change is projected to increase temperatures by approx-
imately 1.5–2°C by 2030s, 2.75–3.2°C in 2050s and 2.15–5°C in 2070s in the Himalayan region under different 
climate cange scenarios (based on data used for the study), which is likely to accelerate the developmental cycle 
of Aedes mosquitoes. Significant increase in range of Aedes albopictus is also projected in the Jaisalmer district 
of Rajasthan.

4.  Discussion and Conclusions
In India, several studies have been undertaken on the projected scenario of malaria and dengue with respect to 
climate change (Dhiman et al., 2011; Sarkar et al., 2019), while there are negligible studies on the altered distri-
bution of vectors (Kraemer et al., 2019; Ogden et al., 2014). Furthermore, the alarming rise in dengue in the last 
decade has received relatively less attention (Gupta & Reddy, 2013). The present study has found widespread 
distribution of dengue vectors in India, with a significant risk of expansion in some parts of Thar Desert and 
upper Himalayas, due to climate change. In north east India as well as the western coastline, both Aedes aegypti 
and Aedes albopictus have high prevalence, which implies that the risk of dengue is high, though the reported 
cases of dengue do not reflect this (NVBDCP, 2020). Such areas warrant constant monitoring and increased 
surveillance for dengue incidence. Aedes aegypti was found more prevalent in the Deccan plateau and the semi-
arid regions of Gujarat and Rajasthan, while Aedes albopictus in the eastern coastline.

Aedes aegypti is projected to witness more widespread increase in distribution under RCP 2.6 in 2030 and 2050s, 
whereas marginal reduction is observed in most parts of the country under RCP 4.5 and 8.5. By 2070s, RCP 8.5 
demonstrates a significant increase in suitability for Aedes aegypti in the eastern parts of the country. In contrast, 
the suitability for Aedes albopictus remains largely similar in most parts of the country by 2030s. Increase in 
the abundance of Aedes albopictus is projected in southern India, upper Himalayan regions of Leh (Ladakh) 
and Arunachal Pradesh by 2050s under RCP 8.5, and by 2070s. Aedes albopictus has been identified as a cold-
adapted species in earlier studies (Tippelt et al., 2020).

The states which regularly report high incidence of dengue, namely Gujarat, Maharashtra, Punjab and Karnataka 
(NVBDCP, 2020) are also predicted to have very high distribution of Aedes aegypti and/or Aedes albopictus. 
On the other hand, the model outputs are in disagreement with dengue incidence in the states of Rajasthan and 
north-eastern parts (NVBDCP, 2020). In Rajasthan, the distribution of both the vectors is low but the incidence 
of dengue is high that is, Rajasthan ranked four in dengue incidence in the country in 2019 (NVBDCP, 2020). 
A study undertaken in 1997 (Kaul & Rastogi, 1997) found perennial prevalence of Aedes aegypti in Rajasthan 
(Kaul & Rastogi, 1997) which could not be captured by our models. The water storage practices in dry parts of 
Rajasthan were perhaps not captured by the climatic variables suitable for Aedes. In North eastern states, it is 
just the opposite, which can be explained by oversampling efforts in the north eastern states (NVBDCP, 2020). 
Further studies are warranted to ascertain the reasons for low incidence in north eastern states as well as the future 
risk of dengue in view of climate change.

A striking observation in our study was that temperature related factors (bio3, bio4, bio6) contributed more signif-
icantly to the suitability of Aedes aegypti, whereas precipitation related factors (bio16, bio17, bio18) contributed 
more significantly to the suitability of Aedes albopictus. This difference is most likely a result of the differences 
in habitat preference of the two species. As discussed previously, breeding of Aedes aegypti in household contain-
ers enables it to breed in low precipitation conditions due to water storage practices of the community. At the 
same time, Aedes albopictus has a larger temperature tolerance (Tippelt et al., 2020), due to which precipitation 
is a more significant limiting factor for Aedes albopictus.
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Our study provides insights on baseline as well as projected distribution of Aedes aegypti and Aedes albopictus 
in India. The models are based on the assumption that there are no other dispersal limitations for the two vectors, 
therefore, may not represent the real scenario as the actual realized niche of the species may differ based on local 
factors (such as the water storage practices) which cannot be captured by country-wide models. Moreover, varia-
bility in resolution of sampling can introduce bias to model results, as observed in the north east.

The areas with projected expansion in range warrant strengthened efforts for entomological as well as dengue 
surveillance. The projected maps thus generated may be useful in guiding the ground surveillance efforts in 
projected areas of distribution of both the vectors.
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