Skip to main content
. 2022 May 24;4(3):e1103–e1110. doi: 10.1016/j.asmr.2022.03.009

Table 3.

Model Assessment on Internal Validation Using 0.632 Bootstrapping With 1000 Resampled Datasets (n = 1451)

Metric Area under the curve
Calibration slope Calibration intercept Brier Score
Apparent Internal Validation
Elastic net 0.687 (0.651-0.722) 0.649 (0.647-0.651) 0.967 (0.956-0.978) 0.006 (0.004-0.008) 0.14 (0.127-0.152)
Random forest 0.966 (0.956- 0.97) 0.710 (0.709-0.732) 0.969 (0.964-0.975) 0.006 (0.004-0.007) 0.121 (0.11-0.133)
XGBoost 0.995 (0.994-0.997) 0.690 (0.687-0.699) 0.969 (0.963-0.975) 0.006 (0.004-0.007) 0.126 (0.113-0.139)
SVM 0.763 (0.761-0.764) 0.633 (0.641-0.635) 0.963 (0.951-0.974) 0.007 (0.004-0.009) 0.142 (0.129-0.155)
Neural Network 0.692 (0.69-0.693) 0.629 (0.627-0.631) 0.987 (0.975-0.999) 0.002 (0-0.005) 0.142 (0.13-0.155)
Ensemble 0.801 (0.8-0.802) 0.722 (0.707-0.764) 0.968 (0.965-0.971) 0.006 (0.005-0.007) 0.116 (0.104-0.128)

GLM, generalized linear model; SVM, support vector machine; XGBoost, extreme gradient boosting.

Null model Brier score = 0.148