Table A2.
Dataset 3 EYT 2014–2015
| Models and methods |
Models and methods |
|||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| BRR | GBLUP | GK | PK | SK | BRR | GBLUP | GK | PK | SK | |
|
|
|
|||||||||
| Scenario | Without G × E (WI) | With G × E (I) | ||||||||
| DTHD | ||||||||||
| MT | 4.71 | 4.71 | 4.49 | 4.50 | 7.75 | 3.81 | 3.77 | 3.29 | 3.41 | 7.82 |
| MT_P | 4.56 | 4.56 | 4.34 | 4.36 | 7.46 | 3.74 | 3.71 | 3.22 | 3.32 | 7.58 |
| DTMT | ||||||||||
| MT | 5.85 | 5.85 | 5.72 | 5.74 | 7.90 | 5.01 | 5.04 | 4.42 | 4.50 | 7.86 |
| MT_P | 5.77 | 5.77 | 5.64 | 5.69 | 7.70 | 4.98 | 4.99 | 4.38 | 4.47 | 7.69 |
Average mean squared error (MSE) prediction, across environments for five model-methods: BRR, Bayesian ridge regression; GBLUP, genomic best linear unbiased predictor; GK, Gaussian kernel; PK, polynomial kernel; SK, sigmoidal kernel without G × E (WI) and with G × E (I) for two scenarios (MT and MT_P) and two traits (DTHD, days to heading and DTMT, days to maturity). Boldface indicates model-method with the lowest MSE for the scenario.