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Abstract

We present here the Arkansas AI-Campus solution method for the 2019 Kidney Tumor 

Segmentation Challenge (KiTS19). Our Arkansas AI-Campus team participated the KiTS19 

Challenge for four months, from March to July of 2019. This paper provides a summary of 

our methods, training, testing and validation results for this grand challenge in biomedical imaging 
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analysis. Our deep learning model is an ensemble of U-Net models developed after testing many 

model variations. Our model has consistent performance on the local test dataset and the final 

competition independent test dataset. The model achieved local test Dice scores of 0.949 for 

kidney and tumor segmentation, and 0.601 for tumor segmentation, and the final competition test 

earned Dice scores 0.9470 and 0.6099 respectively. The Arkansas AI-Campus team solution with a 

composite DICE score of 0.7784 has achieved a final ranking of top fifty worldwide, and top five 

among the United States teams in the KiTS19 Competition.
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1 Introduction

The 2019 Kidney Tumor Segmentation Challenge (KiTS19) provides a good platform for 

encouraging computational approach development for automatic kidney tumor segmentation 

with patient computed tomography (CT) scans. In this paper we provide our method to 

address the challenge question. Our method is based on neural network models and trained 

by the dataset provided by the KiTS19 Challenge [1].

1.1 Medical Relevance and Significance

A machine-learning algorithm for segmenting kidneys and kidney tumors would be valuable 

for the medical community. Tumor characteristics, such as size and shape, are routinely used 

both for patient prognosis and surgical planning.

One of the most important factors influencing patient survival in renal cell carcinoma is the 

TNM stage of the tumor [5]. The TNM staging system is widely used in oncology and is 

determined by the size and shape of the primary tumor, number of lymph nodes involved, 

and the presence or absence of distant metastasis [6]. A CT scan of the primary tumor 

provides enough information to ascertain the tumor portion of the cancer’s TNM stage [5]. 

A segmentation algorithm will help automate the determination of the cancer’s T-stage, 

providing valuable prognostic information to the physician and patient.

A segmentation algorithm would also help in surgical planning. The most common 

treatment for solid renal masses is surgery [7]. Until recently, radical nephrectomy was 

the standard of care, but with more advanced imaging and surgical techniques, partial 

nephrectomy is now more feasible [7]. Partial nephrectomy is equally effective at achieving 

cancer remission, but with less morbidity than a radical nephrectomy [7]. However, not all 

patients are suitable for partial nephrectomy. A segmentation tool will assist surgeons in 

determining who is a candidate for partial nephrectomy and who would be better treated 

with a radical nephrectomy. Such a tool would allow the surgeon to see the tumor’s size and 

shape, and its relationship to nearby vital structures, such as the aorta, vena cava, collecting 

system, etc. These tumor aspects have been shown to influence the complication rate in 

partial nephrectomies [8].
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2 Materials and methods

In this section, we first describe the dataset used and then present our model for the 

biomedical imaging problem based on neural networks.

2.1 Dataset

The data were provided by the KiTS19 Challenge organization [1]. The whole dataset 

consisted of 300 individual patient CT scans. 210 scans were made available to the 

competition teams as a training set, and the remaining 90 scans were retained for testing 

predictions; no segmentation information was provided for these.

We used the 210 patient CT scans and corresponding ground truth provided by the KiTS19 

Challenge organizers [1] for our training and validation. A validation group was set aside 

before training began by selecting 20% (N=42) of available patients at random. The same 

validation group was isolated and used for validation on all models that were tested. The 

remaining 168 patients were used as the training group for all models. We chose to hold out 

a validation set instead of using cross-validation, because using cross-validation would force 

us to multiply the computational time by the number of folds we had, and an independent 

ensemble of neural networks would have to be trained for each fold. We chose 20% to 

achieve a balance between having adequate training data and being able to predict our error.

2.2 Methods

We investigated several model architectures as possible solutions to this challenge. 

Primarily, we looked at two high-level configurations: Mask-RCNN [2] and U-Net [3]. 

We decided on an ensemble of U-Net models as our final configuration after testing many 

variations. We discuss our experience with Mask-RCNN further in the Discussion section, as 

well as our rationale for ultimately choosing U-Net.

Our final ensemble consists of two U-Net models working in tandem, followed by a 

post-processing “cleanup” phase to minimize prediction artifacts. All of our U-Nets share 

the same structural architecture shown in Figure 1. The input layer accepts images of 

dimension 512x512 pixels. The network consists of four “downsampling” blocks, a feature 

representation block, four “upsampling” blocks, and one output convolutional layer. Each 

block contains two identical 3x3 convolutional layers. Each “downsampling” block is 

followed by a 2x2 max pooling operation. Each “upsampling” block is preceeded by a 

2x2 2-D convolutional transpose layer with a stride of 2x2 and a concatenation with features 

from the corresponding downsampling block (see Figure 1). The final upsampling block 

connects directly to the output layer, which is a 1x1 2-D CNN layer with 2 output channels 

of shape 512x512 pixels. All intermediate CNN layers utilize a ReLU activation. The output 

layer utilizes a sigmoid activation representing the probability that any pixel location should 

belong to the region of interest. Feature dimension sizes for all blocks are shown in Figure 1. 

Both models in our ensemble were trained on axial slices, differing in the number of epochs 

trained and the interpretation of the output masks from each. One model was tasked with 

predicting the kidney and tumor masks separately in its two output channels. We will refer to 

this as the “K/T” model. The other model was trained to predict the combined kidney+tumor 
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mask on the first output channel, and the tumor portion on the second output channel. We 

will refer to this as the “KT/T” model. The output from the two models was combined such 

that both models voted equally for the inclusion of any individual mask voxel, and voxels 

receiving a vote from either model were included in the result sent to the post-processing 

stage.

This ensemble is unique as the two models are slightly different from each other, viewing 

the problem in slightly different ways. The KT/T model views the kidney and tumor as 

belonging together as a single unit, helping prevent errors in which the tumor voxels are 

predicted in locations far removed from the kidney. The K/T model is more flexible and not 

bound by this restriction, as it searches for the kidney independent from the tumor.

Finally, we post-processed the proposed mask by 1) filling gaps of width ≤ 2 in the tumor 

mask along each of the three axes, 2) computing and filling the convex hull of each 

connected region in the tumor mask, 3) removing any segmentations that occupy only a 

single ‘slice’ along each of the three axes, 4) retaining only the largest five connected 

regions in the tumor mask, 5) computing the two largest connected regions that intersect 

with a kidney segmentation in the union of the tumor and kidney masks and using those two 

largest connected regions to filter all proposals, removing any proposed segmentation voxels 

outside these two regions.

This post-processing stage removed spurious predictions as well as filling in any missing 

interior regions in the tumor prediction.

Pre-processing.—We found that loading the NiFTi-format files for each patient created 

a bottleneck in the training process, so we pre-processed the images and saved the pre-

processed versions in a format that could be read directly by the Numpy [4] package. For 

our axial models, we saved each axial ‘slice’ in an individual Numpy file. This allowed us to 

load slices individually instead of loading an entire CT scan volume, further optimizing our 

loading times. For training with coronal and sagittal views, we saved the entire CT volume 

for each patient in a single Numpy file. We optimized training on these views such that 

all possible slices for a single patient were used preferentially before moving to a different 

patient, so that we could reduce the impact of the longer load times.

Our pre-processing also included a window normalization of the CT image data which 

imposed a threshold of the raw Hounsfield units to the range [−500, 500] and mapped the 

values to the numeric range [0, 1] according to the formula:

v_out = min(max(v_in, − 500), 500)
1000 + 0.5

This step must also be performed prior to inference with all our models, so it is part of the 

input stage for the inference algorithm.

For inference, our algorithm reads the NiFTi file directly; it is not necessary to cache the 

image in Numpy format at this stage. The window normalization step is required as a 

pre-processing step during inference.
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Training.—Our training data consisted of 168 scans that included a ground-truth 

segmentation. For each of our models, we proceeded as follows using the Keras[Keras] 

deep learning framework in Python with the Tensorflow[Tensorflow] back-end.

Starting weights were seeded at random and trained for eight epochs each. We continued this 

process until we found an initial model that seemed to be converging at a reasonable rate. 

Many starts did not converge in any meaningful way within the first eight epochs, and they 

were discarded. In general, good starting weights could be found in about five attempts.

All training for the axial models proceeded by dividing all available axial slices into two 

sets: ‘Positive’ slices contained at least one segmented voxel of either tumor or kidney, and 

‘Negative’ slices contained no segmented voxels. We balanced our training set by randomly 

choosing enough slices from the positive and negative sets to create a 2:1 ratio of positive 

slices.

Image slices were augmented in the following ways (each augmentation had a 50% chance 

of being applied to any slice):

1. Randomly flipped vertically (this augmentation was disabled after ~135 epochs).

2. Randomly flipped horizontally.

3. Randomly shifted up to 15% in both the vertical and horizontal directions.

4. Randomly zoomed in/out up to 15% and recropped or padded with zeros to 

maintain image size (only used on epochs > 150 K/T and > 200 KT/T).

Models were trained using approximately 2000 slices per epoch. Training loss was a 

weighted cross-entropy loss where tumor segmentation errors were weighted ten times 

versus kidney segmentation errors. We also monitored a per-slice Dice metric to determine 

how training was proceeding.

After training the models until the training metrics indicated a performance plateau, we 

ranked the weights by training and validation Dice metric, and chose several top ranked 

checkpoints for further testing. For both axial models, we eventually trained in excess of 250 

epochs, but the later checkpoints were not always best. Selected best weights were then used 

in an ensemble as described previously; we chose one checkpoint from the K/T and KT/T 

models for our final ensemble.

We provide detailed instructions for training both our K/T model and the KT/T model 

in the README.md file contained in our source repository on Github (https://github.com/

jcausey-astate/ai_campus_kits19). The best K/T weights occurred at epoch 150 and the best 

KT/T weights occurred at epoch 205.

Implementation details.—We utilized both local and cloud-based Amazon Web Services 

(AWS) GPU instances to train our models. Our two local instances included a single 

NVIDIA Tesla P-40 GPU and a single NVIDIA Tesla V-100 GPU, respectively. We also 

utilized up to three concurrent AWS cloud instances using the Deep Learning AMI, with one 

NVIDIA Tesla P-100 on each instance.
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3 Evaluation Metrics

Each model was evaluated and ranked by its average Sørensen–Dice score [9, 10, 11] across 

all CT scans in the validation set. The metric is defined by the following formula:

DSC = 2TP
2TP + FP + FN

In this formula, TP is the number of correctly labeled voxels and FP is the number of voxels 

falsely labeled as belonging to the class, and FN is the number of voxels incorrectly labeled 

as belonging to the background. The Sørensen–Dice score is computed on a per-class basis. 

We ranked our models first by the Sørensen–Dice score on the union of the kidney and 

tumor classes and secondarily ranked them on the tumor class alone.

4 Results

4.1 Performance of our model

The table below shows the performance of our Arkansas AI-Campus models on our local 

validation group of 42 scans. Shown is the performance for each of the individual models 

in the ensemble, as well as the ensemble itself. The performance of the individual models 

does not include the described post-processing steps. Please refer to Figure 2 for exemplary 

prediction outputs from our ensemble model.

At the time of judging of the KiTS19 challenge, the Arkansas AI-Campus team solution 

placed 50th overall, and among the top five of teams from the United States. The evaluation 

of our model on the retained test set of 90 scans shows that our model has consistent 

performance, and it has achieved Dice scores 0.9470 for kidney and tumor segmentation, 

and 0.6099 for tumor segmentation respectively. The Arkansas AI-Campus model has a 

composite Dice score of 0.7784.

4.2 Discussion of other models

Mask-RCNN.—We attempted to adapt Mask-RCNN [2] to the segmentation problem. This 

model was selected for its state-of-the-art ability to perform segmentation tasks. However, 

we encountered challenges in adapting this model to the problem of segmenting the kidney 

and the tumor. Much like the U-Net model, Mask-RCNN is a 2D model and was trained 

with individual slices of CT scans. However, Mask-RCNN assumes that every training 

image will contain at least one object of interest. Training errors occur if this is not the case. 

To work around this problem, we added a ‘dummy’' mask consisting of a single pixel placed 

in a random position on each slice that did not contain kidney or tumor. The randomness was 

intended to prevent the model from perfectly learning the dummy mask's position.

After making these modifications, we were able to train Mask-RCNN models for the axial, 

coronal, and sagittal views. However, its performance was quickly outclassed by the U-Net, 

even in ensemble and with post-processing. We suspect this is because Mask-RCNN has a 

much higher model capacity (and complexity) and trained more slowly.
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Multi-View U-Net.—While planning the U-Net ensemble, we planned to train models for 

all three views: axial, sagittal, and coronal. However, the coronal and sagittal models did 

not reach the same level of performance as the axial model, and ensembles containing 

these models underperformed ensembles with axial models only. We suspect that the reason 

was that these models were using the original images and not the interpolated dataset that 

allowed a common spacing in the Z-axis direction. This led to a much higher variance in the 

model's experience of anatomical structures for the non-axial views, reflected in the inability 

to reach adequate performance.

4.3 Further Work of Segmentation Algorithms

The development of automatic medical imaging segmentation algorithms, such as the work 

of the KiTS19 challenge, will contribute to the methods for imaging analysis. Also, the 

segmentation algorithms will be of clinical importance. Renal cell carcinomas are aggressive 

cancers, and further work for kidney tumor segmentation algorithms should be able to 

provide a tumor stage for the cancer as well as information about the tumor's size and 

location. Most kidney cancers are treated with surgery. Segmentation algorithms will assist 

surgeons in deciding whether or not a patient is a candidate for partial nephrectomy by 

helping decide if a sufficient margin of healthy tissue can be left behind to minimize risk of 

cancer recurrence.

5 Summary

The goal of the KiTS19 Challenge was to take standard human abdominal computed 

tomography (CT) images and build models that would scan the digital computed 

tomography (CT) scans and autonomously identify the kidneys and any solid tumors within 

the kidneys. The completion teams were initially given 210 scans to use as a training set 

from patients with kidney tumors identified by a team of radiologists at the University of 

Minnesota Medical Center. Using the training set, each team constructed models to identify 

tumors and were graded by how well their models performed on a separate testing set of 

90 scans. The teams were scored by how closely the tumor and kidney tissue identified 

by their models matched tumor tissue identified by the experienced radiologists. After 

investigating several options, the Arkansas AI-Campus team developed an ensemble neural 

network algorithm that performed comparatively well and resulted in a composite Dice 

score of 0.7784 and 50th place globally. A limitation of the model is that it was developed 

iteratively during the competition, possibly leading to overfitting pressure from evaluation 

feedback. Additional validation on novel data would be required before deploying the model 

in a clinical setting.
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Data Availibity

The LIDC/IDRI data (https://luna16.grand-challenge.org/data/), LUNA16 data (https://

wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI) and DSB2017 Competition data 

(https://www.kaggle.com/c/data-science-bowl-2017/data) are publicly available through 

their individual websites and were previously used for biomedical imaging studies and 

computational approach development and testing by different research groups in the research 

field. The NLST data is NCI-controlled data; different research groups get their permission 

from NCI to use the NLST data for their study. Please refer to the NCI website for the 

information (https://biometry.nci.nih.gov/cdas/publications/?study=nlst).
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Fig. 1. 
U-Net architecture. The U-Net operates by compressing the input image into a low-level 

feature representation at the apex of the U. Following this, the model expands this low-level 

representation into the predicted segmentations for the image.
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Fig. 2. 
For both (a) and (b), the image on the left is a single slice from one patient's CT scan. The 

upper right image shows the outlines of the kidney and tumor as identified by radiologists, 

while the lower right image shows the same outline as identified by our ensemble model.
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Table 1.

The performance of our models on our local validation set of 42 CT scans.

Model K+T Dice, Std.
Dev.

T Dice, Std.
Dev.

K/T axial 0.927, 0.096 0.512, 0.293

KT/T axial 0.932, 0.072 0.517, 0.294

Ensemble + post-processing 0.949, 0.053 0.601, 0.292
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Table 2.

The performance of our Mask-RCNN based models on our local validation set of 42 CT scans.

Model K+T Dice T Dice

Mask-RCNN Axial + post-processing 0.340 0.098

Mask-RCNN Coronal + post-processing 0.400 0.073

Mask-RCNN Sagittal + post-processing 0.463 0.079

Mask-RCNN Ensemble + post-processing 0.724 0.166

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2023 June 03.


	Abstract
	Introduction
	Medical Relevance and Significance

	Materials and methods
	Dataset
	Methods
	Pre-processing.
	Training.
	Implementation details.


	Evaluation Metrics
	Results
	Performance of our model
	Discussion of other models
	Mask-RCNN.
	Multi-View U-Net.

	Further Work of Segmentation Algorithms

	Summary
	References
	Fig. 1.
	Fig. 2.
	Table 1.
	Table 2.

