Skip to main content
. 2022 Jun 14;2022:7228833. doi: 10.1155/2022/7228833

Table 4.

Comparison of experimental results of four recommended algorithms with different TOP-N.

TOP-N Index Literature [23] Literature [24] Literature [25] Proposed
5 Precision (%) 30.61 28.42 32.05 31.21
Recall (%) 41.24 39.94 43.21 42.92
RMSE 0.88 0.93 0.85 0.86

20 Precision (%) 28.16 26.96 28.08 29.98
Recall (%) 44.37 43.65 46.78 47.58
RMSE 0.79 0.91 0.78 0.72

35 Precision (%) 26.12 24.94 24.06 28.73
Recall (%) 46.82 45.42 48.88 49.11
RMSE 0.75 0.81 0.72 0.65

50 Precision (%) 23.24 22.25 21.78 25.97
Recall (%) 50.16 48.9 51.34 51.79
RMSE 0.68 0.72 0.61 0.57