Skip to main content
. 2022 Jun 21;7(3):253–278. doi: 10.1007/s41019-022-00188-2

Table 9.

AUC results of big datasets of online social networks

Methods/datasets BK DB EPN GWL LMC
CN 0.8194 0.5978 0.8685 0.8837 0.7826
Salton 0.8565 0.6059 0.9131 0.8972 0.7634
JI 0.8216 0.5999 0.8607 0.8775 0.7781
Sorens 0.8217 0.5797 0.8609 0.8773 0.7795
HPI 0.8542 0.6214 0.9012 0.8901 0.7783
HDI 0.8186 0.5830 0.8620 0.8775 0.7774
LLHN 0.8569 0.6163 0.9088 0.8907 0.7653
AA 0.8205 0.5886 0.8709 0.8801 0.7829
RA 0.8197 0.5879 0.8716 0.8806 0.7812
PA 0.8312 0.6691 0.8901 0.8674 0.9215
LNBCN 0.8201 0.5877 0.8725 0.8761 0.7903
LNBAA 0.8193 0.5874 0.8707 0.8757 0.7899
LNBRA 0.6400 0.5876 0.8724 0.8760 0.7886
DeepWalk 0.6426 0.5437 0.6028 0.6514 0.5386
Node2vec 0.9731 0.9714 0.9269 0.9794 0.8239
Struc2vec 0.9783 0.9796 0.9298 0.9852 0.8315
GCN 0.6563 0.6047 0.7937
DGCNN 0.9276 0.9444 0.9520 0.9419 0.9298
LINE 0.8383 0.6234 0.6454 0.8098 0.6875
SDNE 0.9705 0.9685 0.9193 0.9718 0.8197
VERSE 0.9969 0.9970 0.9964 0.9980 0.9865