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Abstract

In many biological systems, chemical reactions or changes in a physical state are assumed to 

occur instantaneously. For describing the dynamics of those systems, Markov models that require 

exponentially distributed inter-event times have been used widely. However, some biophysical 

processes such as gene transcription and translation are known to have a significant gap 

between the initiation and the completion of the processes, which renders the usual assumption 

of exponential distribution untenable. In this paper, we consider relaxing this assumption by 

incorporating age-dependent random time delays (distributed according to a given probability 

distribution) into the system dynamics. We do so by constructing a measure-valued Markov 

process on a more abstract state space, which allows us to keep track of the “ages” of molecules 

participating in a chemical reaction.

We study the large-volume limit of such age-structured systems. We show that, when appropriately 

scaled, the stochastic system can be approximated by a system of Partial Differential Equations 

(PDEs) in the large-volume limit, as opposed to Ordinary Differential Equations (ODEs) in the 

classical theory. We show how the limiting PDE system can be used for the purpose of further 

model reductions and for devising efficient simulation algorithms. In order to describe the ideas, 

we use a simple transcription process as a running example. We, however, note that the methods 

developed in this paper apply to a wide class of biophysical systems.
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1. Introduction

We consider biophysical systems described by a set of chemical reactions. The chemically 

identical molecular entities in the system are called (chemical) species. A chemical reaction 

refers to the event of creation, annihilation, or conversion of a number of molecules of one 

or more species. Here, we assume the system is well mixed spatially in that a randomly 

chosen molecule of a species has an equal chance to chemically interact with any other 

molecule of any species in the system. A Continuous Time Markov Chain (CTMC) is a 

natural choice to model the species copy numbers of such systems.

When modeling Chemical Reaction Networks (CRNs) stochastically using CTMCs, one 

assumes that every reaction occurs instantaneously after an exponentially distributed amount 

of time. Whenever a reaction takes place, we update the system state. A random time-change 

representation of the Poisson process is often used to write the trajectory equations and to 

analyze the system dynamics [1, 2, 3, 4]. The sample paths of the CTMC are simulated 

exactly using the Doob–Gillespie’s Stochastic Simulation Algorithm (SSA) [5, 6, 7] or the 

next reaction method by Gibson and Bruck [8].

1.1. Delays are inherent and a useful model reduction tool

It has been reported that some biological processes do not take place instantaneously. In 

other words, there is a time lag between the initiation and the completion of the process. 

Time delays are observed inherently in many biological systems, such as gene transcription 

[9, 10, 11] and translation [12], cell cycle in cancer treatment [13], intracellular viral 

dynamics [14, 15], control of infectious diseases [16], population growth [17, 18], RNA and 

protein folding [19, 20], and enzyme catalyzed reactions [21, 22]. Sometimes time delays 

are introduced purposefully as a useful means to reduce model complexity and compensate 

for the lack of experimental observation in both deterministic and stochastic models of 

biological processes.

Intermediate, ancillary processes or unobserved reactions can be replaced by time delays. 

For example, production of hes1 mRNA from hes1 gene has been modeled using delay 

differential equations where detailed mRNA synthesis and processing steps are replaced by 

a time delayed reaction [23]. While modeling the mammalian circadian clock, intermediate 

protein dynamics can be simplified as transcriptional feedback loops with time delayed 

variables in delay differential equations [24]. In enzyme catalyzed reactions with multiple 

intermediates, the production of the final product can be expressed as a distributed delay 

equation, which is a useful tool when measurements on multiple intermediates in the 

experiment are not available [25].

Introduction of time delays as a model reduction technique has also been applied in discrete 

stochastic models for CRNs. For instance, model complexity of unimolecular reaction 
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networks is reduced by generating delay distributions with key model features that are 

derived by computing first passage times of target species [26]. In [27], the production of 

yellow fluorescent protein has been described using a time-delayed birth and death process 

where a randomly distributed time delay was generated to simplify a sequence of steps in 

gene activation.

1.2. Our contribution

In most previous works in this area, the focus was on investigating stochastic models for 

CRNs with constant or random time delays. In those models, the probability that a reaction 

occurs within the next short interval of time is commonly described by a propensity (also 

known as intensity) function of the reaction. The waiting time for non-delayed reactions 

is exponentially distributed [28]. In practice, the occurrence of some reactions is not only 

determined by the molecular counts of the reactants but also affected by the age distributions 

or lifetimes of the reactant molecules. For example, mRNA decay rates vary depending 

on the age of each mRNA. Moreover, the age of the mRNAs determines polysome size 

distributions and protein synthesis rates in translation ([29, 30], Chapters 3 and 5 in 

[31]). It was also reported that an mRNA tail length distribution depends on the average 

age of mRNA population and that the tail-length distribution plays a significant role in 

deadenylation and decay dynamics of mRNA populations [32, 33].

When time delays are used to aggregate out ancillary or unobserved processes and reduce 

model complexity, it makes more sense that the length of time delay depends on the age of 

each reactant molecule (e.g., mRNA, protein, and enzymes). Therefore, it is worthwhile to 

consider an individual-based age-structured stochastic model for CRNs.

In this work, we develop a way to describe CRNs with random time delays and non-delayed 

reaction rates incorporating the age of each reactant and making use of hazard functions in 

survival analysis [34, 35]. See Appendix C for some preliminaries on relevant mathematical 

and statistical concepts. In our approach, the hazard functions are set as constant, time-

dependent, or age-dependent functions generalizing the notion of reaction rate constants 

in propensity functions. Our model keeps track of the age of each reactant molecule and 

provides a new way to express time delays in non-Markovian models. Moreover, the method 

also allows us to describe discrete stochastic CRNs with constant or random time delays 

without age dependence, as considered in previous works. We study the large-volume 

limit of the proposed non-Markov CRN and provide a mean-field PDE limit for the age 

densities by virtue of the Law of Large Numbers (LLN), as opposed to an ODE limit in 

the classical theory. The PDE limit is based on existing results in the literature [36, 37] 

and follows from the standard limit theory for measure-valued Markov processes. However, 

novel usage of the PDE limit can provide further approximations and pave the way for 

efficient simulation algorithms. For the sake of illustration, we show how the PDE limit 

can be used to approximate Mean First Passage Times (MFPTs) in the context of CRNs. 

As another by-product of the LLN, we show how an efficient (fast) hybrid simulation 

algorithm can be devised when a subset of the CRN is abundantly available, giving a flavor 

of multiscale approximation. Finally, as simple applications of our approach, we briefly 

discuss a prokaryotic auto-regulation and the Quasi-Steady State Approximation (QSSA) in 
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the context of the Michaelis–Menten enzyme kinetic reactions. Numerical examples have 

been provided wherever deemed necessary. For the sake of ready usage of our methods, 

the Julia scripts used in the numerical examples have been made available via a GitHub 

repository [38].

The following notational conventions are adhered to throughout the paper. We use 1{A}(x) to 

denote the indicator (or characteristic) function of a set A, i.e., 1{A}(x) = 1 if and only if x ∈ 
A. Given a suitable space E, let D([0, ∞), E) (or D([0, T], E)) denote the space of E-valued 

càdlàg functions defined on [0, ∞) (or [0, T], for some T > 0). The set of Borel subsets of a 

set A will be denoted by ℬ(A). The set of natural numbers are denoted by ℕ. The set of real 

numbers is denoted by ℝ. Other notations will be introduced as and when needed.

2. The simplest model with a delay

Let us consider a simple CRN with two chemical species A and B. First, we shall 

describe the standard Markovian approach and then introduce an age structure to allow 

non-exponential holding times. The following network describes the production and the 

degradation of A along with a conversion from A to B

∅ b A τ B,
A d ∅ . (2.1)

where b, τ, and d, depending on whether we are in the Markovian or non-Markovian 

setup, will be either reaction rate constants or hazard functions for the production of A, the 

conversion from A to B, and the degradation of A, respectively.

An example similar to the CRN in Equation (2.1) was investigated in some previous works 

with time delays [39, 40]. It is worth noting that the simplistic CRN described in Equation 

(2.1) can be thought of as a model reduction of a more complex CRN. For instance, a series 

of conversion type reactions

A k1 A1
k2 A2

k3 ⋯ kn B (2.2)

can be described by a single conversion reaction A →τ B with an appropriate hazard 

function τ. For the sake of illustration, let us assume we are in the Markovian setup so 

that k1, k2, … , kn are positive constants. We can interpret the CRN in Equation (2.2) as 

follows: One molecule of A gets transformed into a molecule of A1 after an exponentially 

distributed (with rate k1) amount of time. Then, the molecule of A1 gets transformed into 

a molecule of A2 after an exponentially distributed (with rate k2 this time) amount of time. 

This process goes on until the molecule finally gets transformed into a molecule of B from 

a molecule of An−1. Therefore, from the perspective of a single A molecule, the amount 

of time required for the molecule to finally get transformed into a molecule of B is the 

sum of those exponentially distributed amounts of times (with rates k1, k2, … , kn). Under 

independence, the probability distribution of the total amount of time required for a single 

A molecule to get transformed into a B molecule can be described by a convolution of the 

individual exponential distributions. Denoting the corresponding hazard function by τ, one 
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can describe the CRN in Equation (2.2) by a single conversion reaction A →τ B. Similarly, a 

series of birth-death-conversion type reactions

∅ b A k1 A1 k2 A2 k3 ⋯ kn B,
A d ∅, A1 d1 ∅, A2 d2 ∅, ⋯, An dn ∅

can be approximated by a single birth type reaction ∅ →τ B with an appropriate hazard 

function τ. Therefore, even a simplistic model such as the CRN in Equation (2.1) covers a 

nontrivial class of CRNs and builds the foundation for studying more complex CRNs.

2.1. Standard Markov approach

The standard way to model the CRN in Equation (2.1) is to use a CTMC to describe the 

counts of molecules of the species A and B over time. In such a model, whenever each 

reaction fires, the consumption and the production of molecules are instantaneous. Let XA, 

XB denote the stochastic processes counting the copy numbers of the species A and B 

respectively. Here, the quantities b, τ, and d are reaction rate constants. The propensity 

functions corresponding to the three chemical reactions are defined as

λb(t) = b, λτ(t) = τ × xA(t), λd(t) = d × xA(t),

where xi(t) denotes the number of molecules of the chemical species i at time t, for i = A, 
B. Define Tk to be the waiting time until the next reaction of type birth (k = b), conversion 

(k = τ), and death (k = d). Then, Tk is exponentially distributed with rate λk(t) for k = b, τ, 
d. The probability of each reaction’s occurrence is expressed in terms of the corresponding 

propensity function as follow:

P t ≤ Tk < t + Δt ∣ XA(t) = xA, XB(t) = xB ≈ λk(t)Δt + o(Δt)

for k = b, τ, d when Δt is small enough. Then, the trajectory equations can be written 

in a straightforward fashion following the random time changed representation of Poisson 

processes as

XA(t) = XA(0) + R1 (bt) − R2 ∫0
t
τXA(s) ds − R3 ∫0

t
dXA(s) ds ,

XB(t) = R2 ∫0
t
τXA(s) ds ,

where R1, R2, and R3 are unit rate Poisson processes [2]. We assume we do not have any 

B molecules in the system initially, i.e., Xb(0) = 0. Now, if we scale the stochastic processes 

by a scaling parameter n, e.g., volume of the system, it follows directly from the LLN for 

Poisson processes [41, 42] that the scaled process (n−1XA, n−1XB) can be approximated by 

the solution to the following system of ODEs:
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d
dtxA(t) = − (τ + d)xA(t),
d
dtxB(t) = τxA(t) .

Notice that the birth rate b vanishes in the limit because we did not assume any scaling of b 
with respect to n. In general, one would assume that the overall birth rate scales linearly with 

n so that it is sustained in the limit.

2.2. Age-structured model

Now, let us introduce age and delay into the CRN described by Equation (2.1). We assume 

that the production rate of B and the degradation rate of A depend on the age of the 

reactant molecule of species A. We use “age” as an umbrella term to refer to the amount 

of elapsed time since a specific event. Thus, “age” could mean different things depending 

on the application area. The most straightforward way is the biological or the physical age, 

which we take as the time duration since the molecule was born or created. In systems where 

a certain reaction can fire only when a gene is activated, one could define age as the time 

duration since activation of the gene. In some cases, it may be desirable to define delays 

in terms of time duration since the initiation of a reaction. The notion of age is sufficiently 

general to account for those cases as well. For example, a reaction A → B in which the 

delay is defined purely in terms of time difference between initiation and completion of the 

reaction, can be replaced by the reaction system A → F → B where F is a fictitious species. 

The physical age of this fictitious species F is precisely the time since the initiation of the 

reaction A → B. Now, putting an appropriate hazard function on the reaction F → B, we 

can introduce a random or a deterministic delay in the reaction A → B. Therefore, for the 

CRN in Equation (2.1), it seems sufficient to define the age to be the physical age of the 

molecules of A.

When we have an age-structured model, the counts (copy numbers of the species A and 

B) are inherently non-Markovian unless the holding times are exponentially distributed. 

However, if we keep track of the ages of the molecules in addition to the counts, we can 

get a Markov system, albeit on a more abstract state space. A neat way to do so is to use 

measure-valued processes that keep track of the age distribution of the molecules over time. 

Moreover, the measure-valued processes are also Markovian, which allows us to make use of 

the already existing limit theory for Banach space-valued Markov processes. This approach 

to age-structured modeling in biology is not new. Our work builds on the existing literature 

[36, 37, 43, 44]. In the next section, we describe how the measure-valued processes can be 

utilized in the context of the CRN in Equation (2.1).

2.3. The measure-valued process and the limiting system

Let us denote by NA(t) and NB(t) the numbers of molecules of the chemical species A and 

B at time t. Then, individual molecules of A are labelled 1, 2, ⋯, NA(t). We denote the age 

of the i-th molecule of the species A by ai(t) for i = 1, 2, ⋯, NA(t). Similarly, we denote by 

bj(t) the age of the j-th molecule of the species B at time t. Now, we define a measure-valued 
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process Xt = (Xt
A, Xt

B) where Xt
A and Xt

B describe the age distributions of chemical species 

A and B at time t. To be more precise, we define

Xt
A ≔ ∑

i = 1

NA(t)
δai(t), Xt

B ≔ ∑
i = 1

NB(t)
δbi(t), (2.3)

where δx is the Dirac measure, a function that takes value 1 if the argument to the 

function (a measurable set) contains x and zero otherwise. The components Xt
A and Xt

B

of Xt are finite point measures with atoms placed on the individual ages of the molecules. 

For example, Xt
A ((0.5, 11.25]) = ∑i = 1

NA(t)δai(t)((0.5, 11.25]) gives us the count of species A 

molecules with ages in the set (0.5, 11.25] at time t. In general, Xt
A(F) gives us the count of 

species A molecules whose ages lie in the set F at time t.

For any point measure μ = ∑i = 1
n δxi and a measurable function f, we denote the integration 

of the function f with respect to the measure μ by

〈μ, f〉 ≔ ∫ f dμ = ∑
i = 1

n
f(xi) .

If μ ≔ (μ1, μ2, … , μL), for some positive integer L, is a vector of point measures and f is a 

measurable function, we use the notation ⟨⟨μ, f⟩⟩ to denote

〈〈μ, f〉〉 ≔ ∑
i = 1

L
〈μi, f〉 .

Therefore, we have NA(t) = 〈Xt
A, 1〉 = Xt

A(ℝ+) and NB(t) = 〈Xt
B, 1〉 = Xt

B(ℝ+) where 1 stands 

for the identity function. The set of non-negative real numbers is denoted by ℝ+. The total 

population size is given by

N(t) ≔ 〈〈Xt, 1〉〉 = NA(t) + NB(t) .

The process Xt is a Markov process on the space D([0, T ], ℳP(ℝ+) × ℳP(ℝ+)) where T > 0 is 

a finite time horizon and ℳP(ℝ+) is the space of finite, point measures on ℝ+.

In order to simplify notations, we introduce maps σi : ℳP(ℝ+) ℝ+, for i = 1, 2, 3, … , 

the purpose of which is to extract the i-th atom (the age of the i-th molecule) from a point 

measure following some partial order (e.g., “greater or equal to” relation). Therefore, σi(Xt
A)

gives us the age of the i-th molecule of the species A at time t. We can now write down the 

trajectory equations:
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Xt
A = ∑

k = 1

NA(0)
δt + σk(X0

A) + ∫
0

t∫
0

∞
δt − s 1{θ ≤ b}Q1(ds, dθ)

− ∫
0

t∫
ℕ
∫

0

∞
δt − s + σi(Xs −A ) 1{i ≤ NA(s − )} 1{θ ≤ τ(σi(Xs −A ))}Q2(ds, di, dθ)

− ∫
0

t∫
ℕ
∫

0

∞
δt − s + σi(Xs −A ) 1{i ≤ NA(s − )} 1{θ ≤ d(σi(Xs −A ))}Q3(ds, di, dθ

),

(2.4)

Xt
B = ∫

0

t∫
ℕ
∫

0

∞
δt − s 1{i ≤ NA(s − )} 1{θ ≤ τ(σi(Xs −A ))}Q2(ds, di, dθ), (2.5)

where Q1, Q2, Q3 are independent Poisson Point Measures (PPMs) with intensity measures 

ds × dθ, ds × di × dθ, and ds × di × dθ respectively, where di is a counting measure 

on ℕ, and ds and dθ are Lebesgue measures on ℝ+. Provided the global jump rates are 

upper bounded by a finite quantity and the initial population size does not explode supn 

E[n−1NA(0)] < ∞, the trajectory equations admit a unique pathwise solution (Xt
A, Xt

B) (see 

[37, Theorem 2.5] for a similar derivation).

Under some assumptions on the hazard functions and the initial age distribution of the 

A molecules, the scaled process n−1Xt converges to a deterministic, continuous function 

xt ≔ (xtA, xtB) whose components xtA and xtB are themselves measure-valued functions 

satisfying

〈xtA, ft〉 = 〈x0
A, f0〉

+ ∫0
t∫0

∞ ∂
∂a fs(a) + ∂

∂s fs(a) − fs(a)(τ(a) + d(a)) xsA( da) ds

〈xtB, ft〉 = ∫0
t∫0

∞ ∂
∂a fs(a) + ∂

∂s fs(a) + fs(0)τ(a) xsA( da) ds,

for a sufficiently large class of test functions f : (a, s) → fs(a). The convergence of the scaled 

stochastic process n−1Xt to the deterministic function xt can be proved using techniques 

similar to those in [36, 45, 37, 43, 44]. However, for the sake of completeness, a brief, 

intuitive argument is presented in Appendix D.

Since the measure-valued function xtB is determined entirely by xtA, it suffices to study 

xtA. The densities yA(t, a) of the measure xtA, when they exist, are an important quantity 

describing the distribution of age of the species A molecules in the large-volume mean-field 

limit. The density function yA should satisfy

(∂t + ∂s) yA(t, s) = − (τ(s) + d(s)) yA(t, s), (2.6)

with the initial and the boundary conditions
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yA(0, s) = fA(s), yA(t, 0) = 0,

where fA(s) specifies the age distribution of A molecules at time t = 0. To be more precise, 

it is the density of the limiting measure x0
A, which we assume exists, with respect to the 

Lebesgue measure. Notice that the birth rate b vanishes in the limit, as in case of CTMC 

model, because we did not assume any scaling of the birth rate with respect to n.

Let yB denote the limiting proportion of B molecules in the system. Then, yB can be 

described entirely in terms of the density yA as a solution to the ODE:

d
dtyB(t) = ∫

0

t
τ(s)yA(t, s) ds, (2.7)

with the initial condition yB(0) = 0. Luckily, the limiting system Equation (2.6) can be 

solved explicitly using standard analysis techniques:

yA(t, s) = fA(s − t)Sτ(s)Sd(s) ∕ (Sτ(s − t)Sd(s − t)) ,

where Sτ and Sd are the survival functions of the probability distributions characterized 

by the hazard functions τ and d respectively. Therefore, the limiting concentration of B 
molecules can be described by

yB(t) = ∫0
t∫0

∞
τ(v)yA(u, v) dv du .

In Figure 1, we numerically show the agreement between the theoretical limits in Equation 

(2.6) and (2.7) and the stochastic simulation. More specifically, we compare ∫0
∞yA(t, s) ds

with stochastic simulations of 〈n−1Xt
A, 1〉 and yB(t), with 〈n−1Xt

B, 1〉. As it can be verified, 

the approximation error vanishes in the limit. Because Xt is a Markov process, the 

simulation of the stochastic CRN in Equation (2.1) can be carried out by adapting the Doob–

Gillespie’s SSA, which involves simulating two quantities at each step: 1) simulating the 

next reaction time; and 2) determining the reaction type. Note that, for the CRN in Equation 

(2.1), there are (2NA(t) + 1) different reactions possible at time t, even though there are only 

three types of reactions. The next reaction time can be simulated by drawing an exponential 

random variable with rate equal to the total hazard (the sum of the hazards corresponding to 

those (2NA(t) + 1) possible reactions). The total hazard is given by b + 〈Xt
A, τ〉 + 〈Xt

A, d〉. The 

type of reaction is then decided by drawing a categorical random variable whose probability 

masses are the ratios of the individual hazards and the total hazard. This discrete event 

simulation algorithm is a straightforward adaptation of Doob–Gillespie’s SSA for CTMCs. 

However, it must be noted that the simulation of a non-Markovian CRN is computationally 

more expensive than the CTMCs. For the sake of completeness, a pseudocode describing 

the above procedure is given in Algorithm 2.1. An implementation in the Julia programming 

language [46] is also made available in [38].
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In Section 1, we mentioned that introduction of delay into a CRN could also serve the 

purpose of model reduction. Indeed, the LLN limit y ≔ (yA, yB) provides a model reduction 

of the original non-Markovian CRN in Equation (2.1). In the following, we discuss two 

other examples of usefulness of the LLN limit in the form of a PDE system. The first one 

approximates MFPTs, while the second one describes a faster simulation algorithm.

2.4. Mean First Passage Times

Mean First Passage Times are important quantities in the study of stochastic processes and 

dynamical systems. In the context of CRNs, they could arise in several ways [47, 48]. For 

instance, natural questions that could arise for the CRN in Equation (2.6) are how long it 

takes to deplete all molecules of species A or to produce the first molecule of B. One of 

the benefits of the LLN limit is that it can be used to approximate FPTs when the scaling 

parameter n is sufficiently large. The following illustrates this point.

Suppose we are interested in the time required to produce the first molecule of B. Following 

the exact simulation Algorithm 2.1 adapted from Doob–Gillespie’s SSA, the total hazard for 

the production of a B molecule is 〈X0
A, τ〉. In the large-volume limit, we can approximate 

this hazard by ∫0
∞nτ(s)yA(0, s) ds. Therefore, for a sufficiently large n, the MFPT can be 

approximated by

m = ∫
0

∞
nτ(s)yA(0, s) ds

−1
, (2.8)

which, of course, vanishes in the limit of n → ∞. Moreover, the FPTs can be approximated 

by a random variable following an exponential distribution with mean m, whenever n 
is sufficiently large. It follows that we can use a simple likelihood function (based on 

the exponential distribution) for the purpose of statistical inference of the underlying 

parameters, provided we have observations on the FPTs. This method, called dynamic 

survival analysis, of estimating parameters based on timings rather than counts was recently 

explored in the context of an epidemiology in [34]. Dynamic survival analysis of general 

CRNs will be discussed elsewhere.
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Algorithm 2.1 Pseudocode for the exact simulation of the CRN in Equation (2.1).

Require:n, X0, K ⊳K:Maximum number of iterations
Ensure: (t1, Xt1), (t2, Xt2), … ⊳Timings of the reactions along with the measures

1:Set t = 0
2: for i = 1, 2, …, K do

⊳Compute the next reaction time

3: Calculate Λ = b + 〈Xti − 1
A , τ〉 + 〈Xti − 1

A , d〉 −1 ⊳Λ−1:Total hazard

4: if 0 < Λ < ∞ then
5: Draw an exponential random variable T with mean Λ, i . e . T ∼ EXPONENTIAL(Λ)
6: Set ti = ti − 1 + T

⊳Advance time to the next reaction time
⊳Determine the reaction type

7: Define π1 = Λb ⊳Probability for the birth reaction

8: Define πj = Λτ(σj − 1(Xti − 1
A )) for j = 2, 3, …, (NA(ti − 1) + 1) ⊳Probabilities for the

transformation reaction

9: Define πj = Λd(σj − NA(ti − 1) − 1(Xti − 1
A )) for j = (NA(ti − 1) + 2), (NA(ti − 1) +

3), …, (2NA(ti − 1) + 1) ⊳Probabilities for the death reaction
10: Set π ≔ (π1, π2, …, π2NA(ti − 1) + 1)

11: Draw a categorical random variable L with probability distribution π
12: if L = 1 then ⊳Birth reaction

13: Xti
A = δ0 + ∑k = 1

NA(ti − 1)δσk(Xti − 1
A ) + T⊳Advances ages of all A molecules by T and

add an atom {0}

14: Xti
B = ∑k = 1

NB(ti − 1)δσk(Xti − 1
B ) + T ⊳Advances ages of all B molecules by T

15: else if L ≤ (NA(ti − 1) + 1) then ⊳Transformation reaction

16: Xti
A = ∑k = 1

NA(ti − 1)δσk(Xti − 1
A ) + T − δσL − 1(Xti − 1

A ) + T ⊳Remove the atom

{σL − 1(Xti − 1
A )} from the measure Xti − 1

A and advance ages of all other A molecules by T

17: Xti
B = δ0 + ∑k = 1

NB(ti − 1)δσk(Xti − 1
B ) + T⊳Advance ages of all B molecules by T and

add an atom {0}
18: else ⊳Death reaction

19: Xti
A = ∑k = 1

NA(ti − 1)δσk(Xti − 1
A ) + T − δσL − NA(ti − 1) − 1(Xti − 1

A ) + T ⊳Remove

the atom {σL − NA(ti − 1) − 1(Xti − 1
A )} from the measure Xti − 1

A and advance ages of all other A

molecules by T

20: Xti
B = ∑k = 1

NB(ti − 1)δσk(Xti − 1
B ) + T ⊳Advance ages of all B molecules by T

21: end if
22: else
23: Stop and break loop
24: end if
25: Set i = i + 1 .
26:end for
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In Figure 2, we show the accuracy of this approximation when n = 100. The approximation 

appears to be reasonably accurate. More importantly, this suggests we might be able to 

devise an efficient simulation algorithm using such approximate results. We explore this idea 

next.

2.5. Fast hybrid simulation

Consider a situation when the species A is abundantly available at the beginning of the 

reaction. Naturally, we expect the PDE approximation to the age density of the species A 
to be quite accurate, even though there will be considerable stochastic fluctuations in the 

copy numbers of B, at least initially. However, if we approximate the age density of A 
by the limiting PDE, we can also approximate the initial growth of the B molecules by a 

Poisson process whose time-varying intensity is driven by the PDE. We use this idea to 

devise a hybrid simulation algorithm, which is, again, essentially an adaptation of the Doob–

Gillespie’s SSA in the sense that it only draws next reaction times from an exponential 

distribution whose mean depends on the solution to the PDE. For the sake of completeness, a 

pseudocode describing the idea is provided in Algorithm 2.2.

Algorithm 2.2 Pseudocode for the hybrid simulation algorithm

Require:n, yA, K ⊳K:Maximum number of reactions
Ensure: t1, t2, … ⊳Timings of creation of B molecules

1:Set t0 = 0
2: for i = 1, 2, …, K do

3: Calculate Λ = (∫0
∞

nτ(s)yA(ti − 1, s) ds)−1 .

4: if 0 < Λ < ∞ then
5: Draw an exponential random variable T with mean Λ, i . e . , T ∼ EXPONENTIAL(Λ)
6: Set ti = ti − 1 + T
7: else
8: Stop and break loop
9: end if

10: Set i = i + 1 .
11:end for

In Figure 3, we show the accuracy of the hybrid simulation algorithm. Expectedly, the 

hybrid simulation is considerably faster than the full stochastic simulation of the CRN 

in Equation (2.1). A more elaborate comparison of performance is shown in Figure 

4. However, it is worth noting that the hybrid simulation algorithm, by design, will 

underestimate the variance in the counting process for the species B. Therefore, one 

should use the hybrid simulation when it suffices to get the mean trajectory accurately. 

Alternatively, one can borrow ideas to estimate the variance correctly in other simulation 

algorithms [49, 50, 51]. Similar ideas to expedite simulations have been proposed 

previously. For instance, Ganguly et al. [52] propose a jump-diffusion approximation to 
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the stochastic CRNs and provide error analysis while others [28, 53] introduce hybrid 

simulation methods using a piecewise deterministic Markov process.

3. Michaelis–Menten enzyme-kinetic reactions

Michaelis–Menten enzyme-catalyzed chemical reactions form an important class of CRNs 

particularly because of their vast applications in the industry [55, 56]. Several descriptions 

of this class of reactions are available in the literature. For the sake of simplicity, in 

what follows we shall adopt the simplest form of the Michaelis–Menten enzyme-catalyzed 

reactions. In this form, the CRN comprises a reversible binding of a molecule of a substrate 

(S) and a molecule of an enzyme (E) into a molecule of a substrate-enzyme complex, and an 

irreversible conversion of a molecule of the complex into a molecule of a product (P) leaving 

the molecule of the enzyme free. That is, the system consists of the following reactions:

E + S k1 C,
C k−1 E + S,
C k2 P + E .

(3.9)

In traditional models of enzyme kinetics, the quantities k1, k−1, and k2 are reaction rate 

constants. When modeled stochastically using a CTMC, the mean-field limit of the scaled 

concentrations is described by the following set of ODEs (see [57] for more details):

d
dt [E] = − k1[E][S] + (k−1 + k2)[C],
d
dt [S] = − k1[E][S] + k−1[C],
d
dt [C] = k1[E][S] − (k−1 + k2)[C],
d
dt [P] = k2[C] .

(3.10)

The [·] notation is used to denote the concentrations. The ODE system in Equation 

(3.10) has been studied extensively in the literature. We will adopt our measure-valued 

representation to incorporate potential age structure in the Michaelis–Menten CRN.

3.1. Enzyme kinetics with age structure

We assume the binding reaction depends on the age of the participating molecule of the 

enzyme. That is, only k1 is age-dependent; k−1 and k2 are constants. For the species E, S, C, 

and P, define the measure-valued stochastic processes

XtE ≔ ∑
i = 1

NE(t)
δei(t), XtS ≔ ∑

i = 1

NS(t)
δsi(t), XtC ≔ ∑

i = 1

NC(t)
δci(t), XtP ≔ ∑

i = 1

NP(t)
δpi(t),

where NE, NS, NC, NP denote the counts of molecules of E, S, C, and P respectively. 

Similarly, ei, si, ci, pi denote the age of the i-th molecule of E, S, C, and P respectively. The 
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process X ≔ (XE, XS, XC, XP) is a Markov process on the space D([0, T ], ℳP(ℝ+)4). Please 

note that we need to scale the hazard function k1 corresponding to the bimolecular reaction 

by n−1 following the stochastic law of mass actions [1].

As before, we are interested in the large-volume limit of the scaled process n−1Xt. The 

scaled stochastic process n−1Xt converges to a deterministic function xt ≔ (xtE, xtS, xtC, xtP)

whose components xtE, xtS, xtC, xtP  are finite measures on ℝ+ by virtue of the LLN.

Let yE denote the density of the measure xtE with respect to the Lebesgue measure. Also, 

let yS, yC, yP denote the concentrations of the S, C, and P molecules. Then, we get the 

following limiting system:

(∂t + ∂s)yE(t, s) = − k1(s)yE(t, s)yS(t),
d
dtyS(t) = − yS(t)∫

0

∞
k1(s)yE(t, s) ds + k−1yC(t),

d
dtyC(t) = yS(t)∫

0

∞
k1(s)yE(t, s) ds − (k−1 + k2)yC(t),

d
dtyP(t) = k2yC(t),

(3.11)

with the boundary condition

yE(t, 0) = (k−1 + k2)yC(t)

and the initial condition yE(0, s) = fE(s) such that ∫0
∞fE(s) ds = [E0]. Appropriate initial 

conditions for S, C, and P are also assumed. This limiting system can now be used to 

study the effects of delay in the binding reaction. One interesting approximation that has 

been widely applied in the context of Michaelis–Menten enzyme kinetic reactions is what 

is known as a Quasi-Steady State Approximation [58]. There are many forms of QSSAs, 

namely, standard QSSA (sQSSA), total QSSA (tQSSA), and reversible QSSA (rQSSA). 

Detailed analysis of any of the QSSAs is beyond the scope of the present work. For the 

purpose of illustration, we informally describe an analogue of the sQSSA here.

3.2. The standard QSSA

The QSSAs are a multiscale approximation of the Michaelis–Menten enzyme-kinetic 

reactions. The basic assumption behind the standard QSSA is that the substrate-enzyme 

complex C reaches its steady-state much quicker than the other species. In the deterministic 

set-up, the approximation is achieved by setting d
dtyC(t) = 0 in Equation (3.11), which 

allows one to work with a smaller system of ODEs. Several conditions for the validity of the 

sQSSA have been proposed in the literature. See [57] for a detailed discussion.
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Following the deterministic approach in our case, we set d
dtyC(t) = 0 in Equation (3.11) to 

get a reduced PDE system that is analogous to the sQSSA. To be more precise, d
dtyC(t) = 0

yields

yC(t) =
yS(t)∫0

∞k1(s)yE(t, s) ds
k−1 + k2

,

which further yields an approximate system

d
dtyS(t) = − k2

k−1 + k2
yS(t)∫

0

∞
k1(s)yE(t, s) ds,

d
dtyP(t) = k2

k−1 + k2
yS(t)∫

0

∞
k1(s)yE(t, s) ds .

(3.12)

Recall that yE solves (∂t + ∂s)yE(t, s) = −k1(s)yE(t, s)yS(t) with boundary condition yE(t, 0) = 

(k−1 + k2)yC(t) and initial condition yE(0, s) = fE(s). As a consequence, yE is determined by 

yS and yC, and can be partially solved in terms of yS and yC. Therefore, the reduced system 

of ODEs in Equation (3.12) is indeed autonomous and therefore, serves as an sQSSA of the 

CRN in Equation (3.9).

In the stochastic set-up, the QSSAs are obtained by means of the probabilistic multiscaling 

techniques developed in [3, 4]. The stochastic and the deterministic QSSAs mostly agree 

with each other with some notable differences. Please see [57] for examples of discrepancies 

as well as more details on the methods. Here, for paucity of space, we do not consider the 

stochastic QSSAs or possible discrepancies between stochastic and deterministic methods in 

the present age-structured models.

4. Prokaryotic auto-regulation

As another example, we consider a simple genetic network with feedback. We apply our 

approach using an age-dependent measure-valued process to build a model for a simple 

prokaryotic auto-regulation with a time delay. We modify an auto-regulation mechanism 

in the prokaryote gene network in [59] (Section 1.5.7). We simplify the example by 

approximating transcription and translation as a one-step process with a time delay and 

replacing repression of the gene by a protein dimer to repression by a single protein instead. 

For other related examples for the gene transcription and translation, see Section 2.1.1 in 

[60] and [61, 62, 63, 64].

Consider a genetic network with a gene (G), a protein (P), and a gene-protein complex (C). 

The gene activates production of protein following a hazard function bP and the protein 

degrades following a hazard function dP. The protein can reversibly bind with the gene to 

form a complex with binding hazard bC and unbinding hazard dC. Since the gene-protein 

complex cannot participate in the production of protein, this is auto-regulation of the gene 

by its complex. Schematically, the reactions are as follows:
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G bP P + G,
P + G bC C,
C dC P + G,
P dP ∅ .

(4.13)

In (4.13), we assume that the age of the gene is important. Therefore, the hazard functions 

bP and bC are assumed to be age-dependent whereas dC and dP are assumed to be constants. 

Note that after unbinding of the gene-protein complex, the age of the gene is reset to zero. 

On the other hand, the age of the gene is not affected by the protein production.

Denote by NG(t), NP(t), and NC(t) the total molecular counts of the gene, the protein, and 

the gene-protein complex at time t, respectively. For the species G, P, and C, define the 

measure-valued processes

XtG ≔ ∑
i = 1

NG(t)
δgi(t), XtP ≔ ∑

i = 1

NP(t)
δpi(t), XtC ≔ ∑

i = 1

NC(t)
δci(t),

where we denote the age of the i-th molecule of the species G, P, and C by gi, pi, and ci 

respectively. As in the case of the Michaelis–Menten enzyme kinetic reaction, we scale the 

hazard function bC corresponding to the bimolecular reaction by n−1 following the stochastic 

law of mass actions [1].

The LLN limit of the scaled process n−1Xt ≔ (n−1Xt
G, n−1Xt

P , n−1Xt
C) can be derived 

following by now familiar arguments of the previous examples. As one would expect, 

the scaled process n−1Xt converges to a deterministic function xt ≔ (xtG, xtP , xtC) whose 

components are finite measures on ℝ+. Since we assume only the age of the gene is 

important, we consider the limiting age density yG of the gene, which we obtain as the 

density, when it exists, of the measure xtG with respect to the Lebesgue measure. Similarly, 

define the limiting concentrations of the product yP and the complex yC. The limiting system 

is then described by

(∂t + ∂s)yG(t, s) = − bC(s) yG(t, s)yP(t),
d
dtyP(t) = ∫

0

∞
bP(s)yG(t, s) ds − yP(t)∫

0

∞
bC(s)yG(t, s) ds

+ dC yC(t) − dP yP(t),
d
dtyC(t) = yP(t)∫

0

∞
bC(s)yG(t, s) ds − dC yC(t),

(4.14)

with the boundary condition

yG(t, 0) = dC yC(t)
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and the initial condition yG(0, s) = fG(s), which specifies the initial ages of the gene. 

Note that the hazard function for unbinding of the gene-protein complex appears in the 

boundary condition since we assumed that the age of the gene is reset to zero when the 

complex breaks into the gene and the protein. Also, recall that bP(s) encodes a time delay in 

transcription and translation. For example, we may set bP(s) = r1[τ,∞)(s), which asserts that 

protein is produced only when the age of the gene is greater than τ with a hazard function r.

5. Discussion

Many biological processes with time delays, including CRNs, cannot be directly 

modeled using CTMCs due to non-exponentially distributed inter-event times of the 

processes. The simulation and analysis of systems with an age structure and time delays 

become challenging since the system dynamics are affected by the inherent randomness 

(stochasticity) as well as time delays. One way to simulate such stochastic systems with age 

structure and time delays is to modify simulation algorithms for CTMC models where the 

next reaction time and type are determined based on molecule counts of reactants. Bratsun 

et al. [39], Barrio et al. [65] and Cai [66] constructed modified SSAs, while Anderson 

[67] introduced a modified next reaction method to simulate discrete stochastic chemical 

reaction networks with delays. Notably, all of those works assume that the time lags in the 

delayed reactions are constant. Furthermore, in [68], Caravagna and Hillston described a 

non-Markovian stochastic process algebra, called Bio-PEPAd, to incorporate deterministic 

delays and perform formal analysis. Mura et al. [69] described how general holding time 

distributions can be incorporated in the programming language BlenX and studied the 

effect of the choice of the reaction time distributions. A stochastic simulation algorithm for 

non-Markovian biochemical reactions based on constraint programming is presented in [70].

CRNs with an age structure and random time delays provide a more realistic description 

of stochastic biophysical or chemical systems compared to the ones with fixed time delays. 

Unfortunately, the literature on stochastic systems with random time delays remains sparse. 

In a previous work by Koyama (Chapter 4 in [40]), the author investigated a stochastic 

kinetic network with a random time delay where a delayed reaction can be interrupted by 

another reaction and can fail to complete. In another work by Marquez-Lago et al. [71], 

the authors utilized probability distributed time delays to incorporate spatial effects such as 

diffusion or translocation of molecules in temporal stochastic models. In a recent work by 

Choi et al. [27], the authors described protein production in transcription and translation as a 

birth and death process with a random time delay.

In this paper, we developed a new way to incorporate an age structure and time delays in 

CRNs using age-dependent processes. We availed ourselves of previous theoretical works 

[36, 37, 43, 44] designed to study age-dependent population dynamics. We applied those 

stochastic models in the context of CRNs to account for the non-Markovian property due 

to the time delays. The use of age-dependent hazard functions not only enables us to 

model age-dependent time delays or reaction rates but also covers the modeling of constant 

and random time delays in the existing literature. We illustrated our method using simple 

biophysical systems in gene regulation and enzyme kinetics, but it will easily apply to 

general CRNs.
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One potential disadvantage of the age-dependent processes is that simulation can be 

prohibitive since the age of each individual molecule of the chemical species of interest 

needs to be tracked over the entire simulation time. Therefore, we derived a large-volume 

limit of the age-dependent process for CRNs in the form of PDEs using the analytic methods 

in [36, 37, 43, 44] and used the PDE limit to construct a hybrid simulation algorithm, 

which, in our example, turned out to be five times faster than the full stochastic simulation. 

Moreover, we approximated a Mean First Passage Time efficiently utilizing the theoretical 

limit.

In this work, we emphasized how age-structured processes and their large-volume limits 

can be applied to model CRNs, in particular, biophysical or chemical systems with time 

delays. Many previous findings for general CRNs under Markovian assumption can be 

reinvestigated and extended to non-Markovian settings using age-structured processes. It 

would be interesting to see how the long time behavior of stochastic CRNs is affected 

by incorporating age structure. For example, it would be interesting to study stationary 

distributions of autocatalytic CRNs with switching behavior [72], to identify a class of 

CRNs maintaining product-form Poisson distributions for all times [73] and to find when 

CRNs show nonexplosive behavior [74]. Another interesting direction will be to study 

stability of CRNs [75] and to estimate transition times between different attractors in CRNs 

[76].

For the sake of simplicity, we have assumed in this paper that the molecular entities of 

all chemical species are abundant at the same order of magnitude so as to obtain the 

large-volume limit under the classical scaling. A natural extension of this work is to consider 

general CRNs with a wide range of molecular abundances and reaction rates where we 

can apply multiscale approximations to reduce model complexity [1, 3, 77]. We leave 

such investigation to future work. In this paper, we briefly described how an analogue of 

QSSA can be derived in the Michaelis-Menten enzyme-kinetic reactions. As shown in the 

related previous work [57, 58], both deterministic and stochastic QSSAs can be revisited 

with an extension of our approach to multiscale approximations in enzyme kinetics under 

non-Markovian setting. Another promising application of our approach seems to be in 

parameter inference and survival analysis of general CRNs with age structure. Given the 

current interests in pandemic modeling, such CRNs could lead to interesting examples in 

population dynamics and epidemiology. We hope to be able to pursue such work in the near 

future.

We conclude our discussion by briefly mentioning a class of CRNs modeled using Poisson 

processes with time-varying intensities. While retaining the Markov property, time-varying 

intensities provide a flexible way to aggregate out unobserved processes and to account 

for heterogeneity in the system such as cell-to-cell variability, changes in the volume or 

temperature of a cell affecting reaction rates [78, 67, 79]. However, the crucial difference 

between those models and ours is that time-varying intensities alone cannot induce a 

dependence structure of time delays on the initiation times of reactions whereas introduction 

of an age structure can. This is because time-varying intensities are a property of the system, 

whereas the age is a property of the individual molecule. Therefore, making the intensities 
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depend explicitly on the individual ages of the molecules, as we do in this paper, provides a 

richer class of models.
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A.: Table of symbols

Symbol Meaning

ℕ The set of natural numbers

ℝ The set of reals

ℝ+ The set of non-negative reals

1{A}(x) Indicator (characteristic) function of the set A

δx Dirac delta function at x

ℬ(A) The Borel σ-field of subsets of a set A

ℳP(E) The space of finite point measures on the set E

D([0, T], E) The space of E-valued càdlàg functions defined on [0, T]

⟨μ, f⟩ The integral ʃ f dμ

B.: Acronyms

CDF Cumulative Distribution Function

CRN Chemical Reaction Network

CTMC Continuous Time Markov Chain

FPT First Passage Time

LLN Law of Large Numbers

MFPT Mean First Passage Time

ODE Ordinary Differential Equation

PDE Partial Differential Equation

PDF Probability Density Function

PPM Poisson Point Measure

QSSA Quasi-Steady State Approximation
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rQSSA reversible QSSA

sQSSA standard QSSA

SSA Stochastic Simulation Algorithm

tQSSA total QSSA

C.: Preliminaries

For the sake of completeness, we briefly describe some statistical and mathematical 

preliminaries here. Consider a continuous random variable U taking nonnegative values 

with Cumulative Distribution Function (CDF) GU and Probability Density Function (PDF) 

gU. The survival function SU of the random variable U is defined as

SU(t) ≔ P (U > t) = 1 − GU(t) . (C.15)

The hazard function hU of the random variable U is defined as

ℎU(t) ≔ gU(t)
SU(t) . (C.16)

Hazard and survival functions are extensively used in survival analysis to model time to 
event data, e.g., time to death, time to hospitalization, time to default, time to failure etc. 

Intuitively, the hazard function describes the probability of failure in an infinitesimally small 

time period (t, t + Δt) given survival till time t. With little application of calculus, one can 

see that

ℎU(t) = lim
ℎ 0

P (t < U < t + ℎ ∣ U > t)
ℎ = − d

dt log SU(t),

which yields another useful relationship between the hazard function and the survival 

function:

SU(t) = exp −∫0
t
ℎU(u) du = exp ( − ΛU(t)) ,

where ΛU(t) ≔ ∫0
tℎU(u) du is called the cumulative hazard function. Hazard and survival 

functions cannot always be obtained in closed form. Probability distributions for which we 

can obtain them in closed form include Weibull, exponential, log-logistic distributions. The 

case of exponential distribution is unique in that it is the only probability distribution for 

which the hazard function is constant. However, a constant hazard is unrealistic in models 

for many biophysical systems.
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D.: Brief derivation of the PDE limit

In this section, we provide a brief, intuitive derivation of the PDE limit mentioned in 

Section 2.3. The line of argument follows the standard tightness-uniqueness route for 

abstract Markov processes and has been used in several prior works [36, 45, 37, 43, 44]. A 

rigorous proof of convergence for a general class of non-Markovian CRNs will be discussed 

elsewhere.

Consider the CRN in Equation (2.1) with the measure-valued process Xt as defined in 

Section 2.3. The components Xt
A, Xt

B satisfy the trajectory equations given in Equations 

(2.4) and (2.5). In order to study moments and martingale properties of Xt
A and Xt

B, it is 

worthwhile to check that

〈XtA, ft〉 = ∑
k = 1

NA(0)
ft(t + σk(X0

A)) + ∫0
t∫0

∞
ft(t − s) 1{θ ≤ b}Q1(ds, dθ)

− ∫0
t∫ℕ∫0

∞
ft(t − s + σi(Xs −A )) 1{i ≤ NA(s − )} 1{θ ≤ τ(σi(Xs −A ))}Q2(ds, di, dθ)

− ∫0
t∫ℕ∫0

∞
ft(t − s + σi(Xs −A )) 1{i ≤ NA(s − )} 1{θ ≤ d(σi(Xs −A ))}Q3(ds, di, dθ),

〈XtB, ft〉 = ∫0
t∫ℕ∫0

∞
ft(t − s) 1{i ≤ NA(s − )} 1{θ ≤ τ(σi(Xs −A ))}Q2(ds, di, dθ),

for a sufficiently large class of test functions f : (a, s) → fs(a).

As in the case of standard Markov model in Section 2.1, we are now interested in the 

large-volume limit (n → ∞) of the scaled stochastic process n−1Xt. By virtue of the LLN, 

if we assume i) the hazard functions are continuous, ii) the global jump rates are bounded 

above by a finite quantity, iii) a finite second moment condition on the initial population 

size supn E [n−2NA(0)2] < ∞, and iv) the initial age distribution does not explode, we 

have that the scaled process n−1Xt converges to a deterministic function xt ≔ (xtA, xtB) whose 

components xtA and xtB are themselves measure-valued functions. This can be formally 

justified by verifying that the sequence of processes n−1Xt is tight and then, showing that the 

limit points (along subsequences) are unique. We can identify the limit points by studying 

certain martingale processes associated with the scaled processes n−1Xt. Outline of the 

argument is provided below.

D.1. Martingale property and tightness-uniqueness

First, under the above mentioned assumptions, we can show that the components of the 

scaled process n−1Xt do not explode (similar derivation in [37, Proposition 2.7]). Now, note 

that the trajectory equations for the processes Xt
A and Xt

B given in Equations (2.4) and (2.5) 

are driven by PPMs. Since we have

ft(a + t − s) = fs(a) + ∫s
t ∂

∂u fu(a + u − s) + ∂
∂a fu(a + u − s) du,
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and using the compensated PPMs of the PPMs Q1, Q2, Q3, we can show the processes

Mt
A, f = 〈n−1XtA, ft〉 − 〈n−1X0

A, f0〉

− ∫0
t∫0

∞ ∂
∂a fs(a) + ∂

∂s fs(a) − fs(a)(τ(a) + d(a)) n−1XsA( da) ds

Mt
B, f = 〈n−1XtB, ft〉

− ∫0
t∫0

∞ ∂
∂a fs(a) + ∂

∂s fs(a) + fs(0)(τ(a) n−1XsA( da) ds

are zero mean, square integrable, càdlàg martingale processes with predictable quadratic 

variations of the order n−1. Since we expect the predictable quadratic variations to vanish 

in the limit of n → ∞, the scaled process n−1Xt converges to a deterministic, continuous 

function xt. The tightness of the process n−1Xt can be established by verifying a criterion 

due to Roelly [80] in the vague topology and the Aldous–Rebolledo criteria [81]. See 

[36] or [37, Proposition 3.1] for similar calculations. Furthermore, thanks to the martingale 

representations above, we expect the limit xt to satisfy

〈xtA, ft〉 = 〈x0
A, f0〉

+ ∫0
t∫0

∞ ∂
∂a fs(a) + ∂

∂s fs(a) − fs(a)(τ(a) + d(a)) xsA( da) ds

〈xtB, ft〉 = ∫0
t∫0

∞ ∂
∂a fs(a) + ∂

∂s fs(a) + fs(0)τ(a) xsA( da) ds .

The uniqueness of the solutions can be shown by first establishing that the solutions remain 

bounded on finite time intervals (recall the global jump rates are assumed bounded) and 

then invoking Grönwall’s lemma to show the distance between two possible solutions must 

vanish proving the desired uniqueness.

E.: Software

The numerical results in this paper are obtained by the Julia programming language [46]. 

The Julia scripts (compatible with version 1.4.1) used in this paper have been made available 

publicly at a dedicated GitHub repository [38].
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Figure 1. 
(Left) The shapes of the three hazard functions in the CRN described by Equation (2.1). 

Here, b = 0.4. The hazard functions τ and d correspond to a Generalized Extreme 

Value distribution with parameters (1.25/0.30, 1.250, 0.30) and a Gamma distribution with 

parameters (2.5, 1.75) respectively. Here, the conversion reaction has been explicitly made 

a delayed one. (Right) Comparison of the theoretical limiting trajectory and the simulated 

trajectories of concentrations of A and B molecules. The mean of the simulated trajectories 

is shown in solid lines, while the theoretical mean curve (given by the PDE limit) is shown 

in dashed lines. The width of the ribbons indicate 1 standard derivation fluctuation around 

the mean. Here, n = 100, i.e., the initial number of A molecules is 100. It is evident that the 

theoretical limit provides a fairly accurate approximation to the scaled processes.
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Figure 2. 
(Left) The shapes of the three hazard functions in the CRN described by Equation (2.1). 

Here, b = 0.1. The hazard functions τ and d characterize an Inverse Gamma distribution with 

parameters (1.75, 4.25) and a Weibull distribution with parameters (1.5, 3.75) respectively. 

(Right) The density of approximate First Passage Times (FPTs) match that of the true FPTs. 

Here, n = 100.
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Figure 3. 
An example of the hybrid simulation approach. (Left) The shapes of the three hazard 

functions the CRN described by Equation (2.1). (Right) Comparison of the hybrid 

simulation algorithm (Algorithm 2.2) with the full stochastic simulation algorithm 

(Algorithm 2.1). Here, the birth rate b = 0.01. The distributions characterized by τ and 

d are inverse gamma distribution with parameters (1.75, 4.25) and a Beta prime distribution 

with parameters (1.75, 1.25). The value of n in this example is 5000. The full stochastic 

simulation took 305.714216 seconds, while the hybrid simulation took only 62.093832 

seconds on a 2.3 GHz 18-Core Intel Xeon W machine.
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Figure 4. 
Efficiency of the hybrid simulation algorithm. The figure shows the empirical density of 

the ratios of execution times and memory usage of the full stochastic simulation and those 

of the hybrid simulation algorithm described in Algorithm 2.2. It is evident that the hybrid 

simulation algorithm is at least five times faster in terms of execution times and at least four 

times more efficient in terms of memory usage. The simulation set-up is the same as Figure 

3. The performance evaluation of the hybrid simulation is done using the BenchmarkTools.jl 
package [54] in Julia language [46]
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