Table 2.
Dataset 1 EYT 2013–2014
| Models and methods |
Models and methods |
|||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| BRR | GBLUP | GK | PK | SK | BRR | GBLUP | GK | PK | SK | |
|
|
|
|||||||||
| Scenario | Without G × E (WI) | With G × E (I) | ||||||||
| DTHD | ||||||||||
| MT | 15.24 | 15.20 | 14.24 | 14.37 | 21.19 | 12.77 | 12.58 | 11.60 | 12.43 | 20.67 |
| MT_P | 14.18 | 14.18 | 13.36 | 13.53 | 19.32 | 12.18 | 11.97 | 11.06 | 11.73 | 18.96 |
| DTMT | ||||||||||
| MT | 13.64 | 13.61 | 12.96 | 13.03 | 18.44 | 11.79 | 11.63 | 10.73 | 11.24 | 18.38 |
| MT_P | 12.28 | 12.30 | 11.68 | 11.80 | 16.37 | 10.90 | 10.74 | 9.92 | 10.31 | 16.39 |
Average mean squared error (MSE) prediction across environments for five model-methods: BRR, Bayesian ridge regression; GBLUP, genomic best linear unbiased predictor; GK, Gaussian kernel; PK, polynomial kernel; SK, sigmoidal kernel without G × E (WI) and with G × E (I) for two scenarios (MT and MT_P), four environments (Bed5IR, EHT, Flat5IR, LHT), and two traits (DTHD, days to heading and DTMT, days to maturity). Boldface indicates model-method with the lowest MSE for each scenario.