Skip to main content
. 2021 Nov 29;12(2):jkab406. doi: 10.1093/g3journal/jkab406

Table 4.

Dataset 2 EYT 2014–2015.

Models and methods
Models and methods
BRR GBLUP GK PK SK BRR GBLUP GK PK SK


Scenario Without G × E (WI) With G × E (I)
DTHD
 MT 7.03 7.02 6.70 6.72 10.72 6.03 5.99 5.16 5.20 10.89
 MT_P 6.99 6.99 6.67 6.71 10.53 5.96 5.94 5.08 5.22 10.62
DTMT
 MT 6.58 6.57 6.40 6.45 9.03 5.72 5.71 5.15 5.35 9.12
 MT_P 6.42 6.43 6.25 6.32 8.70 5.58 5.59 5.07 5.29 8.75

Average mean squared error (MSE) prediction, across environments for five model-methods: BRR, Bayesian ridge regression; GBLUP, genomic best linear unbiased predictor; GK, Gaussian kernel; PK, polynomial kernel; SK, sigmoidal kernel without G × E (WI) and with G × E (I) for two scenarios (MT and MT_P) and two traits (DTHD, days to heading and DTMT, days to maturity). Boldface indicates model-method with the lowest MSE for the scenario.