Skip to main content
. 2021 Nov 29;12(2):jkab406. doi: 10.1093/g3journal/jkab406

Table 3.

Dataset 2 EYT 2014–2015

Models and methods
Models and methods
BRR GBLUP GK PK SK BRR GBLUP GK PK SK


Env. Scenario Without G × E (WI) With G × E (I)
DTHD
 Bed2IR MT 2.66 2.65 2.40 2.43 5.90 2.27 2.26 2.05 2.04 5.98
 Bed5IR MT 7.68 7.67 7.21 7.28 13.23 6.58 6.48 5.66 5.54 13.75
 EHT MT 16.13 16.17 15.55 15.54 22.87 14.34 14.44 11.59 11.76 23.58
 Flat5IR MT 4.34 4.32 4.03 4.05 6.34 3.67 3.62 3.84 3.79 6.39
 LHT MT 4.34 4.30 4.30 4.27 5.25 3.29 3.14 2.67 2.87 4.76
 Bed2IR MT_P 2.58 2.61 2.38 2.41 5.86 2.22 2.22 2.01 2.06 5.92
 Bed5IR MT_P 7.55 7.55 7.04 7.15 12.57 6.42 6.37 5.48 5.46 12.97
 EHT MT_P 16.19 16.16 15.50 15.55 22.72 14.17 14.31 11.43 11.74 23.18
 Flat5IR MT_P 4.34 4.33 4.12 4.14 6.21 3.69 3.64 3.70 3.90 6.23
 LHT MT_P 4.30 4.30 4.29 4.32 5.28 3.32 3.15 2.75 2.94 4.80
DTMT
 Bed2IR MT 4.80 4.79 4.63 4.70 6.56 4.26 4.20 3.90 4.03 6.27
 Bed5IR MT 6.29 6.30 5.98 6.05 9.82 5.33 5.36 4.72 4.77 10.18
 EHT MT 12.87 12.89 12.69 12.75 16.77 11.34 11.44 9.81 10.30 17.12
 Flat5IR MT 5.02 4.98 4.82 4.87 7.24 4.53 4.52 4.65 4.84 7.61
 LHT MT 3.92 3.87 3.90 3.86 4.77 3.13 3.05 2.66 2.79 4.42
 Bed2IR MT_P 4.68 4.70 4.52 4.60 6.54 4.16 4.20 3.90 4.07 6.29
 Bed5IR MT_P 5.93 5.95 5.66 5.75 8.93 5.07 5.10 4.51 4.53 9.19
 EHT MT_P 12.70 12.71 12.45 12.55 16.44 11.08 11.22 9.68 10.20 16.54
 Flat5IR MT_P 5.05 5.05 4.90 4.97 7.06 4.56 4.57 4.65 4.95 7.46
 LHT MT_P 3.74 3.71 3.70 3.72 4.53 3.01 2.88 2.59 2.67 4.26

Average mean squared error (MSE) of prediction for five multitrait multienvironment model-methods: BRR, Bayesian ridge regression; GBLUP, genomic best linear unbiased predictor; GK, Gaussian kernel; PK, polynomial kernel; SK, sigmoidal kernel without G × E (WI) and with G × E (I) for two scenarios (MT and MT_P), four environments (Bed2IR, Bed5IR, EHT, Flat5IR, LHT), and two traits (DTHD, days to heading and DTMT, and days to maturity). Boldface indicates model-method with the lowest MSE for the environment.