Skip to main content
. 2021 Nov 29;12(2):jkab406. doi: 10.1093/g3journal/jkab406

Table 1.

Dataset 1 EYT 2013–2014

Models and methods
Models and methods
BRR GBLUP GK PK SK BRR GBLUP GK PK SK


Env. Scenario Without G × E (WI) With G × E (I)
DTHD
 Bed5IR MT 14.95 14.94 12.96 13.08 25.12 12.77 12.52 11.36 12.17 25.07
 EHT MT 31.32 31.30 29.51 29.86 42.57 27.77 27.19 23.17 24.43 42.62
 Flat5IR MT 8.68 8.59 8.61 8.62 9.36 5.97 5.92 6.49 7.26 7.85
 LHT MT 6.00 5.99 5.87 5.94 7.71 4.56 4.68 5.36 5.84 7.12
 Bed5IR MT_P 14.57 14.56 13.07 13.26 23.68 12.46 12.21 10.97 11.86 23.58
 EHT MT_P 26.06 26.09 24.63 24.98 34.09 24.50 23.75 20.45 20.89 34.58
 Flat5IR MT_P 9.12 9.09 9.09 9.18 9.96 6.25 6.29 6.75 7.62 8.45
 LHT MT_P 6.97 6.99 6.63 6.71 9.54 5.52 5.63 6.06 6.56 9.23
DTMT
 Bed5IR MT 11.62 11.58 10.17 10.18 18.88 10.25 9.94 9.07 9.37 18.93
 EHT MT 26.21 26.22 24.72 24.89 35.73 23.81 23.55 19.81 20.35 37.19
 Flat5IR MT 8.92 8.88 9.37 9.45 8.35 6.58 6.58 7.58 8.30 6.64
 LHT MT 7.80 7.77 7.58 7.62 10.83 6.52 6.45 6.44 6.93 10.77
 Bed5IR MT_P 11.47 11.49 10.34 10.43 17.96 10.21 9.91 8.99 9.40 18.05
 EHT MT_P 19.56 19.61 18.38 18.58 26.16 18.94 18.69 15.41 15.38 27.49
 Flat5IR MT_P 9.68 9.66 10.02 10.10 9.55 7.19 7.16 7.96 8.78 7.89
 LHT MT_P 8.42 8.42 8.00 8.11 11.83 7.24 7.20 7.30 7.69 12.13

Average mean squared error (MSE) of prediction for five multitrait multienvironment model-methods: BRR, Bayesian ridge regression; GBLUP, genomic best linear unbiased predictor; GK, Gaussian kernel; PK, polynomial kernel; SK, sigmoidal kernel without G × E (WI) and with G × E (I) for two scenarios (MT and MT_P) for four environments (Bed5IR, EHT, Flat5IR, LHT) and two traits (DTHD, days to heading and DTMT, days to maturity). Boldface indicates model-method with the lowest MSE for the environment.