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a b s t r a c t

Recent literature has revealed a growing interest in methods for anticipating the demand for med-
ical items and personnel at hospital, especially during turbulent scenarios such as the COVID-19
pandemic. In times like those, new variables appear and affect the once known demand behavior.
This paper investigates the hypothesis that the combined Prophet-LSTM method results in more
accurate forecastings for COVID-19 hospital Intensive Care Units (ICUs) demand than both standalone
models, Prophet and LSTM (Long Short-Term Memory Neural Network). We also compare the model
to well-established demand forecasting benchmarks. The model is tested to a representative Brazilian
municipality that serves as a medical reference to other cities within its region. In addition to
traditional time series components, such as trend and seasonality, other variables such as the current
number of daily COVID-19 cases, vaccination rates, non-pharmaceutical interventions, social isolation
index, and regional hospital beds occupation are also used to explain the variations in COVID-19
hospital ICU demand. Results indicate that the proposed method produced Mean Average Errors (MAE)
from 13% to 45% lower than well established statistical and machine learning forecasting models,
including the standalone models.

© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

Uncertainty is a constant in the hospital environment. One
f the main issues hospitals face is uncertainty over demand
or their services [1]. The number of incoming patients varies
ubstantially over time, impacting the number of beds and items
eeded. Nevertheless, even socially-driven industries, such as
ospitals, are still interested in improving their business perfor-
ance [2]. On the one hand, over-forecasting the demand may
aste resources that could be used elsewhere within the hospital.
n the other, under-forecasting may pull the hospital away from
ts purposes, such as to provide excellent and efficient patient
are [3] or care for everyone who come to them [1]. Moreover,
ospital performance is closely inspected by government and
ociety: generally its primary stakeholders. Thus, the task of
alancing service and costs is notably challenging during turbu-
ent scenarios, such as global healthcare crises, when hospitals
ay face disruptions in the upstream and over-demand in the
ownstream [4].
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ederal Fluminense (UFF), Rio das Ostras, RJ, 28.890-000, Brazil.
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The COVID-19 pandemic is the most significant global health-
care crisis of the last century. Despite HID/AIDS being associated
with more deaths (32 mi since 1981),1 the COVID-19 pandemic
is a natural disaster with no precedents to our generation, due to
its great transmissibility and severe economic impact [4]. It has
been causing recessions, damage to people’s health and jobs, and
overcrowding hospitals worldwide.2 Those impacts are amplified
n developing countries, where social and hospital infrastruc-
ure are generally under stress even during regular times [5].
nfortunately, SARS-CoV-2 variants are still emerging, such as
micron, reducing the certainties that we may have regarding an
mminent end to this pandemic [6]. Additionally, COVID-19 does
ot seem to be a standalone episode, and the chances of other
andemics striking humanity soon may to be increasing [7,8].
hus, operating under strict budgetary limits and high volatility
n demand may become more frequent to hospitals in general,
ven in developed countries [3,4].
Ex-ante forecasts are those made using only the information

hat is available at the time of the forecast. In contrast, ex-post

1 HIV/AIDS vs. COVID: https://time.com/5915401/world-aids-day-covid-
oronavirus-pandemic/.
2 OCDE’s Economic Outlook: https://www.oecd.org/newsroom/global-
conomy-faces-a-tightrope-walk-to-recovery.htm.
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orecasts use later information on the predictors, beyond the
ime at which the forecast is made [9–11]. Generally, researchers
mploy regression approaches to tackle ex-post forecasting prob-
ems. At the same time, ex-ante forecasts may be performed by
lassical time series forecasting approaches [9]. However, choos-
ng between classical forecasting or regression approaches may
ead researchers to perform simplifications that make the forecast
ack precision. Selecting a subset of all relevant variables avail-
ble, lagging the variables beyond its optimum lag window, or
iscarding temporal patterns that the target variable may have,
re examples of such simplifications. To Ioannidis et al. [12] those
ay be causes for COVID-19 forecasting models to fail.
This paper presents the applicability of an Integrated Mul-

ivariate Prophet-LSTM approach to forecasting ICU beds, con-
idering traditional time series patterns and explanatory and
orrelated variables with different optimal time lags. The ad-
ressed hypothesis is that Prophet-LSTM, a hybrid ex-ante/ex-
ost forecasting approach, results in better ICU bed forecasts
uring the COVID-19 pandemic than standalone Prophet and
STM approaches. This modeling was motivated on the premises
hat Prophet performs well on capturing time series components
nd linear relationships between the demand and ex-post vari-
bles. On the other hand, LSTM efficiently captures additional
on-linearities and correlations between the ICU demand and ex-
nte variables. Besides the univariate time series components,
everal additional variables that partially explain the variations
n the target variable are considered: the current number of daily
OVID-19 cases, vaccination rates, non-pharmaceutical interven-
ions, social isolation index, and regional hospital beds occupa-
ion. Also, this paper presents a comparative analysis between
he proposed model and benchmark models, typically used in
ospital demand and COVID-19 forecasting, namely Autoregres-
ive Integrated Moving Average (ARIMA), Holt-Winters, Random
orest Regressor (RFR), K-Nearest Neighbors Regressor (KNN),
ated Recurrent Units (GRU) and Simple Recurrent Neural Net-
orks (Simple RNN). To the best of our knowledge, no study
as yet investigated a similar approach to the case of hospital
emand forecasting. The main contributions of this paper can be
ummarized as follows:

• It provides a thorough analysis of the correlation between
new ICU entrances (target variable) and daily COVID-19
new cases, vaccination rates, non-pharmaceutical interven-
tions, regional hospital beds occupation, and social isola-
tion indexes. Other variables that do not display significant
correlation to the target variable are also mentioned.

• It uses the variables mentioned earlier to predict daily ICU
entrances in all hospitals of a large Brazilian municipality,
aggregated to the city level.

• It loosely couples Prophet and LSTM, two trending Machine
Learning (ML) approaches, to incorporate ex-post and ex-ant
variables.

• It shows that proposed Prophet-LSTM reduces MAE metrics
of Prophet and LSTM in 14.2% and 17.3%, respectively, when
feeding all three models with the same inputs.

• It shows that the proposed Prophet-LSTM produces Mean
Average Error (MAE) metrics 30%, 27%, 45%, and 34% smaller
than univariate Holt-Winters, ARIMA, RFR, and KNN models,
respectively.

• The proposed Prophet-LSTM produces Mean Average Error
(MAE) metrics 13% and 14% smaller than multivariate GRU
and Simple RNN models, respectively.

The remainder of this paper is organized as follows: Section 3
ntroduces the data and the data treatments, and analyses we
erform. Next, Section 4 proposes the two-stage model hybridiz-
ng Prophet and LSTM. Then, Section 5 presents the results from
2

Prophet-LSTM and the benchmark models, and the discussions
concerning the results. Finally, Section 6 shows the conclusions
and future work directions.

2. Related work

Demand forecasting plays a central role in hospital applica-
tions. Despite forecasting not being a novel topic to statistics,
nor to healthcare sciences and hospitals [13,14], it has been
constantly improved and adjusted to solve current problems [15].

During the COVID-19 pandemic, forecasting models that once
were kept in vaults as strategic secrets became available to soci-
ety, as part of a worldwide effort to suppress this crisis through
knowledge sharing and science. Recently, many researchers have
investigated and created forecasting approaches to predict the
numbers related to COVID-19, such as: when the pandemic will
peak, how long it will last, how many will be infected or die, and
how big will be the demand for hospital beds, ventilators, and
PPE (Personal Protective Equipment) [4,15–19].

As soon as new pieces of data, estimates and conditions are
made available, researchers create new models that accommo-
date those variables to better forecast the problems at hand. In
the context of COVID-19, many variables were investigated to
explain how the hospital demand could evolve in the future,
such as the hospital carrying capacity [20,21], the daily num-
ber of COVID-19 deaths [18,20,21], new COVID-19 confirmed
cases [18,19,22], ICU new hospital entrances [19,22], percentage
of ICU occupancy [21], lockdowns and non-pharmaceutical inter-
ventions [18,23], patients’ age [22], and vaccination rates [23].
Thus, depending on when and how strongly the effect of those
variables reflect upon the target variable, researchers choose
between different forecasting approaches [9].

Hospital demand and occupancy have become even more
critical during the COVID-19 pandemic. A few researchers have
recently aimed to tailor forecasting models to address hospital
needs. Capistran et al. [18] presented a forecasting model to
predict hospital occupancy in Mexican metropolitan areas during
the COVID-19 pandemic. The model is based on the Susceptible–
Exposed–Infected–Recovered–Dead (SEIRD) model, but also
considers lockdowns and lockdown-relaxations as two kinds of
interventions that affect the transmission rates and effective
population size. A more straightforward modeling approach was
used by Rivera and Urdinola [24] to forecast hospital demands in
Colombia. The authors used an SEIR model to indirectly estimate
the hospital demand from the number of infected people, which
may fall into three groups: those that can stay at home, people
who need regular hospital beds, and patients who need ICU
treatment. Similarly, Massonnaud et al. [25] forecasted hospital
needs in France, using an SEIR model, but with short-term goals.

Apart from compartmental models, commonly used to model
medium-long term infectious diseases, other statistical models
have also gained space in forecasting COVID-19 hospital numbers,
especially for short-term predictions. Nguyen et al. [26] used
a Vector Error Correlation Model (VECM), a multivariate time
series model, that is a restricted Vector Autoregression (VAR)
model designed to be used with non-stationary data that are
known to be cointegrated. The authors present a case for hospital
census in the Charlotte metropolitan area of North Carolina. They
introduce infection rates as additional variables as a scientific
contribution of the method. According to the authors, the need
for a stable long-run relationship and the assumption that case
severity does not change in time are limitations of the model. A
very similar approach was presented one year earlier by Berta
et al. [27], but to the case of Italy, Switzerland and Spain. The
authors use publicly available data on the number of COVID-19
cases as supporting variables.

The next section introduces the COVID-19 data used for the
forecasting in the present study.
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Fig. 1. The methodology of the proposed approach.
. Case study: The data

This section introduces the investigated data and the pre-
rocessing methodology employed to the data treatment before
orecasting. Fig. 1 summarizes the content of this section and the
wo to follow.

.1. Data acquisition

Up to July 2021, Brazil was the country with the third-highest
umber of accumulated cases and the second in the number of
OVID-19 accumulated deaths worldwide [28]. Among all Brazil-
an states, São Paulo had the highest absolute numbers of COVID-
9 cases and deaths [29]. Due to the high infection rates, new
3

SARS-COV-2 variants have emerged in the country, such as the
more aggressive lineage called P.1. From November 2020, P.1.
became dominant in the country [30]. Large cities, such as state
capitals, are the most affected ones by the pandemic in Brazil [17].
This is also the case of large inland cities, such as São José dos
Campos, in the state of São Paulo.

São José dos Campos is the largest city in the Vale do Paraíba
region and a local medical reference. The city has around 731,000
inhabitants and holds the 24th and 19th highest Brazilian HDI
(0.807) and annual GDP (US$ 7 billion), respectively [31]. During
the COVID-19 pandemic, the city has also served as a scape valve
to other parts of the Vale do Paraíba region, which has around
3.3 million inhabitants, by receiving COVID-19 patients from less
affluent cities.
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Fig. 2. Target and additional variables used for forecasting.

The primary data source is the municipality of São José dos
ampos, which provided to us, under confidentiality agreement,
desegregated dataset to the patient level, reporting all COVID-
9 cases in the city and how they have evolved. This data was
artially used in a recent study [32]. Thus, we aggregated all
he information on a daily level and produced the following
irst two variables described in each subsection that follows.
esides, several pieces of information were obtained from data
reely available online and compiled by the state’s COVID-19
ontingency center of the state of São Paulo [33]. From this
ata, we produced the remaining variables of the introduced
orecasting model. Fig. 2 graphically shows how each variable,
riefly described in the following subsections, evolves in time.

.1.1. ICU-in
The variable ICU-in accounts for the number of daily entrances

n COVID-19 ICUs in all hospitals located in the city. ICU-in is the
arget variable in this study; all other variables are predictors.

.1.2. Cases
The variable Cases represents the number of COVID-19 daily

ases in the city since the first tracked case on March 05, 2020.
nly reported cases are considered, and this variable does not
over sub-notifications.

.1.3. SII
SII stands for Social Isolation Index and represents the daily

ercentage of people under social isolation in São José dos Cam-
os. This index is produced by telephonic companies that operate
ithin the state.

.1.4. RHBO
RHBO stands for Regional Hospital Beds Occupation and refers

o the daily percentage of hospital beds in usage in the whole Vale
o Paraíba region, including São José dos Campos. For comparison
urposes, the population of São José dos Campos represents 22%
f the entire population in the Vale do Paraíba region.
 w

4

3.1.5. Plano-SP
Plano-SP is the state government’s color-based reopening plan

that grades the regions of São Paulo from red (under severe
mobility restrictions) to blue (free of mobility restrictions). This
means that cities of a same region have the same mobility restric-
tions. In particular, Vale do Paraíba is one of the state regions.

Recently, the state government introduced a new phase with
more mobility restrictions than the red phase, the ‘‘Emergency’’
phase, as well as two intermediate phases between Red/
Emergency and Orange/Red [34]. In this paper, the phases were
converted into a linear numeric scale ranging from 0 to 6, with
higher values associated with more restricting phases.

3.1.6. Vax
The variable Vax regards an artificial index created in this

paper to reflect the percentage of the population that is likely
to need an ICU bed. This index is an aggregation of several
parameters and variables. It also decreases with the advance of
vaccination. It is calculated considering the four types of vaccines
available in Brazil, their protection indexes against severe hospi-
talization after first and second doses. Moreover, since there is a
clear relation between people from age groups and the likelihood
of them to need an ICU bed due to the COVID-19 infection, we
divided the population into m age groups, where m = 5.

Roughly, the index Vax consists of an estimation on the num-
er of people requiring an ICU bed from each age group, here
enoted by Si, multiplied by the probability of someone needing
n ICU bed, denoted by pi. Eq. (1) presents the proposed index.

ax =

∑m
i=1 piSi
S ′

i
(1)

where S ′

i is the size of the population in age group i. The prob-
bility pi is calculated considering the previous available data

regarding ICU hospitalizations. To estimate Si, we consider the
size of the population in age group i (S ′

i ) minus the estimated size
of the population who do not need an ICU bed due to vaccination,
here denoted by S ′′

i . Therefore, Si = S ′

i − S ′′

i . The value of S ′′

i takes
into account parameters vj and wj, that represent the proportion
of people (from any age group) that will not develop severe
COVID-19 after one and two shots, respectively. Therefore, S ′′

i can
be calculated as in Eq. (3).

S ′′

i =

n∑
j=1

wjaij + vj(bij − aij) (2)

where aij, bij, and cij represent the population inside the age
segment i that took, respectively, two, one, or none of the doses
of vaccine j. Therefore, S ′

i =
∑n

j=1 aij + bij + cij, where n is the
number of available vaccines, and, thus

Si = aij + bij + cij −
n∑

j=1

wjaij + vj(bij − aij) (3)

The index considering every age group is, therefore, calculated
as indicated in Eq. (4).

Vax =

m∑
i=1

pi
n∑

j=1

aij + bij + cij − wjaij − vj(bij − aij)
aij + bij + cij

(4)

The total number of vaccines available is n = 4. The values for
m and n reflect the state’s policies in the beginning of vaccination.
Also, all vaccines have different immunization coefficients, which
are provided by the companies that produced them and according
to the tested population. These coefficients increase with more
vaccine doses taken and vary from vaccine makers, as shown in
Table 1. Thus, the first dose has a percentage of immunization vj,
hereas the second dose has a percentage of immunization w .
j
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Table 1
Vaccine percentage of immunization by doses taken and vaccine maker.
Vaccine 1st dose 2nd dose

Pfizer 89% 92%
Coronavac 42.7% 86%
AstraZeneca 76% 81%
Janssen 85.4% –

However, even after immunization, different age segments have
different probabilities of needing an ICU bed if infected by COVID-
19. Thus a coefficient pi, obtained from the municipal data prior
vaccination, representing the probability of hospitalization for
age segment i is also employed in the calculations. Vaccination
started on January 18, 2021, thus Vax is constant up to this day,
when it starts decreasing.

The main idea behind Equation (4) is to better address the
arget variable of this paper, the vaccination rates. It is con-
tructed in this manner to reflect the impact of vaccination rates
ver ICU bed demand, which is our target variable in this paper.
dditionally, we only use vaccines as source of immunity for
wo reasons. First, the percentage of the city’s population that
ontracted COVID-19, by the time this work was performed, was
elatively low; and second due to the fact that a single person
ay be reinfected by different SARS-COV-2 variants, which may

mplicate in hospitalization.

.2. Data analysis

We start by empowering the relevance of the predictor vari-
bles in describing the behavior of the target variable. To do so,
e maximize the correlation coefficient (CC) between the num-
er of ICU new entrances (ICU-in) and other variables that may
e relevant to the predictive analysis. To maximize the CC, we
emove anomalies from the data, lag the variables according to
anges prescribed in the literature, and detached seasonal effects
hat may make noise to predictions.

.2.1. Seasonal analysis
The target variable does not display a continuous and consis-

ent weekly seasonal pattern, unlike what was observed on the
ariable Cases. Fig. 3 exhibits a graphical analysis of the weekly
easonal components of the variables by using radar charts to
llustrate how the seasonality of each variable evolves in time.
ach set of lines connecting dots in each graph represents the
easonality pattern in a given period of time. The more consistent
he seasonality pattern is, the more parallel the set lines are, and
ess area of the graph is occupied by the lines. On the other hand,
he less consistent the seasonality pattern is, the more frequent
ines will cross each other and occupy other areas of the graph.

We notice that as well as the target variable, RHBO, Plano-
P, and Vax also do not seem to display a consistent weekly
easonal pattern along the months. However, the opposite is
rue for Cases and SII variables, which show a consistent weekly
easonal pattern.
We also perform a linear regression to determine whether

easonal components are relevant to describe the variables in
n overall manner. First, each variable is seasonally decomposed
y taking the 7 day-moving average of the series as a trend
omponent, and the additive and multiplicative seasonalities are
omputed. We then regress the original variable on its trend and
ompute the R-squared metric. Finally, we regress the original
ariable on its trend adjusted by the seasonal component and
erify if there is any considerable improvement in the R-squared.
he ordinary least squares (OLS) linear regression was used in
5

Table 2
R-squared improvement with additive and multiplicative seasonalities over the
decomposed trend.
Variable Additive Multiplicative

ICU-in 2.31% 2.61%
Cases 5.23% 6.69%
SII 44.35% 44.16%
RHBO 0.03% 0.02%
Plano-SP 0.07% 0.05%
Vax 0 0

both cases. The higher the gain, the more relevant the vari-
able’s weekly seasonal component. As shown by Table 2, seasonal
components are more relevant in Cases and SII variables.

We assume that the target variable does not show a consistent
and relevant seasonal component when looking at both analyses.
Thus we deseasonalize both the variables Cases and SII before
lagging them.

3.2.2. Lagging the variables
Despite all the variables considered in our analysis being col-

lected daily, their influence over ICU new entrances (ICU-in)
lags in time. Recent studies point out incubation periods (from
infection to symptom onset) for SARS-COV-2 ranging from 4 to
6 days [35–37]. Besides, the interval between symptom onset
and hospitalization seems to range from 2 to 10 days [38,39].
Especially in the Brazilian case, testings for COVID-19 are not
coincident with symptom onset. In fact, tests happen on average
10 days after the first symptoms [40].

Thus, the correlation analysis performed in this paper also
aims to find the best lag to each predictor variable, respecting
the ranges found in the literature regarding the target variable.
The tested lag ranges we test are shown in Table 3.

3.2.3. Correlation analysis
We use the Spearman correlation, a non-parametric test com-

monly employed in the context of time series analysis. For this,
first consider the Spearman rank correlation coefficient (ρ), in Eq.
(5):

ρ = 1 −
6

h3
s − hs

hs∑
i=1

D2
i (5)

where Di is the pairwise difference between the ranks of samples,
and hs is the number of samples [17]. The ranks of the samples
are obtained from the raw daily data. In the case where, for a
given predictor variable, hs ranks are not distinct integers, a more
general correlation measure must be used, presented in Eq. (6).

ρ =
cov(rgX , rgY )

σrgX σrgY
(6)

where ρ is the Pearson correlation coefficient between the rank-
ings of the predictor and target variables, cov(rgX , rgY ) is the
covariance of the rank variables, and σrgX and σrgY are the stan-
dard deviations of the rank variables [41]. In both formulations, a
negative value of ρ indicates inversely proportional variables, and
a positive value of ρ indicates directly proportional variables.

Table 3 resumes the optimal time lag for each variable, as well
as the correlation coefficient found to the optimal time lag. The
p-values for all correlations are less than or equal to 0.01, which
means that the correlations are statistically significant.

Table 3 suggests that the most correlated predictor is the
number of daily COVID-19 cases in the city, and SII is the less
correlated. Since the forecasting approach proposed in the next
section is non-linear, even variables with small linear correlation

coefficients may bring relevant information to the predictions.
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Table 3
Optimal time lags and Spearman correlation coefficients (CC) with the target
variable.
Variable Lag range tested Optimal lag CC

Cases 0–10 days 0 days 0.69
SII 6–16 days 9 days −0.07
RHBO 0–10 days 0 days 0.51
Plano-SP 4–16 days 6 days 0.53
Vax 7–21 days 19 days 0.15

Therefore, we deliberately chose to keep all variables, even those
with small correlation coefficients, since they may also carry
information pertinent to the models.

4. The proposed integrated approach

The approach proposed in this paper integrates the Prophet
nd LSTM models to tackle the problem of demand forecast-
ng under the influence of independent variables with different
ptimal time lags.
In the first stage, we run Prophet taking as exogenous variables

hose with optimum time lag (l), with l ≥ hb, where hb is
he forecasting horizon. The introduced model then collects the
rophet fitted values for the training set (ŷPa ), Prophet predicted
alues (ŷPb ) for the forecasting horizon hb, and Prophet residuals
or the training set (ϵP

a ), with ϵP
a = ŷPa − ya, where ya refers

o the target value for observation a in the training set, and b
6

efers to each observation being predicted, with a = 1, 2, . . . , ha,
= 1, 2, . . . , hb, and hs = ha + hb.
Then, an LSTM model is applied in the second stage. In this

odel, the target variables are the set of residuals from Prophet,
P
a . Besides the residuals, the LSTM model also takes variables
hose whose l < hb as input. The LSTM model then returns
he predicted values (ŷLb) for the forecasting horizon hb. The
esiduals from Prophet and LSTM are aggregated, producing the
rophet-LSTM predicted values (ŷb), described in Eq. (7):

ˆb = ŷPb + ŷLb (7)

Algorithm 1 presents a pseudocode of the Prophet-LSTM inte-
ration.

More details about the Python implementation of the analyses
nd models are given in Appendix section.

.1. Fitting and forecasting

Both models, Prophet and LSTM, are explained in the following
ubsections. In addition, details on how the models were set to
he studied data are also provided.

.2. First stage: Prophet

Prophet is a recent forecasting model introduced by Face-
ook [42]. The model was originally proposed to forecast daily
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Algorithm 1 Prophet-LSTM
Data: A set of dependent variables ya, a set of independent variables

X , a forecasting horizon hb, and hyperparameters for Prophet and
LSTM stages

Result: Predictions of Prophet-LSTM, ŷb
Assign to XP the variables from X with optimum time lag greater than
hb
Assign to X L the variables from X with optimum time lag equal to or
lass than hb

Train the Prophet stage of the model, taking ya, XP
a and set of hyper-

parameters as inputs, and collect ŷPa and the set of Prophet training
parameters
Calculate the residuals of the first stage: ϵP

a = ŷa
P

− ya
Make predictions with Prophet, taking yb, XP

b and the set of Prophet
training parameters as inputs. Then collect ŷPb
Train the LSTM stage of the model, taking ϵP

a , X
L
a and set of hyperpa-

ameters as inputs, and collect the set of LSTM trained parameters
ake predictions with LSTM, taking hb and a set of LSTM training
arameters as inputs. Then collect ŷLb
alculate the predictions of Prophet-LSTM: ŷb = ŷPb + ŷLb

demands under the effect of different seasonal patterns, such
as weekly and annual seasonalities, plus holiday effects [9]. De-
spite its novelty, it has been used to tackle demand forecasting
problems. For example, Guo et al. [43] used Prophet to fore-
cast the maximum power demand in China. In another Chinese
case study, Guo et al. [44] integrated Prophet to Support Vector
Regression (SVR) to predict product demands. The proposed inte-
grated model uses SVR to capture nonlinearities in the residuals
generated by Prophet. In the case of COVID-19, Prophet has been
mainly used to forecast the COVID-19 number of new cases
[45,46].

To generate forecasts, Prophet first decomposes the time series
n trend (gt ), seasonality (st ), and holidays (ht ), which are given
by Eq. (8) [42,43].

yt = gt + st + ht + ϵt , (8)

where ϵt is the residual from the decomposition at time t . In
the case of multiplicative seasonalities, gt and st include log
transformations.

The trend, gt , may be described as a piecewise-linear or non-
linear function with saturated logistic growth. In this paper, we
use Prophet to model a piecewise-linear function, thus:

gt = (k + aTt δ)t + m + aTt γ (9)

where k is a basic trend growth rate and m is a offset parameter.
For each of the S changes in the trend, a changepoint at time sj is
set, with j = 1, . . . , S. Thus, a vector of growth rate adjustments
δ ∈ RS is defined, where δj is the change rate at time sj. The rate
at any time t will be the base rate k plus all changes up to t:
k+

∑
j:t>sj

δj. In a cleaner way, a vector at ∈ {0, 1}S can be defined,
such that:

aj,t =

{
1, if t ≥ sj

0, otherwise (10)

Thus the rate at time t is k+ aTt δ. To each change in k, m must
also be updated, in order to connect the segments endpoints. To
adjust m, a vector γ is also employed, whose elements γj = −sjδj.

The changepoints sj are automatically selected by putting a
sparse prior on δ. Thus, to choose the changepoints from several
candidates, Prophet uses the prior δj ∼ Laplace(0, τ ), where the

parameter τ sets the model’s flexibility in altering the rate.

7

Additional regressors, such as Cases and Vax, are treated as
supporting terms in Eq. (9), similarly to tabular supervised set-
tings. Thus, extra regressors need to be known in all future dates
for which the target variables will be predicted.

Smoothed weekly seasonality is computed as a Fourier series,
given by:

st =

E∑
e=1

(
aecos

(
2πet
P

)
+ besin

(
2πet
P

))
(11)

here P = 7 is the regular period we expect in the case of
eekly seasonalities associated with the COVID-19 time series
resented, and E is a smoothing parameter that regulates how

quickly seasonal patterns are fit. Thus, increasing E also increases
the risk of overfitting. Fitting seasonality also requires estimating
the 2E parameters β = [a1, b1, . . . , aE, bE]T . All Prophet con-
stants are manually set or automatically found via grid search or
optimization approaches.

4.2.1. Second stage: LSTM
Neural Networks are the backbones of many Artificial Intel-

ligence (AI) algorithms, which play an important role on daily
economic activities [47,48]. Long–Short Term Memory Neural
Networks (LSTM) are the most popular deep learning subset of
models for time series forecasting [49]. LSTMs are extensions of
Recurrent Neural Networks (RNN). The main difference between
LSTM and RNN is that an LSTM can store time-dependent in-
formation, mapping non-linear relationships between inputs and
outputs [50]. Recently, especially after the development of open-
source libraries and the improvements in computational power,
LSTMs have mainly been used to tackle demand forecasting prob-
lems, such as ultra-short-term industrial power demand [51],
highly fluctuating product demand [50], and hourly natural gas
demand [52]. Similarly to Prophet, during the COVID-19 pan-
demic, LSTM has been mainly used to forecast the number of
COVID-19 new cases [53,54].

LSTM cells and gates form LSTM units, that are merged to
compose the LSTM layers of an LSTM neural network. The LSTM
units are formed by three main types of gates, that regulate the
information flow, and a memory cell. This structure allows an
LSTM to decide which information will be forgotten and which
will be remembered, promoting the learning process of long-term
dependencies [55]. The main gates of an LSTM are the input,
output, and forget gates. Associated with these gates, there are
the input activation vector it , output activation vector ot and
forget activation vector ft . The first one, along with a second gate
c∗
t , determines which information is stored in the memory state
vector ct at time t . The forget gate determines which information
must be kept or erased from the memory cell in period t − 1.
Finally, the output gate decides which information will be used
as an output of the memory cell. The architecture of the LSTM
model adopted in this paper is explained by Eqs. (12)–(17).

ft = σLR(Wf xt + Uf ht−1 + bf ) (12)

t = σLR(Wixt + Uiht−1 + bi) (13)

t = σL(W0xt + U0ht−1 + b0) (14)

∗

t = Wcxt + Ucht−1 + bc (15)

t = ft ⊙ ct−1 + it ⊙ σhc∗

t (16)

t = ot ⊙ σh(ct ) (17)

here xt is an input vector to the LSTM unit, ht is the output
ector of the LSTM unit, σ is the LeakyReLU activation function,
LR
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Fig. 4. MAE for feeding forward cross-validation for different Prophet approaches.
L is the linear activation function, σh is a hyperbolic tangent
ctivation function, W and U are weight matrices to be learned,
hose indexes i, f , o and c refer to the gate or cell the matrices
re associated within each step. Finally, b = [bf , bi, b0, bc] is a
ias vector parameter to be learned.

Appendix presents details on the implementation of the
ethod.

. Results and discussion

This section presents how the experiments were configured
nd the results obtained. The process starts with the configura-
ion of the first stage, Prophet, and the analysis of its residuals
nd prediction errors. Then, the second stage, LSTM, is set and
he combined Prophet-LSTM metrics are presented. Finally, the
erformances of Prophet-LSTM and both standalone models are
ompared with classic univariate models.

.1. First stage: Prophet output

First, the experiment we carried out using Prophet has as
nputs the variables whose optimum correlation with the target
ariable presented a time lag of 7 days or more, which is the size
f the forecasting horizon. Thus, the variables SII and Cases were
agged 7 days ahead, and the variables Vax and Plano-SP were
agged 21 days ahead. All variables were standardized before
tilization.
In the upper part of Fig. 4, one may observe how the average

AE evolves in time after each feeding forward cross-validation
un, where successive training sets are supersets of those that
ome before them. Thus, in run 99, the model attempts to predict
he last 7 observations available (from 0, the last dataset observa-
ion, to −7 days) and with a given MAE. In run 98, the model tries
o predict 7 observations of the target variable but between days
8 to −1. This way, in CV run 0, we compute the MAE for the
8

prediction of days −106 to −99, using as the training set all data-
points available before day-106. One may also observe the impact
of incrementally adding characteristics, different exogenous vari-
ables, and data pre-processing strategies to the Prophet modeling.
Thus, the results referred to as ‘‘a. Trend’’ represents a model that
only accounts for the trend in the data. The results indicated by
‘‘b. Seasonality’’ display the MAE values for the Prophet model
accounting for trend and seasonality. The same is true for all
other lines. In particular, the results indicated by ‘‘g. MA7’’ refers
to the MAE for the Prophet model that accounts for Trend and
Seasonality, and variables Cases, SII, Vax, and Plano-SP. Moreover,
this prediction also considers a 7-day Moving Average (MA7) on
all exogenous variables series. It is worth mentioning that in the
results enumerated from c. to f., the exogenous variables are only
standardized and still bring information about their own season-
alities. As observed, taking the moving average of the variables
(‘‘g. MA7’’), and adding the variables Cases (‘‘c. Cases’’) and Vax
(‘‘e. Vax’’) are the improvements that have greater impacts on
Prophet forecasting accuracy. Also, the improvements brought by
the components stabilize after CV run 69.

The bottom of Fig. 4 shows the predicted values evolving with
the addition of new components and variables to the Prophet
modeling. Those relations are extracted by looking inside CV 98,
the run with lower MAE. However, the actual values are always
the same. Despite the decrease in MAE and RMSE metrics, it is
visually possible to notice how the predictions improve after each
increment.

As observed in Fig. 5, the residuals look stationary (ADF-
statistic is −6.377, with a p-value of 0.0, for a 5.0% signifi-
cance level), which means they have constant mean, constant
variance (homoscedastic), and are free of seasonality. This is
graphically represented in Fig. 5 - Residual Plot, which displays a
non-repetitive pattern in the observed residuals and mean equal
to zero. The residuals also seem to be free of autocorrelation
of the first order (DW-statistic of 1.8). Finally, according to the
Shapiro–Wilk test for a 5.0% significance level, despite the bell
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hape in Fig. 5 - Histogram, the residuals are not normally dis-
ributed, displaying a W-statistic of 0.975 but a p-value close
o zero. Therefore, the residuals may be treated as white noise
n a general classification. The residuals also do not display a
ignificant correlation with the predicted values (See Fig. 5 -
esidual vs. Predictor).
However, despite the improvements and quality of the resid-

als, there is still room for improvements in the model. For
xample, a Pearson’s correlation of −0.82 is observed between
he residuals and the target variable (See Fig. 5 - Residual vs.
ignal). Also, the autocorrelation of orders higher than one was
ound, as observed in Fig. 5 - ACF Plot. Those realizations may
ndicate some information left over that should be accounted for,
uch as those that may be brought by additional independent
ariables or hidden seasonal components. Thus, to tackle this
ssue we run the second stage of the proposed method, which
elies on a LSTM neural network.

.2. Second stage: LSTM output

The LSTM multivariate model takes the residuals from the
rophet training set as the target variable. The LSTM model ex-
lains the variations in the residuals in terms of the residuals
hemselves and the variables Cases and RHBO. The variables Cases
nd RHBO are in their raw form, with no lags applied to them nor
ariance smoothing with moving averages.
After manually searching, the LSTM architecture was config-

red as follows: batch size of 5, input layer with 50 neurons,
wo hidden layers with 50 and 25 neurons each, LeakyReLU as
ctivation function (α = 0.5), and a dropout rate of 0.1. We
et Mean Squared Error (MSE) as the loss function, Adam as
ptimizer, and RMSE as the evaluation metric. The models were
lso set to train for 200 epochs but with early stopping.
Fig. 6 compares the performances of the proposed Prophet-

STM integration and standalone models Prophet (MA7) and a
ure LSTM model running all variables with no lags and fol-
owing the same architecture as the one used for the integrated
pproach. Prophet-LSTM outperformed standalone Prophet and
STM in 87% of the runs. One can also notice that Prophet and
STM change positions during the runs in a non-consistent pat-
ern. The average MAE for all runs of Prophet-LSTM is 0.99,
hereas the MAE for Prophet and LSTM was 1.15 and 1.20,
espectively. Thus, the Prophet-LSTM integration to the case of
ospital ICU demand forecasting during COVID-19 in a Brazil-
an municipality reduces standalone Prophet and LSTM MAEs
y 14.2% and 17.3%, respectively. This posterior treatment of
rophet residuals with LSTM has a greater impact over the pro-
osed model MAE than the pre-treatment performed in the data,
hich were performed to lag the variables and remove unwanted
easonal patterns.
Regarding the computational time taken to perform the mod-

ls, each CV run of standalone Prophet takes 1.27 s in average
with standard deviation (s) of 0.16 s and Coefficient of Varia-
ion (CV) of 0.12). As expected, the models running neural nets
re considerably more time consuming than Prophet. Standalone
STM performs each CV run in 11.82 s (with s = 5.49 s and
V = 0.46), while the Prophet-LSTM model performs each CV
un in 15.99 s (with s = 6.53 s and CV = 0.40). Since Prophet-
STM sequentially performs both standalone Prophet and LSTM
pproaches, its total running time is a rough aggregation of both
odels individual times. On the other hand, Prophet-LSTM CV

oughly weights the CVs of both Prophet and LSTM individual
odels, thus a CV falling in between the CVs of both individual
odels was expected. Despite the longer time taken by Prophet-
STM to train and predict the data, especially in comparison to
tandalone Prophet (almost ten times more time consuming), the
 t

9

Fig. 5. Residual analysis after first stage with Prophet.

otal Prophet-LSTM computational running time still seems to
ave almost no impact over the hospitals demand forecasting
outines. It still runs in a scale of seconds.

It is also noticeable how the performance of Prophet-LSTM
mproves over time, as soon as more training samples are avail-
ble. However, despite this apparent continuous extension of
he model’s knowledge, Prophet-LSTM do not seem appropriate
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Fig. 6. Target and additional variables used for forecasting.

Table 4
Comparison of forecasting models.
Model Average MAE MAE CV

Prophet-LSTM 0.99 0.25
Prophet 1.16 0.22
LSTM 1.20 0.31
GRU 1.13 0.40
Simple RNN 1.16 0.43
Holt-Winters 1.43 0.34
ARIMA 1.37 0.31
KNN 1.51 0.63
RFR 1.82 0.52

to incremental learning tasks, mainly because it is considerably
dependent on hyperparameter tuning and feature engineering.
Additionally, Prophet-LSTM may also face difficulties in handling
intermittent demand or in forecasting time series whose behavior
is not partially explained by a set of independent variables.

5.3. Benchmarking

In addition to Prophet and LSTM standalone models, we also
ompare the results from Prophet-LSTM to other models
ommonly employed in demand forecasting and to predict COVID-
9 numbers. The four univariate forecasting models are Holt-
inters, ARIMA, KNN, and RFR, and the two multivariate models

re the GRU and Simple RNN. A good explanation of those mod-
ls and their main mathematical formulations are presented by
ouza et al. [56], Kadri and Abdennbi [57], and Sezer et al. [49].
able 4 summarizes the average MAE for all models and their
espective MAE coefficient of variance, considering the results of
ll 30 cross-validation runs.
In general, Prophet-LSTM outperforms all models, presenting

maller MAE, RMSE, and sMAPE metrics, also displaying MAE with
smaller coefficient of variation (CV). These results suggest that
he model is both more accurate and more stable.

Fig. 7 graphically summarizes how the MAE of the univariate
odels and Prophet-LSTM varies on time.
10
Fig. 7. MAE over time for benchmark models.

Fig. 8. MAE over time for benchmark models.

Fig. 8 graphically summarizes how the MAE of the multi-
variate models and Prophet-LSTM varies with time. Notice that
despite the better performance of the multivariate models, espe-
cially in contrast to the performance of univariate models, the
two multivariate benchmarks are considerably less stable than
Prophet-LSTM, displaying a much higher MAE CV, as shown by
Table 4.

Finally, we also run Mann–Whitney U Tests to all cross-
validation runs, comparing Prophet-LSTM to the other models.
The null hypothesis (H0) assumes no significant difference be-
tween the two series. The alternative hypothesis (H1) investigates
if the series are different. The H1 is accepted in all cases for p-
values < 0.05. In detail, the p-value of Prophet is 0.008; LSTM is
0.012; GRU is 0.018; Simple RNN is 0.045; Holt-Winters, ARIMA,
and RFR are 0.000; KNN is 0.002.

6. Conclusions

In this paper, we showed that a two-stage integrated approach
of Prophet and LSTM models results in significantly (max p-
value = 0.012) better COVID-19 ICU demand forecastings than
both standalone models, Prophet and LSTM, and also four uni-
variate benchmarks (ARIMA, Holt-Winters, RFR, and KNN) and
two multivariate benchmarks (GRU and Simple RNN). During the
Prophet stage, the variables Cases and Vax showed the most
significant impact on the model performance. After the second
stage, the MAE CV was also improved in relation to standalone
LSTM. Despite the smaller forecasting errors, the Prophet-LSTM
model is also more time-consuming than both standalone models.
Thus, running this model for several time series may demand
simplifications or the usage of hierarchical structures. In contrast
to Prophet, Prophet-LSTM also significantly increases the time
needed to set the optimal parameters before the final forecast.
However, in the case of COVID-19 ICU forecasting, the model
appears to be an interesting option that could potentially be

replicated to other municipalities with similar data available.
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Fig. A.9. Main libraries and modules used to implement the analyses and forecasting models in Python.
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Appendix. Implementation

All data acquisition, analysis, and treatment, as well as the
models, are implemented in Python. Fig. A.9 shows the main
libraries, modules and the flow in which the analysis and ex-
periments were performed. The framework of Fig. A.9 follows a
similar distribution of the processes presented in Fig. 1.

In the first implementation block, regarding data acquisition
and anomaly detection, the framework acquires the data (approx-
imately 40 GB) and preprocesses it to patient-level variables in a
tabular format. The library Dask is widely used in this step, taking
raw data from hospitals and the government as input. Then,
data preprocessing occurs by removing simple anomalies, such
as patients with dissonant ages and incorrect dates. Finally, the
variables for the models are created and consolidated in a daily
granularity. This step is performed primarily through the use of
the libraries pandas and NumPy, taking patient-level variables as
input.

The next stage of the framework consists of data analysis and
treatment. It searches for seasonal components in the data and
removes them when needed. The libraries used in these steps are
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tatsModels, mainly the module seasonal_decompose, and
lotly, for data visualization. The primary input data for the
unctions of both libraries are the dependent and independent
ariables. Finally, the modules Linear Regression, of Sklearn
ibrary, and Spearmanr, of Scipy library are used to check
he optimal correlation between the dependent and independent
ariables, which are also their primary data input. For the Spear-
an test, α, the threshold value used to judge whether a test
tatistic is statistically significant, was set to 0.05.
For the Prophet implementation block, the Sktime library is

mployed to split the data into training and testing sets, taking
he set of target and exogenous variables as input. Then, the
rophet function initiates the model. Its inputs are the growth
odel (linear in our case), the width of the confidence interval

95% in the case), and Boolean variables indicating the set of
easonalities used. After that, function add.regressor add the
xogenous variables to the model and the function fit trains the

model, taking as inputs the instantiated model and the training
set of the target variable. Finally, the function predict is used to
predict future values with the fitted model, the test set, and the
size of the forecasting horizon. The framework collects the RMSE,
MAE, and SMAPE using the Scikit-learn library.

After Prophet, the framework performs the following tests for
the residual analysis:

• Augmented Dickey–Fuller Test, Autocorrelation Test, and
Durbin Watson Statistic (functions adfuller, acfn and
durbin_watson of Statsmodels library), taking the series
of residuals, an α of 0.05 and, in the case of Autorrelation
Test, a given number of lags to be mapped (15, in the case)
as input.

• The Shapiro–Wilk test (function shapiro of Scipy library),
which takes as input the series of residuals and α of 0.05.
The residual graphs are then drawn with the libraries
Plotly (graph_objects module) and Scikit-learn
(LinearRegression module), taking are primary inputs
the target variable series of values and the series of residu-
als.

The LSTM implementation block relies primarily on Keras
and TensorFlow libraries. However, for the data preparation,
the framework employs the library Sktime to split the data into
training and testing sets, taking the set of target and explana-
tory variables as input, and the library Sklearn (MinMaxScaler
function) to normalize the explanatory variables between 0 and
1. The module TimeseriesGenerator of Keras is also em-
ployed to prepare the data, taking the window length (5 in the
case), sampling_rate (1 in the case), batch_size (5 in the
case), and a set of explanatory and target variables as input. The
model is then created, and a set of LSTM, LeakyRelu, Dropout,
and Dense layers are added through keras.layers modules
of Library Keras. The model is then compiled (function com-
pile of Tensorflow, taking the mean squared error as loss
function, Adam as optimizer, and RMSE as metric) and fit to
the data (function fit_generator of Tensowflow, taking as
inputs 100 epochs with early_stopping and the data pre-
pared previously). Finally, predictions are made with module
predict_generator.

After running the LSTM model, the Prophet-LSTM model is
simply built with Pandas and Numpy operations. Finally, the full
integration is analyzed with metrics drawn from Scikit-learn
libraries, through the module metrics.

The benchmark implementation block re-implements the
Prophet and LSTM models, in the same way they were im-
plemented before; however, taking the whole set of variables
is available as input. The Simple RNN and GRU models follow

similar implementations as the LSTM model, but with GRU and

12
RNN gates, instead of LSTM gates. Finally, the Univariate models
are implemented with Sktime library. The data is first split
into training and testing sets (function temporal_train_test_
split), the training set is used to train the modules (forecas-
ter.fit), and the trained model and testing sets are used to
make the predictions (forecaster.fit).

Once the predicted values are collected from Prophet-LSTM,
Prophet and LSTM standalone models, and all benchmark models,
they are compared using the module metrics of Scikit-Learn
and Mann–Whitney U Test (function stats.mannwhitneyu of
Scipy library). Finally, we draw the comparison graphs with
Library Plotly (graph_objects module).
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