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Abstract 

Periodontitis is an inflammatory disease initiated by dysbiosis of the local microbial community. Periodontitis can 
result in destruction of tooth-supporting tissue; however, overactivation of the host immune response is the main rea-
son for alveolar bone loss. Periodontal tissue cells, immune cells, and even further activated osteoclasts and neutro-
phils play pro-inflammatory or anti-inflammatory roles. Traditional therapies for periodontitis are effective in reducing 
the microbial quantities and improving the clinical symptoms of periodontitis. However, these methods are non-
selective, and it is still challenging to achieve an ideal treatment effect in clinics using the currently available treat-
ments and approaches. Exosomes have shown promising potential in various preclinical and clinical studies, including 
in the diagnosis and treatment of periodontitis. Exos can be secreted by almost all types of cells, containing specific 
substances of cells: RNA, free fatty acids, proteins, surface receptors and cytokines. Exos act as local and systemic 
intercellular communication medium, play significant roles in various biological functions, and regulate physiological 
and pathological processes in numerous diseases. Exos-based periodontitis diagnosis and treatment strategies have 
been reported to obtain the potential to overcome the drawbacks of traditional therapies. This review focuses on the 
accumulating evidence from the last 5 years, indicating the therapeutic potential of the Exos in preclinical and clinical 
studies of periodontitis. Recent advances on Exos-based periodontitis diagnosis and treatment strategies, existing 
challenges, and prospect are summarized as guidance to improve the effectiveness of Exos on periodontitis in clinics.
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Background
Periodontitis is an inflammatory disease initiated by dys-
biosis of the local microbial community and is character-
ized by the relative abundance or influence imbalance of 
microbial species [1]. However, overactivation of the host 
immune response is the main reason for the direct acti-
vation of osteoclast activity and alveolar bone loss [2]. 
The composition and total number of microbiota change 
after the colonization of "keystone" pathogen, which 

improves the pathogenicity of the whole community. 
Thus, the immune response is overactivated, resulting in 
immune cells infiltration, activation of osteoclast activity, 
and destruction of soft and hard tissues [3]. Pathological 
immunity of the host to dysbiotic microbes first occurs 
between the microbiome and host cells, which include 
periodontal tissue cells and other immune cells, such as 
mononuclear phagocytes (MNPs), antigen-presenting 
cells (APCs), and specific T cell subsets. Naive T cells 
and B cells not only differentiate into mature T cells or 
plasma cells but also further activate or promote osteo-
clasts and neutrophils to play a pro-inflammatory or anti-
inflammatory role [4] (Fig. 1).

Traditional therapies for periodontitis include scal-
ing and root planning (SRP), systemic and local 
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administration of antibiotics, and oral antiseptics. In the 
short term, these therapies are usually effective in reduc-
ing the microbial quantities in the tissues and blood of 
periodontitis patients and improving the clinical symp-
toms of periodontitis. However, these methods are non-
selective, and the oral and systemic effects of long-term 
medication need to be evaluated [5]. It is becoming 
increasingly clear that new strategies need to be devel-
oped to treat periodontitis more effectively.

Exos were discovered in 1987 and have been shown 
to be important in cell communication [6]. Other stud-
ies have confirmed that Exos are a natural nanoparticle 
delivery method that can treat multiple infectious and 
immune/inflammatory diseases [7–10]. Thus, in this 
review, we summarized studies from the last 5 years that 
have focused on the effect of Exos on periodontitis and 
host cells.

Exos
The biogenesis of Exos
Exos are secreted by almost all types of cells, including 
mesenchymal stem cells (MSCs), dendritic cells (DCs), 
B cells, T cells, and mast cells, and widely exist in many 
body fluids such as plasma, urine, breast milk, semen, 
amniotic fluid, and saliva [11]. Exos are among the three 
major types of extracellular vesicles (EVs). The size of 

the Exos is between 50 and 150  nm and the density is 
between 1.15 and 1.19  g / ml [12]. The biogenesis and 
release of Exos are different from other of other micro-
bubbles. While other microbubbles are released directly 
through the plasma membrane, Exos originating from 
endocytosis [13]. First, the membrane of secretory cells 
is sunken inward to produce endocytic vesicles. Multiple 
endocytic vesicles combine to form early nucleosomes, 
and then miRNA, mRNA and DNA are packaged in 
the cytoplasm to form late endocytosis vesicles. The 
late endocytic vesicles germinate inward to form intra-
cavitary vesicles (ILVs). The aggregation of ILVs in late 
endosomes create multivesicular bodies (MVBs), which 
are formed by the inward invagination of the endosomal 
limiting membrane. Finally, some MVBs with low cho-
lesterol were degraded by lysosomes, and some MVBs, 
rich in cholesterol, release extracellular bodies through 
the fusion of the cell membrane with itself [13–16]. The 
active formation of Exos is dependent on the endoso-
mal sorting complex required for transport (ESCRT; 
ESCRT-0, I, II, III and Vps4) and its accessory proteins 
(Alix, TSG101, HSC70, and HSP90β). They recognize 
ubiquitinated transmembrane proteins and incorporate 
endosomal proteins into MVBs. [17, 18]. Passive forma-
tion of Exos is independent of ESCRT and involves lipids 
(ceramide), tetrapeptides (CD63) and heat shock proteins 

Fig. 1  The host cells involved in the process of periodontitis. The dysbiosis of the local microbial over-activate the host immune response, the 
interaction between the microbiota and all host cells leads eventually leads to tissue destruction [4]. Reprinted with permission. Copyright (2019), 
Springer Nature
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which induce cell membrane budding and promote MVB 
formation [19, 20]. In addition, certain components, such 
as four-transmembrane domain proteins and lipid rafts, 
have been reported to participate in the formation of 
some exosomes [21, 22]. In addition to the classic path-
way, there is a much more immediate route of exosome 
biogenesis. T cells and erythroleukemia cell lines can 
release exosomes from the plasma membrane directly, 
and the Exos produced by these two pathways cannot 
be distinguished [23, 24]. Furthermore, soluble N-ethyl-
maleimide-sensitive fusion protein attachment protein 
receptor (SNARE) proteins and their effectors such as 
Rab GTPases (Rab27a, Rab27b and Rab35) play a signifi-
cant role in exosome secretion [14].

The biogenesis of Exos is affected by many external 
factors, including cell type, serum conditions, cytokines, 
and growth factors. The heterogeneity of Exos is based on 
their specific morphology, content, and function [25, 26]. 
Encapsulated by lipid membranes derived from parental 
cells, Exos show inherent histocompatibility and tissue 
orientation mediated by surface molecules such as integ-
rin and glycans [27]. In addition, Exos contain four trans-
membrane proteins (CD9, CD63, CD81 and CD82), heat 

shock proteins, lipoproteins, and some transport-related 
proteins. These proteins can not only provide markers for 
Exos identification but also locate Exos in specific target 
cells [28, 29]. Exos contain substances to mother cells, 
such as RNA, free fatty acids, proteins, surface receptors, 
and cytokines, which act as local and systemic intercel-
lular communication media [30, 31]. Owing to these 
characteristics, Exos play a significant role in various 
biological functions and regulate many physiological and 
pathological processes in numerous diseases [32] (Fig. 2).

The isolation and characterization of Exos
The selection and improvement of isolation strategies 
should be determined according to the kind of biological 
fluids Exos are isolated from. Effective isolation strategies 
should be able to concentrate the signals of the Exos to be 
analyzed and avoid contamination with other molecules, 
such as lipoproteins, non-vesicular protein aggregates, 
and other EVs, which are similar to Exos in terms of size 
and density. At present, there are many techniques for 
separating and purifying Exos from biological fluids and 
in vitro cell cultures, including ultracentrifugation, size-
based separation, Exos precipitation, immunoaffinity 

Fig. 2  The biogenesis, formation, and content of Exos
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capture-based techniques, and microfluidic isolation 
[33–36]. Among these, differential centrifugation is the 
most widely used and basic method for Exos separa-
tion, and it is a feasible strategy to combine two or more 
methods to improve the yield, purity, and efficiency of 
Exos extracrion. Various techniques based on biophysi-
cal or biological characteristics have been used to verify 
upstream Exos separation methods and classify Exos 
subgroups for downstream analysis, such as nanoparti-
cle tracking analysis (NTA), western blotting (WB), flow 
cytometry (FC), and atomic force microscopy (AFM) 
[35–37] (Fig. 3).

Exos based periodontitis diagnostic and treatment 
strategy
Periodontitis is a major public health problem with a 
high incidence rate worldwide. It could not only cause 
destruction of the supporting tissues of teeth but also 
have a negative effect on systematic disease states [38]. 
Therefore, effective diagnosis and treatment of periodon-
titis are important to reduce the risk of periodontitis.

Exos‑based periodontitis diagnostic strategy
Because the components of Exos can be reprogrammed 
according to disease status, Exos are increasingly being 
evaluated as potential diagnostic biomarkers for the diag-
nosis and prognosis of diseases. These characteristics 
have made Exos a focus of oral disease research in recent 
years, including periodontitis [39].

At the gene level, Exos are enriched in specific 
microRNAs (miRNAs), that can provide disease-spe-
cific diagnostic signatures [40]. When compared to 
healthy controls, plasma-derived exosomal miRs (miR-
1304-3p and miR-200c-3p) and snoRs (SNORD57 and 
SNODB1771) from periodontitis patients are differen-
tially expressed and could be the valuable biomarkers for 
periodontitis diagnosis [41]. In addition, the level of pro-
grammed death-ligand 1 (PD-L1) mRNA in salivary Exos 
may have the potential to diagnose periodontitis and is 
relative to the severity of periodontitis [42].

At the protein level, detection and analysis of salivary 
exosomal proteins in young adults with severe periodon-
titis (SP) suggested that C6 proteins, which participate in 
the immune response during the development of peri-
odontitis, were expressed only in the SP group [43].

Fig. 3  A schematic diagram depicting the isolation and characterization of Exos
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In addition, levels of CD9 and CD81 Exos in peri-
odontitis patients were significantly lower than those in 
the healthy controls. Because the concentration of CD9/
CD81 Exos in saliva is significantly and negatively corre-
lated with clinical measurements, it may be of great sig-
nificance in the pathogenesis of periodontal disease [44]. 
Other advances in salivary Exos in the diagnosis of peri-
odontitis are well-reviewed in the literature [45].

Exos‑based periodontitis treatment strategy
Exos have been reported to provide a novel perspective 
and potential therapeutic approach for treating perio-
dontitis and improving alveolar resorption. Exos derived 
from 3D-cultured MSCs restored not only the Th17 cell/
Treg balance through the miR-1246/Nfat5 axis, but also 
the immune responses in the inflamed periodontium [46]. 
Dental pulp stem cell-Exo (DPSC-Exos) can facilitate the 
conversion of macrophages from a pro-inflammatory 
phenotype (M1)to an anti-inflammatory phenotype (M2) 
and promote the healing of alveolar bone in mice with 
periodontitis, the mechanism of which could be associ-
ated with miR-1246 in DPSC-Exos [47]. Exos purified 
from human leukocyte antigen haplotype homo dental 
pulp cell lines (HHH-DPCs) stimulated the migration 
of human DPCs and mouse osteoblastic and signifi-
cantly suppressed osteoclast formation in vitro [48]. Exos 
secreted from healthy periodontal ligament stem cells 
(PDLSCs) promote osteogenic differentiation of PDLSCs 
derived from periodontitis tissue. Healthy PDLSC-Exos 
(h-PDLSC-Exos) treatment resulted in accelerated bone 
formation in alveolar bone defects in rat models of peri-
odontitis. Mechanistically, h-PDLSC-Exos suppressed 
the overactivation of canonical Wnt signaling to recover 
the osteogenic differentiation capacity of inflammatory 
PDLSCs [49]. Exos derived from TNF-α-preconditioned 
gingival mesenchymal stem cells (GMSCs) could sig-
nificantly regulate inflammation and osteoclastogenesis, 
which could provide a therapeutic approach for perio-
dontitis [50]. Human exfoliated deciduous teeth (SHED)-
derived Exos (SHED-Exos) restored bone loss in mouse 
periodontitis model and promoted bone marrow stromal 
cells (BMSCs) osteogenesis, differentiation, and bone 
formation [51]. SHED-Exos contribute to periodontal 
bone regeneration by promoting neovascularization and 
new bone formation, possibly through the AMPK signal-
ing pathway [52]. Exos from reparative M2 macrophages 
reduced alveolar bone resorption in mice with periodon-
titis via the IL-10/IL-10R pathway [53]. Exos derived 
from adipose-derived stem cells (ADSC-Exos) represent 
a promising adjunctive treatment to SRP in rats [54]. 
Exosomal miR-25-3p in saliva contributes to the devel-
opment and progression of diabetes-associated peri-
odontitis. The discovery of other miR-25-3p targets may 

provide critical insights into the development of drugs to 
treat periodontitis by regulating γδ T cell-mediated local 
inflammation [55]. The in  vivo effects of Exos on peri-
odontitis are summarized in Table 1.

Possible mechanism of Exos on host cells 
during periodontitis
Overactivation of the host immune response is caused by 
the interaction between the dysbiosis of local microbes 
and host cells, eventually leading to periodontal tissue 
destruction. The host cells include periodontal tissue 
cells and other immune cells, which play pro-inflamma-
tory or anti-inflammatory roles [4]. Exos retain proteins, 
miRNA, mRNA, DNA, and lipids, and can transfer that 
cargo to distant target cells and modify the target cells. 
Reports have revealed the biological activities of Exos in 
modifying host cells (Fig.  4). Modification of host cells 
with Exos from different sources plays an important role 
in the treatment of periodontitis.

Effects of Exos on neutrophils
Neutrophils are short-lived cells in the innate immune 
system. They play an important role in pathogen resist-
ance by producing reactive oxygen species (ROS). There-
fore, effective strategies to improve the viability and 
function of neutrophils may be beneficial for treating 
infections and immune deficiency diseases. MSC-Exos 
have a protective effect on neutrophil function and lifes-
pan [56], and could significantly reduce the terminal 
complement activation complex C5b-9 to inhibit neu-
trophils accumulation [57]. Exos isolated from ADSCs 
(ADSC-Exos) can decrease neutrophil apoptosis and 
increase phagocytosis [58]. Exos isolated from LPS-
treated macrophages can induce cytokine production 
and neutrophils migration [59].

Effects of Exos on macrophages
MSC-Exos can modify the polarization of the pro-
inflammatory phenotype (M1 macrophages) to the 
anti-inflammatory phenotype (M2 macrophages) via 
shuttling miR-182 [60]. Exos derived from BMSCs 
(BMSC-Exos) can increase M2 macrophages [61], and 
BMSC-Exos have been reported to inhibit M1 mac-
rophages and promote M2 macrophages in a murine 
alveolar macrophage cell line by inhibiting cellular gly-
colysis [62]. FNDC5 pre-conditioned BMSC-Exos have 
also been confirmed to play an anti-inflammatory role 
and promote M2 macrophages via NF-κB signaling 
pathway and the Nrf2/HO-1 axis [63]. Exos from human 
umbilical cord mesenchymal stem cells (hUCMSC-
Exos) facilitated CD163 + M2 macrophages [64] and 
promoted M2 macrophages in LPS-stimulated RAW 
264.7 via tumor necrosis factor receptor-associated 
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factor 1 (TRAF1) [65]. ADSC-Exos can significantly 
upregulate the mRNA expression of M2 macrophages 
[66], induce M2 macrophages through the transactiva-
tion of Arg-1 by Exos-carried active STAT3 [67], and 
alleviate LPS induced inflammation by regulating Nrf2/
HO-1 expression (68). Exos from GMSCs (GMSC-
Exos) and dental pulp stem cells (DPSC-Exos) can pro-
mote the transformation of macrophages from M1 to 
M2 [47, 69]. TNF-α stimulated GMSC-Exos have also 
been reported to induce anti-inflammatory M2 mac-
rophage polarization [47, 50].

Effects of Exos on DCs
MSC-Exos decreased DC surface marker expression in 
cells treated with LPS and decreased lymphocyte prolifer-
ation in the presence of MSC-Exos treated DCs, suggest-
ing that MSC-Exos may play a key role in DC-induced 
immune responses [70]. hUCMSC-Exos suppressed 
the maturation and activation of DC and decreased the 
expression of IL-23, which is particularly important for 
promoting the pathogenicity of Th17 cells [71]. Exos 
from RegDC (RegDC-Exos) suppress the maturation of 
DCs and promote the recruitment of Treg cells, resulting 
in the inhibition of bone resorptive cytokines and reduc-
tion in osteoclastic bone loss [72]. Exos from lymphatic 

Table 1  Summary of in vivo results showing the Exos-based periodontitis treatment strategy used over the past 5 years

Source of Exos Study model Route of delivery Dose Duration Outcomes References

MSCs Mouse experimental 
periodontitis model

Locally injection 50 μg per mouse 14 days Improve the treat-
ment by restoring the 
Th17 cell/Treg balance 
through the miR-1246/
Nfat5 axis

[46]

DPSCs Mouse experimental 
periodontitis model

Incorporated chitosan 
hydrogel

50 μg 4 weeks Facilitate macrophages 
from M1 to M2 phe-
notype and promote 
alveolar bone healing

[47]

HHH-DPSCs Mouse experimental 
periodontitis model

Directly applied onto 
the silk ligature

5 μL containing 
7.5 × 108 particles

7 days Promote the migration 
of both DPCs and 
osteoblastic cells; 
suppress osteoclast 
formation

[48]

PDLSCs Rat periodontal bone 
defect model

Mixed with Matrigel Exos (225 μg/μL): 
Matrigel = 2:1 (v/v)

4 weeks Suppress overactiva-
tion Wnt signaling, 
recover osteogenic dif-
ferentiation capacity of 
inflammatory PDLSCs

[49]

TNF-α-treated human 
GMSCs

Mouse experimental 
periodontitis model

Locally injection 20 μg per mouse 7 days Regulate inflammation 
and osteoclastogenesis

[50]

SHED Mouse experimental 
periodontitis model

Locally injection 20 μg 2 weeks Restore bone loss, 
promote BMSCs osteo-
genesis, differentiation, 
and bone formation

[51]

SHED Rat periodontal defect 
models

h β-TCP scaffffolds 
loaded with Exos

2 μg/μL Exos in 100 μL 
PBS

4 weeks Contribute to perio-
dontal bone regenera-
tion through the AMPK 
signaling pathway

[52]

induced M2-like mac-
rophages

Mouse experimental 
periodontitis model

Locally injection 30 μL (500 ng/ml) 2 weeks Reduce alveolar bone 
resorption in mice with 
periodontitis via IL-10/
IL-10R pathway

[53]

ADSCs Rat experimental peri-
odontitis model

Locally injection 80–150 µg in 200 µL 
PBS

4 weeks Represent a promising 
adjunctive treatment 
to SRP

[54]

salivary Exos Insulin resistance-asso-
ciated mouse experi-
mental periodontitis 
model

Locally injection miR-25-3p inhibitors 
(100 μl of 8 nM)

9 days Exosomal miR-25-3p 
in saliva contribute 
to development 
and progression of 
diabetes-associated 
periodontitis

[55]
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endothelial cells (LEC-Exos) promote the directional 
migration of human DCs in complex tissue environments 
in a CX3CL1/fractalkine-dependent fashion [73].

Effects of Exos on T lymphocytes
MSC-Exos decreased T lymphocyte proliferation and the 
percentage of CD4 + and CD8 + T cell subsets in a dose-
dependent manner while increasing Treg cell populations 
[74]. MSC-Exos promote the proliferation and immune-
suppression capacity of Tregs by upregulating IL-10 and 
TGF-β1[75], and inhibit the differentiation of Th2 cells 
by regulating the miR-146a-5p/SERPINB2 pathway [76]. 
PDLSC-Exos alleviated inflammatory microenvironment 
and maintained Th17/Treg balance via the Th17/Treg/
miR‐155‐5p/SIRT1 regulatory network [77]. CD137-
modified endothelial cell-Exos (EC-Exos) promote Th17 
cell differentiation via the NF-КB pathway by regulating 
IL-6 expression [78].

Effects of Exos on B lymphocytes
MSC-Exos had the beneficial effect of reducing plasma-
blasts and incresing Breg-like cells in lymph nodes [74].

Effects of Exos on osteoclasts
Exosomal miR-1260b of TNF-α-preconditioned GMSC-
Exos was found to inhibit osteoclastogenic activity by 
targeting the Wnt5a-mediated RANKL pathway [50]. 
RegDC-Exos inhibit the production of bone resorp-
tive cytokines and bone loss in osteoclasts [72]. Cyclic 
mechanical stretch (CMS)-treated BMSC-Exos can 
impair osteoclast differentiation by inhibiting the 
RANKL-NF-κB signaling pathway [79]. ADSC-Exos can 

reduce bone resorption and recover bone loss by sup-
pressing NLRP3 inflammasome activation in osteoclasts 
[80] and by antagonizing osteocyte-mediated osteoclas-
togenesis [81]. ADSC-Exos combined with microRNA-
146a (miR-146a-Exo) were reported to restrain bone 
resorption by inhibiting pro-inflammatory cytokine pro-
duction in high glucose-treated osteoclasts [82]. Exos 
derived from osteoblasts can inhibit osteoclast differ-
entiation via the miR-503-3p/Hpse axis [83]. Exos from 
endothelial progenitor cells (EPC-Exos) can promote 
bone repair by enhancing the recruitment and differen-
tiation of osteoclast precursors via LncRNA-MALAT1 
[84].

The effects of Exos on the host cells involved in peri-
odontitis are summarized in Table 2.

Summary and prospects
Exos can be secreted by almost all cell types and are the 
main contributor to cells efficacy. They are natural car-
riers of functional small RNA and proteins [85], and the 
constituents can be reprogrammed depending on the dis-
ease state [39]. Therefore, potential applications of Exos 
in the diagnosis and treatment of diseases are becom-
ing increasingly popular. Exos derived from MSCs, with 
or without biomaterials, have broad application pros-
pects in the treatment of periodontitis, especially in the 
cell-free treatment of tissue regeneration. Among them, 
Exos derived from oral stem cells are easier to collect 
and may show excellent characteristics of immune regu-
lation, repair, and regeneration as well as less ethical, 
moral, or safety limits [12, 86]. In this review, we sum-
marized the novel strategies using Exos in periodontitis 
over the last 5 years and analyze the possible mechanism 
of Exos in the treatment of periodontitis by summarizing 
the effect of Exos on host cells involved in the process of 
periodontitis.

Although the applications of Exos in periodontitis has 
been proved to be useful in animal models of preclinical 
research, much work needs to be done to apply it to clin-
ics. Originally, Exos in clinical trials had to comply with 
good manufacturing practice (GMP), which includes the 
upstream of the cell culture process, the downstream of 
the purification process, and the quality control of Exos. 
The content carried by Exos varies from cell type to cul-
ture conditions and batch, which causes differences in 
biological functions. Therefore, it is necessary to explore 
more convenient and efficient technologies for the sepa-
ration, purification, and storage of Exos to improve their 
homogeneity, purity, and repeatability. Furthermore, the 
corresponding role and mechanism of Exos in the diag-
nosis and treatment of periodontitis need to be explored 
more comprehensively. The critical range of differen-
tial expression of exosomes in periodontal tissue under 

Fig. 4  Biological activities of Exos modifying the host cells during 
periodontitis
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Table 2  Summary of the effects of Exos on host cells

No Source of Exos Biological activity References

Neutrophil

1 MSCs Have protective effects on neutrophil function and lifespan [56]

2 MSCs Reduce terminal complement activation complex C5b-9 to inhibit neutrophils accumulation [57]

3 ADSCs Decrease neutrophils apoptosis and increased their phagocytosis capacity [58]

4 LPS-treated macrophages Induce cytokine production and neutrophil migration [59]

Macrophage

1 DPSCs Facilitate macrophages to convert from M1 phenotype to M2 phenotype [47]

2 TNF-α induced GMSCs Induce anti-inflammatory M2 macrophage polarization [50]

3 MSCs Modify the polarization of M1 macrophages to M2 macrophages via shuttling miR-182 [60]

4 BMSCs Increase M2 macrophage polarization [61]

5 BMSCs Inhibit M1 polarization and promotes M2 polarization in a murine alveolar macrophage cell line by 
inhibiting cellular glycolysis

[62]

6 FNDC5 pre-conditioned BMSCs Play anti-inflammation effects and promote M2 macrophage polarization via NF-κB signaling 
pathway and Nrf2/HO-1 axis

[63]

7 hUCMSCs Facilitate CD163 + M2 macrophage polarization, reduced inflammation, and increases anti-inflam-
matory responses

[64]

8 hUCMSCs Inhibit M1 polarization and promoted M2 polarization through tumor necrosis factor receptor-
associated factor 1 (TRAF1)

[65]

9 ADSCs Upregulate mRNA expression of M2 macrophages [66]

10 ADSCs Induce anti-inflammatory M2 phenotypes through the transactivation of arginase-1 by Exo-carried 
active STAT3

[67]

11 ADSCs Polarize macrophage to an anti-inflammatory phenotype via regulating the Nrf2/HO-1 expression [68]

12 GMSCs Facilitate macrophages to convert from M1 phenotype to M2 phenotype [69]

Dendritic cell

1 MSCs Decrease DC surface marker expression and modulates DC-induced immune responses [70]

2 hUCMSCs Suppress maturation and activation of DCs, and decreases the expression level of IL-23 [71]

3 regDCs Suppress maturation of recipient DCs resulting in inhibition of bone resorptive cytokines [72]

4 LECs Promote the directional migratory in a CX3CL1/fractalkine-dependent fashion [73]

T lymphocyte

1 MSCs Increase Treg cell populations, inhibit T lymphocyte proliferation in a dose-dependent manner and 
decreases the percentage of CD4 + and CD8 + T cell subsets

[74]

2 MSCs Upregulate IL-10 and TGF-β1 to promote proliferation and immune-suppression capacity of Tregs [75]

3 MSCs Inhibit the differentiation of Th2 cells via the regulation of the miR-146a-5p/SERPINB2 pathway [76]

4 PDLSCs Alleviate inflammatory microenvironment and keep Th17/Treg balance via Th17/Treg/miR‐155‐5p/
SIRT1 regulatory network

[77]

5 CD137-modified ECs Promote Th17 cell differentiation via NF-КB pathway mediated IL-6 expression [78]

B lymphocyte

1 MSCs Upregulate Breg-like cells in lymph nodes [74]

Osteoclast

1 TNF-α-preconditioned GMSCs Inhibit osteoclastogenic activity via exosomal miR-1260b to target Wnt5a-mediated RANKL path-
way and

[50]

2 regDC Result in inhibition of bone resorptive cytokines and reduces in osteoclastic bone loss [72]

3 CMS-treated BMSCs Impair osteoclast differentiation via inhibiting the RANKL-induced nuclear factor kappa-B (NF-κB) 
signaling pathway

[79]

4 ADSCs Suppress NLRP3 inflammasome activation in osteoclasts and reduces bone resorption and recover 
bone loss

[80]

5 ADSCs Antagonize osteocyte-mediated osteoclastogenesis [81]

6 ADSCs Inhibit pro-inflammatory cytokines production in high glucose-treated osteoclasts and restrains 
bone resorption

[82]

7 osteoblast Inhibit the osteoclast differentiation via miR-503-3p/Hpse axis [83]

8 EPCs Promote bone repair by enhancing recruitment and differentiation of osteoclast precursors 
through LncRNA-MALAT1

(84)
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healthy and inflammatory conditions for diagnosis and 
the amount and duration of safe and effective treatment 
need to be defined. Ultimately, the mechanisms of inter-
action between Exos and host cells are not clear, which 
makes it impossible for Exos to accurately regulate the 
target cells and functions. However, there is no doubt 
that Exos have the potential to provide personalized 
medical strategies for the prevention and treatment of 
periodontitis.

Conclusions
Exos contain specific substances in their cells and play a 
significant role in the diagnosis and treatment of numer-
ous diseases, including periodontitis. Exos-based peri-
odontitis treatment strategies have been reported to 
obtain the potential to overcome the drawbacks of tra-
ditional therapies and have tremendous prospect for 
bench-to-bed translation.
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