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Abstract

Following previous works about integro-differential equations of parabolic type modelling
the Darwinian evolution of a population, we study a two-population system in the coop-
erative case. First, we provide a theoretical study of the limit of rare mutations and we
prove that the limit is described by a constrained Hamilton-Jacobi equation. This equation
is given by an eigenvalue of a matrix which accounts for the diffusion parameters and the
coefficients of the system. Then, we focus on a particular application: the understanding of
a phenomenon called Adaptation to DNA damage. In this framework, we provide several
numerical simulations to illustrate our theoretical results and investigate mathematical and
biological questions.

Keywords Adaptive evolution - Cooperative system - Lotka-Volterra equation -
Hamilton-Jacobi equation - Viscosity solutions
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1 Introduction

A common way to investigate evolutionary dynamics [11, 22] is to model populations struc-
tured by a phenotypical trait with non-local partial differential equations [5, 6, 8]. This
methodology has the advantage of studying not only the final situation but also the fitness
landscape and the possible evolutionary paths in a given setting [42]. In those kind of mod-
els, the organisms are described by a trait x € R" and their density n(x, ¢) expands or decays
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in function of both x and the competition with other individuals. A simple possibility to rep-
resent mutations along the trait x is to use a Laplacian:

E;—Z(x,t):An(x,t)+n(x,t)R(x,N(t)), N(z):f n(x,t)dx. (1.1)
Rll

This type of model can be derived from individual based stochastic models in the large
population limit [15, 16].

In many works (e.g. [5, 6, 8, 10]), the authors introduce a parameter & > 0 which provides
a way to study the asymptotic limit of the model in the regime of small mutations and
long time [12]. This procedure relies upon a Hamilton-Jacobi approach and was extensively
investigated for system (1.2). It consists in making the change of variable

X t
(x,n)= (—,—>,
e &

‘9%(9@0=€2An£(x,t)+n€(x,t)R(x,N8(t)), Ng(t)=/ nf(x, dx.  (1.2)
]Rn

which leads to the equation

This change of variables allows to catch the effective behaviour of the solutions in large
timescales. It can be understood heuristically as follows. The parameter ¢ in front of the
time derivative accelerates the time meanwhile the parameter &2 in front of the mutation
operator (the Laplacian here) avoids that individuals adapt to their environment too fast.
Therefore, only the individuals with a trait “well-adapted” to the environment survive. This
is why, we expect the solution to concentrate to a sum of Dirac mass centred at these well
adapted traits. In a suitable mathematical setting, when ¢ — 0, the solutions n® of (1.2)
concentrate into a sum of Dirac masses moving in time, and in the limit the location of
emergent traits is driven by an Hamilton-Jacobi equation of the form

8u_

= |Vu|* + R(x, N(®)), maxu(x, 1) =0. (1.3)
ot xeR"

This type of non-local model was intensively studied and applied to many different bio-
logical contexts, for example adaptation of cancer to treatment [17, 33, 34, 43], epigenetics
changes [32], non-inherited antibiotic resistance [9] or more generally long-time evolution-
ary dynamics [24, 26, 37]. Finally, we underline that a more realistic approach is to use
an integral term and a mutation kernel (see for instance [5, 39] and the references therein)
since, in our case, it is tantamount to saying that the mutations are independent of birth.

1.1 Adaptation to DNA Damage as a Modelling Drive for This Study
The theoretical study in this article is mainly motivated by a specific modelling challenge

which is still poorly understood from an evolutionary dynamics point of view: the so-called
“adaptation to DNA damage” phenomenon. '

IThe naming “adaptation to DNA damage” can be a bit misleading because it describes a metabolic response
of the cells and not a genetic adaptation, so speaking about both adaptation to DNA damage and genetic
adaptation from the perspective of evolutionary dynamics can sometimes be confusing. Nonetheless, this ex-
pression was used for so long among specialists and has gained so much momentum that it is now impossible
to change.
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When eukaryotic cells face damage to their DNA, specialised mechanisms come into
play. The DNA damage checkpoint signalling pathway leads to stopping the cell cycle at
the G2/M phase. Then, appropriate repair pathways are activated. These mechanisms are
called the DNA damage response. However, the attempts of the cell at restoring its DNA
integrity can fail: for example, the damage may be impossible to repair, the appropriate
repair pathway may not be available at this stage of the cell cycle or the source of the
damage might still be present, causing damage faster than the cell can repair.

In case repair fails for too long, cells will override the DNA damage checkpoint and
resume cell division even though the damage is still present [30, 50]. This prevents the cells
from being blocked in the cell cycle until they die. This phenomenon is called adaptation
to DNA damage. Note that this is a metabolic adaptation occurring in each individual cell
which is to be distinguished from the genetic adaptation of the whole cell population on
longer timescales (see footnote 1).

Due to improper chromosome segregation [27], adapted cells have chromosomal insta-
bility and a high mortality rate, making adaptation a last resort mechanism after all repair
options have already failed. The descendants of adapted cells can carry the damage and
share the mortality rate of their parents, but adaptation also allows cells to have access to
other repair pathways at later stages of the cell cycle; it also happens that one of the daughter
cells of an adapted cell doesn’t suffer from the damage due to asymmetric segregation of the
chromosomes [48, 51]. Both the success of repair and, if repair is unsuccessful, the survival
after an adaptation event, depend on the type and location of the damage. Double-strand
breaks are especially dangerous to the cell survival and have been used by experimental
biologists to investigate repair mechanisms.

This leads to a hierarchy of cell fate decisions: repair is attempted first and then the cells
adapt. In the budding yeast model organism [45], the cells will adapt at a variable timing,
ranging from 5 to 15 hours, which is consistent with the fact that one of the slowest repair
pathways, break-induced replication,? takes around 5 hours to be fully attempted [35]. Com-
mon experiments to investigate adaptation rely upon mutant populations which cannot repair
heat-induced or irradiation-induced damage, making adaptation and its specific timescales
easier to characterise [25, 28]. These experiments suggest that adaptation is detrimental to
the population and mutants who cannot adapt have better survival when the experimental
conditions are made favorable again.

Given how dangerous adaptation to DNA damage can be for cells and their progeny, an
important question is to understand what shapes the characteristics of the phenomenon. The
two main components of the adaptation process are when it happens on average after the
damage which we refer to as the timing of adaptation and how variable it is in time, which
we call heterogeneity of adaptation. At the moment, biologists have very few ways of inves-
tigating experimentally how these features are selected by natural selection or constrained
by chemical limitations. Most of the experiments are performed in controlled environment
and little is known about what happens in the wild or during long timescales. Some reviews
by experts in the field proposed that adaptation timing and heterogeneity could have been
selected by evolution because they are optimal for long term survival of the populations in
adverse and unpredictable conditions (e.g. [20]).

A first evolutionary model was proposed recently for adaptation to DNA damage in [44].
The authors derive formally from a stochastic compartment model an ODE model repre-

2Break-induced replication (BIR) consists in healing a one-ended break by copying to the extremity a tem-
plate chromosome
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senting how a population of damaged cells recovers and fills the medium up to carrying
capacity.

If we call x the adaptation timing and p the heterogeneity of adaptation, the authors
of [44] assume that cells damaged at time O repair with a given rate «(#) and adapt with
a rate B(x, p,t). The unit of x is in cell-cycle, which is about 1.5-2 hours depending on
the environmental conditions. The parameter p ranges from 0 (totally random) and +oo
(totally deterministic). Based on experimental insights, they choose a logistic model for the
adaptation rate after a time ¢ since the damage:

B

e (1.4)

Bx,p.1)=
with B,, > 0 the maximal value of the adaptation rate.

Using first the stochastic compartment model and then the deterministic ODE model, the
authors prove that there is an optimal value for x that allows for the fastest recovery of a fully
damaged population. However, their optimisation procedure indicates that the optimal value
for p is +o0o, which is in contrast with what the experiments indicate: adaptation ranges
between 5 and 15 hours. The authors then improve their model, taking into account the fact
that if the source of damage is still present for some hours (heat, X-rays, chemicals in the
medium,. ..) then the cells cannot repair at all because their repair capacity is overloaded
by the continuous source of damage. For each run of their model, they draw a random
variable determining when repair becomes possible after the damage. With this component
and optimising for expectancy of survival, they find an optimal value for the heterogeneity
parameter p.

As explained in [44], the selection of an optimal value for the heterogeneity parameter
when the environment becomes unpredictable can be related to the more general concept
of bet-hedging. Bet-hedging occurs when, on the long term, an isogenic population of or-
ganisms selects a phenotype that is suboptimal in any given environment but is optimal for
maximising survival in average in an unpredictable environment [47, 49]. A classical exam-
ple is reservoirs of ungerminated seeds in the soil: in favourable conditions it is optimal for
all seeds to germinate as soon as possible, but seed banks allows the population to escape
extinction in case of severe drought because ungerminated seeds are less affected [19].

A major drawback in the work of [44] is that their model considers only an isogenic
population with fixed parameters x and p, and then compares, depending on the parameter,
the fitness of the population. Their work doesn’t model how the cells change their genetic
traits nor how cells with different genetic profiles compete with each other in a same envi-
ronment. Their model is also very rigid in terms of evolutionary timescales and assumes an
initial damage to the whole population instead of continuous damage in time. The later is
more realistic since DNA damage can also come from endogenous stochastic causes.

In this work, we propose a more general approach using non-local partial differential
equations of the type of (1.1) and a rescaling procedure akin to the one used in (1.2). In
Sect. 5, we explain in more details the model of [44] and we build upon it a more com-
plex model consisting in three coupled non-local PDEs representing healthy, damaged and
adapted cells: system (5.5)—(5.6)—(5.7)—(5.8) in Sect. 5.

This system being difficult to tackle both theoretically and numerically, we make the
simplifying assumption of a quasi-stationary equation for damaged cells, which allows us
to remove them from the system by assuming they are treated instantly and redirected to the
healthy cells population, the adapted cells population or killed. We thereby obtain a sim-
pler two-populations model describing the dynamics and genetic diffusion of healthy and
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adapted cells: system (5.10)—(5.11) in Sect. 5. In the theoretical part of this article, we pro-
vide a mathematical study of a more general class of two-populations non-local models that
includes system (5.10)—(5.11). The next subsection describes this mathematical framework.

1.2 A Model for Two Cooperative Populations Structured by a Phenotypical Trait

We propose to study through a Hamilton-Jacobi procedure a system of non-local PDEs
modelling two cooperative populations structured by a same phenotypical trait x € R
and described by their densities n{(x, ) and n5(x, ¢). This model generalises the system
(5.10)—(5.11). For this reason, we first perform the abstract mathematical study in the gen-
eral case in order to have more tool for the subsequent modelling and numerical parts.

To the best of our knowledge, there is little research about the asymptotic behaviour of
several specie non-local PDEs in evolutionary dynamics. Existing works in this direction fo-
cus, for instance, on the influence of a spatial domain [10], on organisms which specialise in
order to consume particular resources [23], on a model for juvenile-adult population under-
going small mutations [14], on elliptic systems [29, 37, 41] for two species or on influence
of a spatial domain [10].

The model we focus on writes

eon — &2d, Bpxt] = n§(ri(x) — Ne(0)) + 81 (x)n5  for (x,1) e RT x R,
eons — ezdzamni =n5(ry(x) — No(t)) + 8,(x)n  for (x,1) e R x RY,
ni(x,t=0)=nf,(x), a5, t=0)=n) ), (15)
0,n1(x=0,1)=0, dn5(x =0,1) =0,

+00
N.(t) = / (nf(x, 1) +n5(x, t))dx,
0

where r1(x) > 0 and r,(x) > 0 represent the intrinsic fitness of organisms with trait x in
the two populations. The terms §,(x) > 0 and §,(x) > 0 are cooperative terms (or, in our
application in Sect. 5, conversion terms from one cell type to the other) between the two
populations. The total number of cells N, (¢) represents the competition for resources. Since
the system is cooperative (i.e. an increase in one of the two populations imply an increase
in the other population), we expect that both population converge to a Dirac mass with a
same trait as ¢ — 0, even in the case where one population has a smaller mutation rate
d; (notice that we allow in the forthcoming assumption (H1) d; = 0 but max(d;, d;) > 0).
Heuristically, the dynamics of the main phenotype of this population will be driven by the
mutation of the other population and the exchange term.
The system can be summarised in the following compact form

edn° — ¢’Dd,,.n° = R(x, N.)n®, (1.6)

with Neuman boundary conditions: d,n°(x = 0,¢7) = 0. Here n° stands for the vector
(nf, ni)T and D, R for the following operators:

(d 0 _(n@-N  &®
D_<0 d2> and R(x,N)-( 5,(x) rz(x)—N>' (L.7)

First, we assume that

di, d,>0 and (di,dy)#(0,0). (HI)
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Note that (H1) allows one of the two coefficients d,, d, being equal to 0, but not both at the
same time. We will also assume that there exists Cr, Cs > 0 such that

8i,ri € W™ with  |Irillyace <Cr  and ||8;lly2e < Cs,

. (H2)
8 >0, and e"%§;(x) — +o0.
xX—>—+00
An other hypothesis is
Jey, Cy >0:  Vx € RT, min(ri(x) +82(x) — ey, r2(x) +81(x) —cn) =0,
(H3)
Vx € RY, max(r;(x) +8,(x) — Cy, r2(x) +8;(x) = Cy) <0.
Finally, we assume that both initial conditions satisfy:
—a.xz—c —AX
ce” & <niy(x)<Ce AztC with a,A,c,C >0,
’ (H4)

cy <N(t=0)<Cy and nf,o are uniformly Lipshitz.

Theorem 1.1 Under the assumptions (H1), (H2), (H3) and (H4), there exists a solution n®
to (1.5). Moreover, we have

ey < Ng(1) < Cy.

The proof is an adaptation of the one presented in Appendix A of [8]. We provide it in
the Appendix for the sake of completeness.

1.3 The Main Mathematical Result

We adopt the classical approach for Hamilton-Jacobi equations: we perform the so-called
Hopf-Cole transformation by defining

u; =¢eln(n;). (1.8)

This approach is well adapted since we expect n; to converge to a Dirac mass in the sens of
the measure as ¢ vanishes. In this order, it is sufficient to prove that u; converges in some
set of continuous functions u; with u;(xg, to) = 0 for some (xg, fy) whereas u;(x,t) <0
for (x,t) € B.(xp, tp)\ {(x0, to)}. Performing the inverse transformation of the Hopf-Cole
transform provides the desired result. Therefore, we rewrite (1.5) in the following form

€

Byt — edy 0ttt — dy [0 = (r (x) — N (D) + 81 (x)e = for (x,1) e RY x RY,

u§ —uf

du — edrd s — do[d, U5 = (ra(x) — No(1)) + 82(x)e 7~ for (x,1) e RY x RY,
ui(x,t =0)=uo(x), us(x,t =0) =uy(x),

du1(x=0,1)=0, dus(x=0,1)=0,

+0oo u‘i(x.l) u;(vr,z)
N (1) = / e = +e ¢ dx.
0
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Finally, following [7], we introduce the effective Hamiltonian as known as one of the
eigenvalue of p?D 4 R (associated to a constant sign eigen-vector):

d, +dzp2+ ri 4124+ I(di — da)p* + (r1 — r2) 1> + 4616,

s N)= —N(@). (1.10
Hp(p,N) 7 2 (). (1.10)
We introduce the Hamiltonian fitness
dy — dy)p? — )P +48,8
rg(x,p):rl+r2+\/[( 1 2),02+("1 ra)]* + 48,8, (.11
such that
di+d
Hp(p,N) = %pz +rh(x,p)— N.
We will denote 1 the corresponding principal eigen-vector:
) 1
VP = | =y 0=y )+ —dp PP D= )P+ (05 ) | - (1.12)
255 (x)

All the components of ¢* can be chosen strictly positive. The other eigenvector, associ-
(d1+dp) p?+r1 +r2—/(d —dp) P2 +[(r1 —rp) P+4818) N(1), has a positive and a
3 ,

ated to the eigenvalue
negative component.
Theorem 1.2 Under the hypotheses (H1), (H2), (H3) and (H4), there hold

1. The sequence (N;).~o converges to a non-decreasing function N € L*°(]0, 4oo[) as
& — O with

cy < N(t) <Cy.

2. The sequence (u;)e=0, ici1,2) converges locally uniformly to a same continuous function
u, with u a viscosity solution of

o,u =Hp(du, N) for (x,1) € Ry x 0, +o0],

—ou(x=0,1)=0 fort >0,

max u(x,t) =0, (1.13)
xeR4

u(x,t=0) = 21_1}(1) ui(x,t=¢).

3. The sequence (n)¢=0, ic(1,2y converges in the sense of measures to n;. Moreover, we have
supp (-, 1) C {u(-,1) =0}.

1.4 Outline of the Paper

In Sect. 2, we detail the general approach and state the main technical results that lead

to the proof of Theorem 1.2. Section 3 is devoted to the proofs of these technical results.
In Sect. 4, we prove Theorem 1.2. Next, in Sect. 5, we detail the biological context that
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motivates our theoretical study. Finally, in Sect. 6, we illustrate our theoretical study by
some numerical simulations in the framework given by our biological motivations. We also
investigate numerically some open questions.

Notations: All along the paper, we adopt the following conventions:

o the letters i, j refer, when there is no confusion possible, to an index in {1, 2},

e if i and j are used in a same equation then i # j,

o the bold mathematical characters are strictly reserved for vectors of R? or matrix of
My (R),

e the constants ¢, C are taken positive and may change from line to line when there is no
confusion possible (the capital letter is preferentially used for large constants and the
small letter for small constants).

2 The Hamilton Jacobi Approach

We develop in this part of the work a general approach for non-local cooperative systems.
For technical reasons, we focus on a model with only two species and a uni-dimensional
space. This part is largely inspired by [7] and [8], but since we study a coupled system,
we cannot use the same arguments straight away. Unlike in the articles [5] and [8] for the
single species problem, it is not possible to obtain directly a uniform BV estimate for the
total mass N, (¢). There are additional mixing terms and, a priori, nothing prevents them to
blow-up when ¢ goes to 0. Moreover, one can not apply directly the method of [7] because
the non-local total mass does not prevent the logarithm of the solution to be positive. We
will circumvent these issues by employing a combination of the two former approaches.

2.1 The Approach

Before dealing with the mathematical details, we propose an overview of the classical meth-
ods to treat this kind of problem as well as a presentation of heuristic arguments.

A local version of (1.6) was studied in [7] (i.e. with N, replaced by (n?);c(1,2;). Moreover,
the authors focus on general systems with more that two equations. We do not obtain the
same level of generality than [7]. As we will see later, the hypothesis of having only two
equations (rather than several) is a key hypothesis in our work. From a technical point of
view, Barles, Evans and Souganidis do not prove any regularity results on u{ but they study
the system through the semi-relaxed limit method by defining

uy(x,t) = min ( liminf u(y,s)) and u*(x,t) = max ( limsup ui(y,s)).
ie{l,2} £—0 ie{l, £—0
(y.5)—>(x.1) (y.8)—=>(x.1)

We did not succeed in adapting this idea without proving any regularity results on ;. Indeed,
with the semi-relaxed limit approach, one key point is to prove that u* < 0. In [7], this claim
is true; otherwise, it would be in contradiction with some natural bounds on n, (obtained
with the maximum principle). However, in our setting without any regularity result in space
on u?, even if we have natural bounds on the total mass N,, nothing prevents the solution
u* to be positive at a singular point. Indeed, contrary to the problem studied in [7], u{ may
be positive on a sequence of intervals I, with A(l,) — O (where A stands for the Lebesgue
measure).
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Therefore, we state regularity results in space on u?. Our result generalizes the case
of the single population equation (1.2) (i.e. §; = 0 and n, = 0). In the first works treating
this equation [5, 6, 8], the main result on the convergence of u, was obtained by proving
some BV-estimates on N, and some bounds on |3, u«]| by using the Bernstein method. Then
obtaining the Lipschitz regularity of u; with respect to time leads to the convergence by
using the Arzela-Ascoli Theorem. Before, dealing with the Hamilton-Jacobi equation (1.13),
we prove the convergence of N, toward subsequence. We adapt the proof of [6] (Theorem
3.1) and [8] (Theorem 2.4). The proof of the Theorem 3.1 of [6] involves the positiveness of
2 (equation (3.5) of [6]). In our work, it is not clear in general that

0<(1 1)R2<Z;>,

the right-hand side being what we would obtain in place of r
To tackle this issue, we propose a precise estimate of . Indeed, this estimate ensures

that the exponential term is bounded and then one can apply the classical Bernstein method
to obtain regularity in space. From this space regularity, we will deduce that u; is Lipschitz
with respect to time. Finally from this last result, we deduce that the family N, converges.
It will allow us to conclude.

We underline that the estimate of plays a similar role than the Harnack estimates

obtained in [29, 36] in elliptic settings.
We formally write a Taylor expansion of u?:

ui =u; +ev; +o(e).

We first expect that u; = u, = u since we do not expect a blow up of the exponential term.
Next, by subtracting the two equations of (1.9) and using the fact that u; = u,, we obtain

2
[(di = do) (3,10)* + (ry —rz)] +51 —52< 2) =&(3 (v — v2) + di [0, v, ]’ — dy[B, 2]

—20,ud(dv) — drv2) + 0(8)).

Taking formally, the limit ¢ — 0, we expect

n[(d - d2) (,1)% + (r1 — )]+ /[(d1 — d2)(,1)% + (r1 — 1) > + 4818,
n 26, '
The above expression involves d,u which is not clearly defined yet. Notice here that in the

special case d| = d, the formula is simpler since the right-hand part is only defined thanks
to the functions ry, 2, 81, 8, and we expect

np (rn—=r)+n —1r2)? 445,65,
ny 282 '

Definition 2.1 Let g; be the unique positive root of

Pay.a;(X) = ([d; — d;10uu)? + 10 — )X +8; — 8, X7,

(Id; — d.,-](axuj«)z +ri—rj)+ \/([di —d;j1@us)* +ri —rj)? +48:8;
ie.q = = o
J
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The fact that deg(P,; 4;) = 2 is important because it allows us to make a reasoning on
the sign of Pd,.,dj. Next, with this definition, we state the main technical statements that are
necessary to prove Theorem 1.2.

Theorem 2.2 Under the hypotheses (H1), (H2), (H3) and (H4), the following assertions hold
true.

1. Bounds. There exists a’, A’, b, B such that
—bt —a'x* —c<uf(x,t) <Bt — A'x +C. (2.2)

2. Space regularity. For any times 0 <t; < T and R > 0 there exists a constant
Ci, 1.8 > 0 such that

max [0cui (x, )] < Cyy 1,R- (2.3)
(x,)€[0,R]x[t],T]

3. Ratio “. For any positive time, we have
ny

g g
& [ln(ql(xst)) - 7] =< M?(X,t) - M;(X,[) <¢ [ln(ql(xa[)) + 7]

4 24

4
and & [ln@z(x, 1) - 67} <us(en) — U <e |:1n(q2(x, )+ ‘H .

4. Time regularity. The family (u)e=o,icq1,2 is locally uniformly continuous with re-
spect to time.

Remark that the third item (the ratio estimates) comes after the space regularity result
since when d; < d,, if 0,u{ is not locally bounded with respect to ¢, one can not conclude
the proof of (2.4). However, to prove the space regularity result, one needs an estimate
similar to (2.4). We prove a weaker version of (2.4) as an intermediate result but we state
only the stronger result in the theorem above. We also highlight that the terms &* has an
exponent 4 that will be used in the proof of point 1. of Theorem 1.2.

2.2 The Special Cased; =d; =1

In this special setting, note that g; does not involve d,u’; anymore. Therefore, the point 3. of
Theorem 2.2 can be obtained directly by observing that

—C(x+1D<ln(@gx)<Cx+1)

(for some large constant C > 0). We refer to the forthcoming proof of Lemma 3.3 for more
details. It follows that the point 2. of Theorem 2.2 can be obtained from the point 3.

Last, we can also derive formally a simpler equivalent equation for system (5.10) in
the long time limit. We can assume 7 o (x) =~ g(x)ns - (x) when ¢t — 400 and thus the
quantity

W(X) =N1,00(X) + 12,00 (X) =200 (X) (1 + g (x))
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should satisfy the equation

82
—823—;’2’@) = w(x) (roo (¥) = N (1)), 2.5)

with N(¢) = 0+°° w(x, t)dx and where the global fitness function r, of the system writes

4w _ (i (x) + 82 (x)) +

1
14q(x) Tq(x)(rz(x) +81(x)).

Foo(X) =

Equation (2.5) is well understood. It is proved in [1, 31] that for each ¢ there exists a unique
solution which is the ground state of the Schroedinger operator

H:=—&’A — Too-
First, we remark that

[ri —r2l+Iri — r2]? + 46,5, o [m=rl+VIn—rnl?+4586
q= and g = .

252 281

Recalling the definition (1.11), we notice that
ri=6q+r==8q"+n.

We conclude

Foo

= m(q[n + g7+ [+ g8) = rp (). (2.6)

Hence, the Hamiltonian fitness referred to above describes the behaviour of the system
in both the limits ¢ — 0 and t — +4o00. This function is formally the equivalent fitness
of the overall system formed by the two cooperating populations. They adjust their fitness
parameter x in function of the maximum points of rg (x).

3 The Intermediate Technical Results

Here, we prove all the statements of Theorem 2.2 and some intermediate results that are not
stated above.

3.1 Boundson uf

First, we focus on the bounds for u}. The method is quite standard (see e.g. [4] for a general
introduction of this kind of method or [8] for a closer use of this method) but some new
difficulties arise from the interplay between the two populations.

Proofof 1. of 2.2 We split the proof into two parts: the upper bound and then the lower one.
The upper bound. First, we define v = —A’x 4+ Br 4+ C with A’, B > 0and A’ < A that

will be fixed later on. We also introduce w® = max(u{, u5) and i € {1, 2} the corresponding

integer. From assumption (H4), it is clear that w®(r = 0) < ¢ (x, t = 0). Next, we consider

T:=inf{t>0: 3Ix>0, wix,t)>y(x,1)}.

We prove by contradiction that 7 = +o00. Assume 7' < +00. We distinguish two cases:
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o Case 1: There exists xog > 0 such that w® (xo, T) = ¥ (xo, T). It follows by definition of T

O (w* —9Y)(x0, T) =0, —d;der(w® —¥)(x0,T) >0 and
di 0, w* (xo, T) = d; 99 (xo, T).

The definition of w? yields that the exponential part is bounded by 1. From this bound
and (H2), it follows

B—d;A”? < (3¢ —edide —d;(3:9)?) (x0, T)
< (8" — ed; 05w’ — d; (3, w*)?) (xo, T) < Cg + Cs

which is impossible for B > Cg + Cs + d; A’>. (We remark that x, > 0 according to the
Neumann boundary conditions imposed on w®. Moreover, the first inequality above is a
strict inequality whenever d; = 0.)

Case 2: There holds inf(w® — ¢)(-, T) = 0 with w*(-,T) < ¥ (-, T). In this case, we
introduce v, := ¥ (x,1) — ye~7 with y € (0, 1] and

T,:=inf{r>0: 3x>0, w(x,0)> Y, (x,0}.

Since v, (t = 0") =¥ ( =0) and Y, (T) < ¥ (T), we have 0 < T, < T. Remark also
that 77 < T, for y < 1. Moreover, since 9, (-,1) = B — V‘;ZT < o, ¥ (-, 1), we conclude
as in case 1 that w*(-, 7)) < ¥, (-, T),). We claim that T}, < T'. Indeed, since there exists,

by definition of 7', a sequence x,, > 0 such that (w® — ¥ )(x,,T) —» 0.If T =T, it would

imply for n € N large enough that (w® — ¥)(x,, T) < Ve; and a contradiction follows
from
. yer
0< W’ =), T) < -

We deduce the existence of T € ]T,,, T'[ and x; > 0 such that
Wy (X7, T) < W (xg, 7).
Finally, we introduce

wy,rr = wy +ox _xr)z
and T, :=inf{r>0: 3Ix>0, w(x,1)> Yy (x,0}.

We underline that Ty < T, < T, <t < T since ¥, 5 (x, T) < w®(xy, T).
L
Moreover, for all x > 0 such that |x — x,| > % one has that w®(x,T,) <
_L
Y(x, T,) <Yy (x, T,) since T, < T. We deduce that there exists xo € B(x;,/ & Lo )

o
such that

0= (ws - wV.a)(XOs 1;) = max(we - Wy,a)-

@ Springer



Adaptation to DNA Damage, an Asymptotic Approach for a Cooperative... Page 130f46 1

As above, we deduce that

di)/f%

B —
2

—di[A' 420 (xg — x;)]* — €20 < Cg + Cs.

Next, using the bounds on |xy — x;| and T, we conclude that

1
B — L;:—)Z/ — d,‘[A, + 2«/)/—0']2 — Sd,*ZO' <B-— diy]_‘ﬁ —d,'[A/ +20(X() —)C.L-)]2 — 8d,‘20'
1 o
<Cgr+Cs.
Passing to the inferior limits o — 0 and then y — 0, it follows
B—diA? <Cr+Cs

which is absurd for B > Cg + Cs + d; A’%.

It concludes the proof of the upper bound.

The lower bound. First, we define ¢ (x,t) = —a’x> — bt — ¢ with a’, b > 0 two free
parameters satisfying a < a’. We prove the lower bound for u; with i € {1, 2}. As above, we
introduce

T:=inf{r>0: 3x>0, uf(x,1) <dp(x,0)}.

Remarking that ¢ (x,t =0) < u] (x,? = 0), we deduce that T > 0. As for the upper bound,
we distinguish the proof into two cases:

o Case 1: There exists xo > 0 such that u; (xo, T) = ¢ (xo, T). In this case, we have
Ol —@)(x0, T) <0, =0 (Ui —P)(x0,T) <0 and 9, (uj —P)(xo, T) =0.
We deduce that
—b—d;(2d'x)* < (0,¢ — £d; 0rp — d;10,917) (x0. T)
> (0u§ — ed;dyuf — di|.uf]?) (xo, T) = —Ck.

It is impossible for a’, b large enough (the first above inequality is strict if and only if

d; =0).
o Case 2: There holds ui(x,T) > ¢(x, T) for all x > 0. As for the upper bound, we intro-

duce for y € (0, 1]

¢y =¢+yei
and T, ::inf{t >0: x>0, uj(x, 1)< ¢y(x,t)}.
Itis clear that 0 < 77 < T, < T. Next, there exists = €]T,, T'[ and x; > 0 such that

¢y (xe, T) > uj(xe, 7).
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We introduce

¢y,o = ¢y - O'(X _xt)Z

and T(,::inf{t>02 Ix >0, uf(x,t)<¢y,(,(x,t)}.

Moreover, we have 0 < T} < T, < T, <t < T. Since for x € B(x,, \/g), we have
Oyo(x,T5) < d(x,T,) < uf(x,T;) (since T, < t), it follows the existence of xy €
B(x., \/g) such that

M?(XO, Ta) = ¢y,a(x07 TO')'
A direct computation implies

d;
b+ T~ (2%~ 2701 + ed2(0) = (09 — didd — (6T (50, T)
1
> (0,uf — ed;dpyuf — di[0cui]*) (x0. T)

—Ckg.

v

Taking the inferior limits 0 — 0 and y — 0 and b large enough, leads to the desired
contradiction.

It concludes the proof. O

3.2 AFirst Weak Asymptotic Result for u; — uj.

As mentioned in the comment that follows the statement of Theorem 2.2, we only prove a
first imprecise (but necessary) result on u; — u’;. For this purpose, we introduce

Definition 3.1 Let g;" be defined by

U = d 1@ 1y — ) + 48,8,
4 when d; < d;,

qi when d; > d;.
We emphasize that
gi(x,1) < g (x,1) V(x,t) e RT x RT. (3.2)
This new quantity is introduced in order to prove the following result
Lemma 3.2 Under the hypothesis (H2), we have
—c(x +1) <In(g) (x,1).

Proof By definition of q1+ , in any case and for all ¢ > 0, we have

In(81 () — In(3:(x)) <ln< am) < In(g*(x. 1))
= 1 i .

2 - 82(x)
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Thanks to (H2), we have

—Csx —In(Cy) Sln(ql*(x,t)). O

Notice that when d; < d,, the conclusion of Lemma 3.2 may be false for g if [d,u5] is
not locally bounded. With this result, one can state the following lemma:
Lemma 3.3 Under the hypothesis (H1), (H2), (H3) and (H4), we have

4

4
¢ <1n(q;(x, 1) — %) < —u) (1) <e (1n(q1+(x, 1) + %) .

Proof Set (xg, tp) € Rt x R, ¢ > 0 and p« > 0. The aim is to prove that

4

+ 84 & & + €
¢ | In(g, (x0, %)) — . < (u] — u3)(xo0, o) < &\ In(g; (xo,20)) + =)
0 0
First, we assume d; > 0. We introduce

T, = inf{t >0: 3x>0 suchthat

4
(Ui —u3)(x.1) =~ (x —x0)* > e [‘n(qf(x, )+ 87] }

Thanks to 1. of Theorem 2.2, we have 7, > 0. Remark also that for all © < 1, we have
V(x,t) e R* x [0, 71]

U5 —u5)(x, 1) — = x0)? = (] —u5) (e, 1) — (¥ —x0)” + [ = 1(x = x0)°

o4
<e |:lnq1(x, 1)+ ?:| .

It follows that 7, > 7; > O for all u < 1. Next, we distinguish two cases:

1. limsup 7, > fo,
n—0
2. liminf 7, <to.
n—0
We will only consider the second case, since it is clear that in the first case the conclusion
holds true.

We prove by contradiction that this case can not hold. Let u, — 0 be such that 7,
converges to liminfz,. For sake of readability, we replace t,,, by 7,,. Notice that this limit

n—0
belongs to [1y, fo].
According to the point 1. of Theorem 2.2 and Lemma 3.2, we have

ot
(] —up)(x, 7,) — wlx —x)—¢ |:ln(q]+(x, 7))+ —] — —00.
TIL xX—> 400
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It follows the existence of x,, > 0 such that

4
0= (u&i - Lt;)(x#, fu) - :u_l(xu - .X())2 — & |:1H(611+(xu, t,u)) + i_]
u

84
= max (uj — u5)(x,7,) = wlix —x0)? —e |:ln(q1+(x, 7)) + T—} .
x> "

Moreover, we observe that as i — 0, one has x,, — xj. One also has

5
&
0; (ui - M;)(x;u T;L) = _ﬁ + €0, (ln(qr(x;u Tu)) s
w

P e _ 3.3)
e (0 — u) (xp0, 7) =27 (xy — x0) + €0, (In(g; (x,, T,))

and =0 (0 — u5) (X, 7)) = 207" + £(Bex In(gy” (X, TW))-

Since (x,, T,,) converges as u — 0 and all the involved functions are continuous, we deduce
the existence of C > 0 (independent of w but that may depend on &) such that for all © > 0
small enough,

5
max (155 + 9, (In(g{ (e, 7)1, 18 (g G, 7)),
i (3.4)

1852 (In(qy" Gy ), 185 (1 + 3) (e, 1)1 190t (1, fﬂ)l) <C.
We subtract the equations for u{ and u and we obtain

0 (u] — ul) — di 0, (u§ — u5)0c (U] 4+ usy) — di80c (u§ — u5) — [dy + da]edy us

£_ & &_ &

| 4
= [d—dr]@u5)> +ri—r+8e s —8e (3.5)
us—ue Miflle
= e ¢ Pdl,dz(e € )
Next, we evaluate the above equation at (x,,t,). First, since (u{ — u)(x,,7,) =

eln(gy (s 7)) + M, — x0)> + %, we deduce that

I (uél\ _”5)(-"/1.,1[1.)
(X, Tw) S gy (X, Tw) <e”F

It follows

£_ & £_ &
uj—u ui—u
2 71

(eT Puy (e%>> (> T) <0,
We deduce thanks to (3.3), (3.4) and (3.5) that there holds for © small enough

0< C+C[2/,L71|XH—Xo|+C]+28M71+8C(1+d1+d2)
= (0, —ub) — di 9, (uf — u5)dx (u + u5) — edy 0y, (U — 1)) (X1, 1,,)
- [dl + dZ]Saxxug(xu., T/L)
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HE—MT u?—u%
= e ¢ Pdl,dz(e ¢ ) (xp.vtu)

IA

0.

We have reached the desired contradiction.

If d; =0, we provide the same arguments with

T, ::inf{t >0: Ix>0 st

4
W5 —up) (1) — 7 @ —x0) > [mqm, )+ 87] +ult — fo]}-

The proof for ¢, is identical by studying u$ — u¢. Therefore, we let it to the reader. [

It follows the following corollary

Corollary 3.4 Under the hypothesis (H1), (H2), (H4) and (H3) we have

3 W —u®)(x,1)
n; ()C, t) — i ;j

- =
nj(x,t)

< CeC”Jré[(axui-(x, 0)*+1]. (3.6)

Proof We focus on the case i = 1, j = 2, the other case works exactly the same. According
to Lemma 3.3, it is sufficient to prove that

g (x, 1) < Ce“ [dub (x, 1)* + 1].

First, we remark that thanks to (H2)

! < Ce%,
d1(x)

Next, we treat the numerator of ql+. When d; < d,, we have

_ 2
\/((dl — ) Bu5)? + (11 — 1)) + 48,8, < (a,cug)z\/((d1 —d)+ (ry ”2)> 48,6,

(8,u5)? (B,ud)*
20k \* 4c?

< ax £\2 d d 5

= (0xu3) \/(( 1t (8xu§)2> (B, u5)*

< C[@,u5)* +11.
Combining the two above equations the conclusion follows.
For the case, d; > d,, we simply have thanks to the above computations

(dy — dy)

gy (x,1) < [(axuz)z(c + >

+ 1)+ CR] e < Ce M @By (v, 0 + 11
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3.3 Space Regularity of u;

Proof of 2. of Theorem 2.2 First, we fix an initial time #; > 0 and a maximal time 7 > 0 and
abound R > 0. We focus our study in the set (¢, T) x [0, R].

Next, we define u{ = f(v;) where v{ will be chosen later on. A direct computation
yields:

3[”? = f/(vf)atvis’ a,\uf = f,(Uf)aing and axxu? = f/(vis)axxvis + f”(vf)[axvis]z-

Replacing in the ith equation (1.9), it follows

ub —ué

VG R e T = N(0) +8i(x)e ™+
o) [a.0e 2 = NEN;
P+ o) 7 7

Next, we differentiate (3.7) with respect to x and we multiply by d,v; to obtain:

Vi — ed; 0,V — d; (8

at([axvl‘e]z) - Sdiaxx([axvf]z) + 28di(axxvf)2 - 4dl (?i/((;);s)) + f/(vls)) ax([axvl‘e]z)axvis
f ) ' H? vooe > e1d f”( ;) 0y
—2d. — ) [0, v°]* = ri0vf +2 R
(5 T Sy T 00 )il = 2l £ 25 S0

FEP=1eD (8 f(vE) — & f7(vE) ., A8 1 (W50, vf f(0F) — (3, 0] f'(v]))?
+ 2e , ( o0y O v; +81|: o ()2 :|>

Next, we assume that (9, 4¢)? = max((3,u5)?, (3,u5)?). It follows

0V f (WO vf f(vf) — (B0 f (vg))2
ef'(v)?

Next, by defining f(v) =2D — v? where D is large enough such that f(v) > D (thanks to
point 1. of Theorem 2.2) and dividing by |9, v; |, we obtain thanks to Corollary 3.4

a £ & (f//(vi ) £ £13 CV
; (10507 ) — &d;0:x (10507 |) — 4d; + 1) ) 0 ([0, 1) 050 + 4d; [0, 0] — 4—
1'@p) D

FOO=F@E /8 £ (vE) — & F" (vE
SZejf 8 f (i) =& f"(vf)
J'@)?

o4

2Ce ™ (|3, u5* 4 1) 81 () =i f"(vy)

< max ,0).
8i f(w)?

Next, thanks to Corollary 3.4, for any R, > 0, it follows the existence of a large constant
C(t;, T) (independent of ¢), such that for

(T, Ro) = C (11, T)e“™

we have

I )
J )

9, (10,7 ]) — ed; 0, (10, |) — 4d; ( + f’(vf)> 3, ([0xv{ 1*)dvf
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1
+1d;18.| = 6(T, Ro)I’ <0

Following, the Appendix B of [8], the conclusion follows by comparing |0, v]| to L

21
0(T, R). We conclude that

. . C(11, T)eCsk
max (|0 uil, [0us;)(x, 1) < ———— for (x,1)€[0,R] x[t, T].

NG
Corollary 3.5 Under the hypotheses (H1), (H2), (H3) and (H4) we have

d

max (|9, uf|, [3,u5])(x, 1) < C(ty, T)e“* for (x,t) eR" x [1,T]
(where C(ty, T) is a new arbitrary large constant that depends only on t, and T).
3.4 Asymptotic of u; — uj.
We only prove the following Lemma

Lemma 3.6 Under the hypotheses (H1), (H2), (H3) and (H4), for any time interval [t;, T],
there exists C(ty, T) > 0 such that

—C(t;, T)(x+1) <In(g(x,)) <C(t;, T)(x + 1).

Indeed, it is sufficient to prove this lemma because the proof of the upper bound point 3.
of Theorem 2.2 is the same than the proof of Lemma 3.3 by replacing ql.+ by ¢; and by using
the lower bound provided by Lemma 3.6 instead of the estimate provided by Lemma 3.2.
Notice that the proof of the lower bounds follows exactly the same argument than the upper

(uj—u;)(xp),T
bound except that Pd,,,dj (e e ) > 0. Therefore, we let the details of the proof for

the reader.

Proof of Lemma 3.6 We prove this lemma for i = 1, the proof works the same with i = 2.
We underline that the constant C(#;, T') can increase from line to line but does not depend
on x or €.

e The upper bound. We start from the definition of ¢;:

In(g; (x, 1)) =In <[d1 — o] (@,us (x, 1) + 11 — 1

+ () — )@ (.02 4y — 1) 46162) 68

— In(255).

According to Corollary 3.5, we have that for all t € [#;, T']

[di — d2)(Bu(x, ) +r1 — 12+ \/([dl — )@ u5(x, )2 +r1 —12)> + 4815,

r—r 46,8
1 2)2+ 1 2)+2CR

e2C5X e4C§X

< (C(t;, T)e“)? (dl +dy + \/ (Idi — d>1(1 +
< C(r, T)(*F +1).
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It follows

In ([dl — do)(Bus(x, 1) + 11—+ \/([dl — )@ u5(x, 1))2 + 1 —1)? +45152>

<[2Csx + C(t4, T)]
3.9)
Thanks to (H2), we have

—In(28,) < Csx + C. (3.10)

Inserting (3.9) and (3.10) into (3.8), the conclusion follows for the upper bound.

e The lower bound. If d| > d,, then the result is exactly the one obtained in Lemma 3.2.
Therefore, we only consider the case d; < d», in this case we have

[di — d2)(Bcus(x, 1) + 11 — 2+ /([dy — do](Qus (x, )2 + 11 — r2)? + 4818,
26,
~ 25,
[dr — d)(Bcus(x,0))2 + 12 — i +/([dy — o] (0,u5 (x, 1) + 11 — r2)? +45,65,

qi(x,t) =

Next, following similar computations than (3.9) and (3.10) the conclusion follows for the
lower bound. |

To finish, we state a Proposition that provides some identity related to ¢;. The proposi-
tion follows from straightforward computations that we omit here. However, the following
identities will be very useful in the proof of point 1. of Theorem 1.2.

Proposition 3.7 The following identities hold true:

1. ri+6;qi = rg(axuj) where rg is introduced in (1.11),

5 ol [d—di @t )47 —ri+ (1dj —di B ;2o =) +4875,
-4 = 25; ’

3. ri +8iqi71 = r,?(axuj).

Notice that in the special case d; = d;, we recover 9 '=q i
3.5 Time Regularity of u;
The local Lipschitz time regularity of u{ is an exact transposition of the proof of the time
regularity of u, in [8] in Sect. 3.5. It is performed with the so-called method of doubling
variable and relies mainly on the above bounds about d,u;. We do not provide this proof
and just refer to [8] Sect. 3.5.

4 The Hamilton Jacobi Convergence Result

Proof of Theorem 1.2 'We split the proof in several parts:

1. The convergence of N,,
2. The convergence of u{ to u and the control condition,
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3. The function u is solution of (1.13),
4. The convergence of n,.

e Convergence of N.. We follow the proofs of Theorem 3.1 of [6] and Theorem 2.4 of
[8]. First, we sum the two equations and we integrate with respect to x, it follows

1 +o00
=1 [ 0D RE N O i= 0
0
Notice that for all # > 0, we have
1
Jo.(t) < —CgrCy. 4.1)
€

Next, we differentiate J, over time and it follows thanks to (H3)

, Js(t) +o00 1 +o00 )
J ()= / (1 1) &R(x, No)n® (x, 1)dx + 5—2/ (1 1) R(x, Ne(1))™n* (x, 1)dx
0 0

&
1 +o00
+ 6—2/ (1 1) R(x, Ne(¢))D0,,n° (x, t)dx
0

+00
= _M + Siz/ (1 1) R(x, N.(1))*n’ (x, t)dx
0

+o00
+ 8—12/ (11) R(x, Ne(2))Dyn° (x, t)dx
0

+o00
>—Cy (CR + é) + é/ (1 1) R(x, N (1))*n® (x, 1)dx.
0

As mentioned in the introduction, a new technical difficulty arises since we deal with a
system: it is not clear that the quantity

(1 1) R(-, N.)*n® > 0.

Indeed, using mainly Proposition 3.7 on ¢;, we prove
1 +o00
—2/ (1 1) R(x, Ne(1))*nf (x, t)dx > —Ce
& Jo

which is enough to conclude to the convergence of N, (as we will detail later on). To prove
such an inequality, we start from

(1 1) R(, No)*nf =nf [(r1 — No)* + 8182 + (r1 + 12 — 2N,)81 ]
+n5[(r2 = N)? 4818+ (r1 + 12— 2N.)81 |

4.2)
=(r1 + 8 — No) [(r — No)n§ + 81n5
+(r2+ 81 = No) [(r2 = NoJn + 8onf].
Thanks to the point 3. of Theorem 2.2 and Proposition 3.7, we have for t > ¢
[("2 — Nons + 52”?] =n[ry — N. + 82q1 + 0(&)] 43

=n5[rf@,u5) — Ne +o(e?)].
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With similar computations, we also have
[(r1 — Non§ + 81n§] =nj [r1 +qf181 - NE] =nj [r};(axug) — N, + 0(83)] . 4.4)
Inserting (4.3) and (4.4) into (4.2), it follows
(1 D) R, No)*nf = [rp(dcub) — Ne1 [(r1 4 82)nf + (r2 + 81)n — No(nf +n)]

+o0(e¥)(nf + nb).

Using again the point 3. of Theorem 2.2 and Proposition 3.7, it follows

(r1 + 8, — No)n§ + (ry 4 81 — No)n = (r1 + 8 — No) (g1 + o(e”)ns + (r2 + 8 — Nenj
=[(r1+8)q1 +r2 48 — N.(1 +q1) + 0(e)] n§

r 4+ g8+ qi(ri +q;'81) _N
I+q ‘

=n5(1 +£]1)|:
+ o(e*)nf
=n5(1 4+ q) (5 (0,u5) — Ni) + o(e*)ns.

‘We deduce that

+o0 oo
iz/ (11 R(x,N€)2n9(x)dx=12/ (L+qQ)Irp (x, dus) — N Pns(x, Hdx
&< Jo &% Jo

+00
+ o(¢) / (n] +2n5)(x, t)dx
0
> —2Ces.

‘We conclude that for all ¢+ > ¢, we have

Je (1)
&

J(t) > —Cy ( + cR) —2Ce.

By integrating the above inequality between ¢ = ¢ and ¢, we deduce thanks to (4.1)

2C¢? ~Cyt 2Cs? c
Jo(t) > | Jo(e) + +Crele = — + Cre ) eV
CN CN
CrC 2Ce? —Cpyt 2C&?
> | BN L L cre e ™ — (2 4 e ) e
& CN CN
> —0.(1).

Finally, following the Annex B of [8], we fix 7 > 0 and it follows for ¢ < 7
T T T
/ IN.(s)lds =/ Nl (s)ds + 2/ max(0, N/ (s))ds < Cy —cy + 2(T — 1) O, (1).

We conclude thanks to the compact embedding of W'!([z, T]) into LY([z, T]). Up to a
subsequence, N, converges to a function N on every interval of the form [z, T] for every
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7 > 0. By a diagonal process, we conclude to the convergence of N, on ]0, +o0o[. Moreover,
it is clear that N is non-decreasing.

e Convergence of u{. From the points 1, 2 and 4 of Theorem 2.2, we deduce thanks to the
Arzela-Ascoli Theorem that u{ converges uniformly on any set of the form ]0, R[x ]z, T'[
with R, T arbitrary large constants and 7 an arbitrary small constant. We deduce that u;
converges uniformly locally on [0, +o00[x ]0, +o00[. Moreover, thanks to the point 3 of The-
orem 2.2, we deduce that

lim uf(x, 1) = lim u5(x, 1) = u(x,1).
e—>0 £—0

Next, we claim that u(x,t) < 0. We prove it by contradiction: assume that there exists a
time r > 0 and x € R" such that u(x, ) > « > 0. We deduce the existence of a sequence
((xk, te), &) = ((x, 1), 0) such that ufk (xk, &) > 5. Next, according to the point 2 of Theo-
rem 2.2, there exists a radius » > 0 such that for all y € B(x, r), there holds

o
Uit (v, 1) > 1

It follows that for &; small enough, N,, > Cy which is in contradiction with the conclusion
of Theorem 1.1.

We finally claim that for all # > 0, we have sup u(x, t) = 0. Assume that the conclusion
xeRy

does not hold true. It follows the existence of a time ¢ > 0 such that u(x,t) < —a < 0. We
deduce that for ¢ small enough, we have

. —a
ui(x,t)§7 Vx > 0.

We conclude that for ¢ small enough, N, < cy which is in contradiction with the conclusion
of Theorem 1.1.

e The function u is solution of (1.13). We first prove that u is a super-solution in a
viscosity sense of d;u — Hp(d,u, N) = 0. We proceed as it was introduced in the article [8].
Let (xo, o) € RT x R* and ¢ be a regular test function such that

min(u — ¢) = (u — ¢)(xo, 1)-

Then, we notice that
T & _ Y\ — 1 € _ £0
u(x,t)_llil(l)ul(y,s) sln( 1 ) gli%uz(y,s) .sln(lp2 )

where

0 1
— P — 1 —
Po=0:¢(x0,f0) and Y= (W;O) = ( (d1=dy) po®+(r1 —r2)+V/ (d1 —dp) po > +(r1 —12) > +48, 85 ) .

289
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The function v, introduced in (1.12), is a positive eigenvector of py>D + R associated to
the eigenvalue H p (9, ¢ (xo, to), Ne). We deduce

Jex P 0, & >0, J(q 1) eRT xRT such that (x, ;) = (xo, o)
—+00

(u;* = e In(y") — ¢) (xx, ) = min [ — @) (e, 1), (5" — ex In(¥3°) — @) (e, )]

and [u;* — & In(Y/) — p1(xx, 1) = Rgnxi§+[ufk — & In(y/°) — o].

4.5)
As we have denoted py = 9, ¢ (xo, ty), we will denote p, = 3,¢ (x, #). Notice that pr — pp.
Since it is a minimum point, it follows

O lu — e In(yP/®) — @l(xi, ) =0,  d[ui* — ex In(¥/*) — Pl (xx, 1) =0
and  —0y[u;* — e In(y*) — Pl(xe, 1) <O.

Using the equation (1.9), we deduce that

i

uk ik
0= <3z¢ +ed;de (¢ + e (W) — di[0: + &0, In(Y")* = ri + Ne(t) — 8¢ T )

X (Xk, ).
Moreover, according (4.5), we have
@i — uh) (e 1) < e [In@ (0)) = In(Y? (xe))].

It follows

sy
0< <3t¢ + £4d; 05x (¢ + £ IN(Y/)) — di (9. + €40, In(Y{))” — ri + N (1) — wwpﬁ )
X (xka tk)

: s
=00 (xy, tr) — | di ()" +r; — N + W (xx, 1)

oy (6190x (6 + £ In(YL)) — 260,00, In(Y/*) — £7(3, In(Y*)?) (x, 1)

Pk )
—81 (xx) (w-—" - w__,»>

ANV
Pk
2 ‘Sil//j
=0, (xy, tx) — [ di (0xp)" +1r; — N + g (xk, ) + 04, (1).

Moreover, recalling that H p (3¢ (xi, t;), Ne) is an eigenvalue of d,¢%(xy, #)D + R, it fol-
lows

([0 +ri = NeD)W* + (8:97) Coe, 1) = (Hp (9:¢0, No)W*) (i, 1)

Pk

2 81
= di(0x¢p)” —ri + N, — W (xx, 1) = Hp(0x @, Ne) (X, fr).
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We deduce that
0=<0,¢(xx, k) — Hp(0x P, Nep) (X, 1) + 05, (1).

Taking the limit k — 400, we conclude that u is a super-solution of d,u — Hp(d,u, N) =0
in a viscosity sense.

It remains to prove the limit conditions: we verify that u satisfies in a viscosity sense
—d,u(x =0,1) =0. Let ¢ be such that u — ¢ takes its minimum at x = 0 and for some
positive time 7. We deduce the existence of (x., f.) such that

xe—>0, t,—>tase—0,
[u; — eIn(y;[0:9(0,D]) — Pl(xe, 1)
= min ((u] — $) (X, 1e), (5 — e In(Y2[0: (0, HD) (x. 1))
and  [uj —eIn(Y;[0:¢ (0, )]) — P(xe, 7.)
= min  [uf —eln(¥;[3:¢(0,0)]) — P](x, 1).

(x,t)eRT xR+

We distinguish two cases:

1. Case 1: x. > 0. In this case, we conclude exactly as above that
0< 8[(]5()68, t.) — Hp(0:p(xe, 1), Ni) + 0. (1).

2. Case 2: x, = 0. In this case, using the fact that (x,, f,) is a minimum point, we deduce
that

—0,[u; — eIn(Y:[0:¢(0,)]) — ¢1(0,7,) <0.
Next, according to the Neumann boundary conditions imposed to u?, we deduce that
£dx(In(i[9x¢ (0, N]))(0) = -8, (0, ).
Passing to the superior limit ¢ — 0
0 <max (—=0:¢(0,1),¢(0,1) = Hp(0:¢(0,1), N.(1)))

which corresponds to the boundary conditions in a viscosity sense.
The proof that u is a sub-solution of (1.13) follows from the same arguments.

e Convergence of n! in the sense of measures. The proof that n; converges to a measure
follows from the convergence of u; towards u. Indeed, fix times 0 < f; < T'; then, according
to point 1. of Theorem 2.2, there exists Ry > 0 such that for any x > Ry, t € (#;,T) and &
small enough, we have

u(x,1)<C(1—x) and / nt(x, 1)+ ns(x, dx < X
(x>Rp) 2
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Hence, we deduce that n{ — 0 on {x > Ry}. It follows

1
= — . / (n (x, 1) + n5(x, 1)dx
: & : &) Jx<rr)
2(1+ g ") (14 i coe® )
1

xe[0,Ry

&3
< S / ni(x, ) (1 +qi(x)e ™ )dx
(1 -+ min ]ql(x)e7> tr<Rr)

5/ ni(x,t)dx <Cy.
{x<Rr}

Since the same type of inequalities is valid for n3, we deduce that up to an extraction we
have (n{, n3) — (n1, n,), where n; and n, are two non-trivial measures. Next, we prove that

supp 1; (-, 1) C {u(-, 1) =0}.
Let a time ¢ > 0 and ¢ be a positive regular compactly supported test function, such that
supp ¢ C {u(-,¢) =0}°.
We deduce that there exists a > 0 such that

max u(x,t) < —a.
xXesupp ¢

Hence, for ¢ small enough, we have maxd)uf(x, t) < —5. The conclusion follows the fol-
X Esupp

lowing computation:

/ d(x)n(x,t)dx = lim/ ¢ (x)ni (x,1)dx < lim/ d(x)e 2xdx =0. 0
R+ e—0 R+ e—0 R+

5 Optimal Timing and Heterogeneity in the Adaptation to DNA
Damage

5.1 A General Non-local System Modelling Adaptation to DNA Damage

We now describe with more mathematical details the model used in [44] and we build a
more complex model involving coupled non-local partial differential equations.

The initial population is composed of a quantity D(0) of damaged cells. These cells are
assumed to be the only survivors of an event that damaged their DNA and killed part of them.
They first try to repair their DNA and succeed at a time-dependent rate that we assume to be
Gaussian:

_ (Y—Mu)z

a(t)=aye” 20 5.1

where ¢ is the time elapsed since the damage, «,, > 0 is the maximal value of the rate, o > 0
the variance and u, > 0 the mean. We assume that the cells adapt with a time-dependent
rate of logistic type:

(5.2)

e—P(f—-’C) :

_ ﬂnl
B(x, p,t)= T
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This rate involves the parameters x of the adaptation timing that represent the center of the
curve and p which represents the heterogeneity. We also fix the hyper-parameter 8,, > 0 for
the maximal value of this rate.

Adapted cells and their progeny have access to other repair mechanisms at later stages
of the cell cycle and we assume that they manage to repair their DNA damage at a constant
low rate § > 0. The values y; > 0 and y, > 0O are the death rates of damaged and adapted
cells respectively; the death rate of healthy cells is assumed to be O for the sake of clearness.

Currently, there are not enough data to justify a precise choice of the fixed parameters
U, B, o and pu,, but insights from experimental biologists suggest orders of magnitudes
and approximate values. In this work, we stick to the choices of [44], which come from
discussions with experimental biologists:

va=0.1, y,=035 «o,=6,=05 =05 pu,=1.

The choice of O for the death rate of healthy cells is not important since what matters in the
model is the relative values of the different death rates. The real values of these death rates
in the wild is very hard to determine and depends on many varying factors like predators
and environmental conditions.

With these choices of parameters and functions, the model of [44] is defined by the
following system of ordinary differential equations:

D(t) —Ya — B(x, p, 1) —a(r) 0 0\ (D)
E A(t) = ﬂ(xsp![) _ya_6 0 A(Z)
R() al(t) ) 0 R(1)
0
+Aana -2,

R(n)(1 — 4
where, at time ¢, D(t) is the quantity of damaged cells, A(¢) the quantity of adapted cells
and R(z) the quantity of healthy cells whose DNA is repaired. We denote

N(@)=A@)+R(@)+ D()

the total population at time ¢. This system converges to a situation where the healthy cells fill
entirely the carrying capacity N, > 0: (D(t), A(t), R(t)) — (0,0, N,.ux) When t — +o00.

Depending on the value x € R, of the timing of adaptation (or the value p € R, when
we study heterogeneity), the population will take a certain time Ts(x) (respectively Ts(p))
to reach some arbitrary level near the carrying capacity N,,,, of the system. The authors of
[44] observe that there exists for most values of p an optimal value x*(p) which minimises
T, thus allowing the population to grow back to a healthy size as fast as possible after an ex-
ternal event has damaged the DNA of all cells. The authors also investigate the dependency
of Ts with respect to the heterogeneity parameter p when x is fixed. As we explained in
the introduction, for realistic values of x, argmin p>01s(p) =00, which is in contrast with
experimental data that indicate that adaptation is quite heterogeneous in time. The authors
of [44] then improve their model, assuming that the source of the initial damage (heat, X-
rays, chemicals in the medium,. . .) is still present for some time and prevents repair. This is
modelled by a random variable determining when repair becomes possible after the damage.
With this component and minimising the expectancy E[7s(p)] with respect to the law of the
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environmental random variable, they find an optimal value
p* = argmin 5, E[Ts(p)]

for the heterogeneity parameter p.

Here we go further into investigating the selection of optimal adaptation timing x* and
heterogeneity p*. Instead of studying for each value x of the genetic trait the evolution after
a damaging event in the isogenic population, we consider a population of cells with varying
genetic trait competing for the same resources in an environment.

Consider for example the trait x representing the timing of adaptation. Let n(x, t) repre-
sent at time ¢ the density of healthy cells with genetic trait x; let d(x, s, t) represent at time
t the density of cells with genetic trait x whose DNA is damaged since a time s; let a(x, t)
represent the density of adapted cells at time ¢ with genetic trait x. We now assume that
some cells are damaged at rate D(¢). We model genetic diffusion in the variable of inter-
est (x or p) for both healthy and adapted cells with a Laplacian with diffusion coefficients
dy > 0 (healthy cells) and d, > 0 (adapted cells). The adapted cells having higher genomic
instability, it can be interesting to consider the case d, > d;. Last, we directly introduce the
scaling parameter ¢ > 0 in the spirit of the model (1.2). As mentioned in the introduction,
the parameter ¢ accelerates time and makes the mutations rare. In this regime, we expect
that only the traits with a positive or null growth rate will be selected. Therefore, we expect
that the set of solutions converges to moving Dirac masses.

The repair rate can now take into account both an absolute time ¢ part and a “time s
elapsed since the damage occurred” part:

G—pa)?

a(s,t)=a(t)e” 20 (5.3)

where the function « : R, — [0, «;,,] allows us to take into account environmental events
that prevent cells from repairing their DNA damage, like X-rays, anomalous heat or toxic
chemicals. The adaptation rate can depend on x or p depending on what we investigate,
which we will denote for clarity

B B
Blx,s) = ——" — or ﬂ(PJ)Zm,

et (5.4)

to indicate if cells vary along genetic trait x or p in the model. In Fig. 1 A, we present the
rates o and B in terms of the time s elapsed since the damage of a cell. In Fig. 1 B, we plot
on the same graph the adaptation rate for different values of the heterogeneity parameter p
to help visualise what kind of effect varying it has.

Our non-local PDE model writes:

an ,, 3% +oo
sg(x,t)—e dlﬁ(x,t) =n(x,t)(l—D(t)—N(t))—l—(Sa(x,t)—i—/o a(s, t)d(x,s, t)ds,
5.5

ad ad
eg(x, $,0) + E(x, 5.0+ (va+als, 1)+ Bx,5))d(x,s,1) =0, (5.6)

+o00

da 2 d%a
ga(x,t)—s dzﬁ(x,t)=a(x,t)(1—ya—8—N(t))+ ; B(x,s)d(x,s,t)ds, (5.7)
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! alpha(s)
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e
N

Repair and adaptation rates
Repair and adaptation rates

—-=- beta(s), x=4,p=0.5
/I beta(s), x=4,p=1
| —— beta(s), x=4,p=3
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o
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Time since the damage s Time since the damage s

Fig.1 (A) Plot of the rates «(s, t) with () = 0.5 and B(x, p,s) with x =4 and p = 3 in terms of the time s

since the damage. (B) Plot of the adaptation rate B(x, p, s) in terms of the time s since the damage for x =4
and p=0.5,1,3,10

+00 +00
N(t):/ (n(x,t)—l—/ d(x,s,t)ds —i—a(x,t)) dx, (5.8)
0 0
with the following initial and boundary conditions

3 9
Ton=220,n=0 1eR,,
0x 0x

d(x,0,t) =D@)n(x,t), x,t €Ry,
n(x,0=n"(x), dx,s 0 =d%x,s), a(x,0)=a"(x), xeRy,

(5.9)

and where the constants dy, d, 8, ya, va € R are the same as in the previous model.

Let us comment further on this system in order to justify the different choices we made
in the crafting of equations (5.5)—(5.6)—(5.7)—(5.8).

e Diffusion part: We assume that mutations can occur when cells reproduce and we choose
to model these mutations with a Laplacian in the variable under investigation (x or p). Let
us recall that other approaches have been studied in the literature, like integral operator
with a mutation kernel [8, 40]. Our main assumption in this work, which comes from
insights from the experimental community ([20]), is that the value of the parameters x and
p can be affected by random mutations, leading to colonies where cells present different
behaviours when faced with damage on their DNA.

In equation (5.5), mutations occur in the healthy population with a rate driven by the
diffusion coefficient d; > 0 and the scaling parameter ¢ > 0; when the later is small,
we consider a regime of rare mutations over a long timescale. Although they have chro-
mosomic instability, damaged cells do not have genetic diffusion because, since they are
blocked in the cell cycle, they don’t reproduce at all until the damage it either sorted out or
ignored. When they adapt, cell division resumes and we model mutations in the adapted
population with a Laplacian and a diffusion coefficient d, > 0. It is expected that d, > d,
because of the genetic instability ([20]), but there are currently no experimental data to
rigorously support this claim. Estimating mutation rates for organisms is still a widely
open question in experimental biology and most systematic review on the topic concern
bacteria (e.g. [46]).

Let us also clarify a point about diffusion when we consider p as a variable. The times
at which individual cells adapt is then random for two different reasons: first the value
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of p (the smaller p, the more random are adaptation events), then the diversity of the
values of p in the population. The effect we want to investigate is the first one, in order to
determine which value of p leads to the more fitness in the population, which is why we
assume that mutations are rare (¢ < 1), leading to less heterogeneity in adaptation events
due to the diversity of values of p and more heterogeneity due to the value of p which is
selected by evolution over long timescales.

e Reaction part: Cells are damaged at a rate D(¢) and thus removed from the healthy popu-
lation n(x, t). These damaged cells enter the damaged population d at time since damage
s = 0 through the boundary condition d(x, 0, 1) = D(¢)n(x, t). The damaged cells popu-
lation evolves according to the age-structured hyperbolic equation (5.6). Time since the
damage increases at speed % damaged cells die at rate %yd. The cells damaged at time ¢
since a time s repair their DNA at a rate %a(s, t). At any time ¢, all cells repaired are put
back into the healthy population through the term

1 +00
—/ a(s,t)d(x, s, t)ds.
€ Jo

In the same fashion, damaged cells adapt at a rate % B(x,s) and at any time ¢ all cells that
adapt are put in the adapted population a(x, ¢) through the term

1 +oo
- B(x,s)d(x,s,t)ds.
€ Jo

Last, all cells compete for resources and are subject to the control of the total population
N(¢) defined by (5.8). These integrals and the equation (5.6) for damaged cells could be
posed on the interval [0, é] in the s direction since the hyperbolic nature of this equation
implies a finite propagation speed. However, it would prevent the use of an arbitrary initial
condition d(x, s, 0) in the system and other age-structured equations in the literature are
posed with s € [0, +00); for these reasons, we pose the equation on an infinite domain
for s.

5.2 Simplification into a Two Populations System

This system of non-local partial differential equations is hard to tackle numerically for mul-
tiple reasons. First, the hyperbolic equation with coupled boundary condition describing
damaged cells d(x, s, t) must be solved on a two dimensional domain which may be large
in the s direction because when x is not small adaptation events can happen later on. This
implies that the more the domain is large in x, the more it must be large in 5. A potential
way to circumvent this issue would be a non-square domain, but then it raises the problem
of preserving the hyperbolic structure of the equation. More generally, the system possesses
conservation properties between n, d and a that a robust numerical scheme would have to
preserve. Then, every iteration of the system involves the computation of a lot of integrals in
the s direction: in the equations for n and a and in the computation of the total mass N (¢).
Last, when the scaling parameter ¢ becomes small, there are no guarantees of numerical
stability for this intricate non-local parabolic-hyperbolic system; without proper tuning of
the numerical scheme, the time step would have to be small. Numerical study of this model
is still possible with a carefully crafted numerical scheme and enough computational power,
but this is outside the scope of our paper.
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Hence, we simplify the dynamics of the damaged cells by making for ¢ small enough the
quasi-static approximation

dd(x,s,1) + (va+als, 1) + B(x,9)d(x,s,1) =0.
Then, we can compute the quantity of damaged cells explicitly:
d(x,s,1) =D(t)n(x, 1)e 7es—ho a@nda=fo plx.adz,

We also make the simplifying assumption that the damage rate is constant, i.e. D(t) =
D > 0, and the new total mass is given by

+o00
N.(t) = / (ne(x,t) +a.(x,t))dx.
0

The damaged cells are absent of this total mass because the quasi-static approximation is

tantamount to say that on longer timescales damaged cells are instantaneously distributed

between the three categories they go to: healthy, adapted and dead. Since they are instantly

redistributed, they don’t need to participate in the carrying capacity in this simpler model.
Hence, we come to the simplified model

edne(x, 1) —e2diAng(x, 1) =n.(x,1)(1 — D — N, (1)) + 8a(x, 1)
+Dng(x,1) /‘00 als, e vas—ho «@nde=fy lv.adz g g
edia.(x,t) — 2 daAa,(x,1) = a,(x,t)(1 — y, — (;J— N(1))
+Dn(x,1) /Ooﬂ(x,s)e_yf”_f‘f“(z”)dz_fgﬁ(“)dzds,
0

+00
No(t) = / (ne(r.1) + a, (x. D)dx,
0

(5.10)
with the following initial and boundary conditions
ong da,
0,t)=—(0,7) =0, teR,,
ax O D=5 @0 - (5.11)

ne(x,0) =n’x), a.(x,0)=a’x), xeR,.

If we choose a(t) = a,y, i.e. a(s,t) = a(s), and if we denote

oo . "
rnx)=1-—D+ D/ a(s)e vasho «@de=fy v.adz g g rx)=1—y,—4,
0
si)=8  and  &H(x)=D / B(s)e v o e@dz=lo prdz g
0

the system (5.10) is of the form (1.5).

If we assume that D < 1 and y, < 1, then the functions ry, r;, 8;, 8, defined above satisfy
assumptions (H2) and (H3). Most of the conditions can be readily checked and we post-
pone the remaining technicalities to the Appendix B. For (H2) the only difficult part is to
check that e“*8,(x) —> 400, which is granted thanks to Lemma B.1. For (H3), thanks

x—+00
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Fig.2 Hamiltonian fitness r g (x)

of the system for p =3 0:839
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to Lemma B.2 and using the fact that
© s S
/ O((s)efy‘”*fd a(z)dz— [y Bx.2)dz g ¢ <1,
0
we can choose

cy =min(1 —§,,1— D) and Cy=2+D.

Therefore, we can apply Theorem 1.2 and Theorem 2.2. In particular, if d; = d5, then for all
e eR%,

ne(x, 1) s )= r1(x) — 12 (x) 4+ /(1 (x) — r2(x0))2 + 481 (x) 8> (x)
a,(x, 1) 1= ree ! 25,(x) ‘
Moreover, recall that in the case d; = d, = 1 the Hamiltonian defined in (1.10) can be
decomposed into

H(p, N)=p* +ru(x) — N,

with
1
rg(x) = 3 (Vl + 1+ (r —r2)2+48182),

the Hamiltonian fitness. This function also describes the stationary states as explained in
Sect. 2.2. We can compute numerically this function ry to gain insights about the behaviour
of the system in the limits ¢ — 0 or t — 4-00.

When the variable of interest is the mean time of adaptation x, with fixed p = p, ry(x)
has a unique global maximum as can be seen on Fig. 2. The numerical results in the next
section indicate that when ¢ goes to O, the solutions concentrate on a Dirac mass moving
towards the maximum point. Hence, this model strengthens the hypothesis of [44] that an
optimal timing x* for adaptation tend to be favored by natural selection over long timescales.
Here, the optimal time is expressed as

x* = argmax rg(x).
xeRy
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Fig.3 Hamiltonian fitness rg (p) of the system for (A.) x =2 and (B.) x =20

Let us mention that g (x) should also drive the profile of the stationary state for fixed &,
since, as mentioned above, the formal equation for w(x) =1 o (x) 4+ 12,00 (x) is

e2Aw(x) — ry (Dwx) =0.

If we fix an adaptation timing x = x and we take as a variable the adaptation hetero-
geneity parameter p, we can compute another equivalent fitness ry (p) which is displayed
in Fig. 3.

As can be seen in Fig. 3A, for “reasonable” values of x the function ry : p > ry(p) is
increasing on R, . As we can observe in the numerical simulations in the following section,
when ¢ — 0 the solutions concentrate on a Dirac mass that moves towards +oo. This is in
accordance with the findings of [44] in the simpler ODE model: when the environment is
predictable, the optimal strategy for the cells is to minimise the variance around any “good
enough” adaptation timing, which amount to taking the largest possible value for p.

If the mean adaptation time x is large enough, for example x = 20, it can be seen in
Fig. 3B that 75 (p) has a unique global maximum. Since adaptation is really late, a smaller
value p* (i.e. a larger variance for the adaptation) is selected to compensate.

However, as we said in the beginning of this section, in real life experiments the cells
adapt with a variable timing. In [44], this fact was explained as a bet-hedging mechanisms
in an unpredictable environment. When the optimisation procedure in the variable p has
to take into account a random variable in the repair function «, a particular value p* is
selected. Here we use the absolute-time part @(¢) in the repair function « (s, ¢) to model the
changing environment. In the next section, we also make numerical experiments to explore
what happens to the solution with a time-periodic & function.

6 Numerical Simulations

In this section, we investigate numerically the behaviour of the system (5.10) with the pa-
rameters and functions described in Sect. 5.2.

We use a standard Cranck-Nicolson scheme for the Laplacians and the reaction terms
are treated explicitly. This rather simple scheme appears to be very robust even for small &
values, as long as the time step d is of the same order of magnitude than ¢. The numerical
domain [0, X ] is chosen such that increasing it further has no effect whatsoever on the
simulation, which is most of the time X,,x = 12. The smaller the scaling parameter ¢ is,
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Fig.4 (A.) Distance between g and ¢ in L norm. The norm is computed over the finite numerical domain
[0, 10] (B.) Plot of n(-, t) and a(-, t) for t = 0.699. The diffusion parameters are d| = dr =1

the smaller the numerical domain can be. At both ends of the numerical domain, we use a
homogeneous Neumann boundary condition. This method is valid also because we use fast
decreasing initial conditions.

Note that the recent preprint [13] proposes a new asymptotic-preserving numerical
scheme for this type of equations, along with theoretical guarantees. It could lead to fur-
ther numerical research in this two-population framework.

The Python code we used to produce the numerical simulations is available at https://
github.com/pierreabelroux/Leculier_Roux_2021. The figures can be obtained by running
the code.

As can be seen on Fig. 4, the convergence of the quantity Hq(-) - ZU;
the shapes of n and a are similar right after a short transitory period. In this figure and the

following ones we take

is very fast and

1 2
n0 = g% = 100572

to avoid visual scaling problems with Z (this quotient can be very large in the first mil-
liseconds for Gaussians with distant means) but it does not affect the speed of convergence
towards ¢ (x) which is consistent across all types of initial data.

Consequently, we will only plot n(-, f) in the following numerical experiments for the
sake of clarity.

6.1 Evolution Along the Parameter x for Fixed p

For the fixed values p =3 and d; = d, = 1, we simulate the system (5.10) for different
values of ¢ (see Fig. 5). As predicted by our theoretical results, when ¢ tends to 0 the solution
behaves like a Dirac mass moving towards the maximum point of the Hamiltonian fitness
rp(x). This corresponds to the selection of an optimal mean value for the timing of the
adaptation process. In laboratory experiments on budding yeasts ([20, 25, 28]), researchers
use mutant populations of cells that are incapable of repairing heat-induced or radiation
induced damage. They observe that despite repair being impossible, adaptation occur at a
specific timing. The theoretical and numerical results of our model strengthen the hypothesis
that this specific average timing is driven by natural selection. Note that this natural selection
mechanism is not something that experiments can test currently, which makes model aided
hypotheses quite useful.
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Fig.5 Evolution in time of n(x, ¢) from the same initial data for p = 3 and different values of ¢. The dashed
line is the Hamiltonian fitness r g (x) which is re-scaled for the sake of readability. (A.) ¢ = 0.05 (B.) ¢ = 0.01
(C.) £ =0.001 (D.) e =0.0001

Yet, taking d| = d, is not realistic from a biological point of view in this context. It is
observed in experiments that adapted cells have a more unstable genome and thus the ge-
netic diffusion might be very asymmetric [20, 21]. Our theoretical setting gives us less clear
results in the case d| # d, because we can’t define and simulate in a simple way a Hamil-
tonian fitness ry (x) to see were are the optimal traits: the Hamiltonian rather decomposes
into

dy +d-
H(p,N)lezszrrH(x,p)—N,

and the function ry then involves the gradient of the solution, which is evolving in space
and time.

Therefore, we run numerical experiments for ¢ = 0.001 and different values of d; and d,
(see Fig. 6) to see how it impacts the evolution of the solutions in time. It appears that the
overall behaviour of the system is not changed much by the different values but asymmetric
diffusion make the concentration to a Dirac mass faster. The higher diffusion d, drives the
evolution and even in the extreme case d; = 0 the qualitative behaviour similar to the case
d, = d, = 1. This last case, when the genetic diffusion is assumed to be negligible in healthy
cells, is of particular interest for biologists for it allows to investigate adaptation to DNA
damage as a mechanism promoting genetic diversity of organisms. Note that this question
was opened in [20]. The stability of the model with respect to this particular case strengthens
the hypothesis of a role played by adaptation in genetic diversity of cell populations.
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Fig.6 Evolution in time of n(x, t) from the same initial data for p = 3, ¢ = 0.001 and different pairs (dy, dp)
with same sum d; +dp (A.)dy=1,dp =1(B.)d; =0.5,dr, =15 (C.)d; =0.05,dp, =195 (D.)d| =0,

6.2 Evolution Along the Parameter p for Fixed x

In [44], the authors also explore the influence of the parameter p which describes the slope
of the adaptation curve (see Fig. 1B). When p is very large, the population barely adapt
before time x since the damage and brutally starts adapting with constant rate after a time
x. When p is mild, there is a smoother transition and thus cells adapt at more random times.
Experimental evidence strongly suggest that the individual adaptation time is heterogeneous
and the curves available in the literature suggest that p is neither too small nor too big. In
[44], the authors set a biologically realistic value of x, and then run the model for different
values of p to see which values lead to the fastest recovery of the population after a damage
of all the cells. In a stable environment (x(¢) = % they find that the optimal value is p =
00, which is in contrast to experiments. The authors then add randomness into the repair
process to account for the fact that repairing can be impossible for some time in hostile
environment or if the source of damage is still present. Across different choices of laws for
the random environment (Gaussian, exponential, uniform) an optimal value for p emerge.
The authors relate this phenomenon to the wider concept of bet-hedging (see [47] for a good
introduction to this notion).

In our non-local PDE setting, we add more complexity as now p is not a fixed parameter
but a variable and the population is genetically heterogeneous. We simulate the evolution in
genetic trait of the population to see if we can validate some of the findings of [44].
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Fig. 7 Evolution in time of n(p,t) from the same initial data for x = 4 and different values of ¢. The
dashed line is the Hamiltonian fitness rg (p) which is re-scaled for the sake of readability. (A.) ¢ = 0.01
(B.) e =0.001

6.2.1 Stable Environment

If we fix a mild value for the timing parameter and take the heterogeneity parameter p as the
variable, then the equivalent fitness function p — ry(p) is increasing. We can observe (see
Fig. 7) that the solution stabilizes into a Gaussian moving in time towards +o0o. When ¢ is
smaller, the variance decreases. According to our theoretical results and [5, Theorem 7.1],
the solutions concentrate in the limit ¢ — 0 on a Dirac measure moving towards infinity.
This is what the authors of [5] call the monomorphic case. An increasing fitness function in
the Hamilton-Jacobi limit ensures that the movement of the Dirac delta mass is monotone
and continuous almost everywhere in time.

This implies that in a stable environment, the cells select an optimal adaptation timing x*
for the adaptation to DNA damage and then minimise the variance around it, which amounts
to maximising p towards +oo. It confirms the conclusions of [44] obtained with a simpler
model: in a predictable environment, the optimal strategy is to minimise randomness and
optimise timing.

6.2.2 Time-Varying Environment

Yet, the experiments on budding yeast cells show that there is a huge variance around the
mean adaptation timing. There are to our knowledge no study quantifying it from a statistical
perspective, but the fact that adaptation occur at a variable timing is widely accepted in the
community studying it. Following [44], we try to explain this discrepancy between the model
and reality by adding a varying environment. In the wild, when sources of damage like heat,
solar radiation or chemicals damage the DNA of cells, repair can be impossible for some
time because the damage is still present and overloads the repair capacity of the cells. In
such case, having some individuals that will adapt earlier can be beneficial for the survival
of the population. Since there are no information available about the time distribution of
such events in the wild, we choose here to use a time-periodic function for the varying
environment, thereby modelling an alternation between favorable and hostile environments.
Time periodic environment have been used recently in other studies (see e.g. [3, 24]) to
model colonisation of an unpredictable environment by organisms.
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Fig.8 Evolution in time of
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To make the problem numerically tractable we use
© "S S
r(p,t)=1-D+a(t)D / a(s)e vl a@dimly Bpadz g
0

[e 0]
8(p) = Df B(s)e Vsl @@dz=Jg Bp-2dz g g
0
rather than

o0
r(p,)y=1—D+ D/ (s, t)eﬂ"”*ff) a(@ndz=fo Blp.adz g g
0

00 .
52(177 t) — D/ ﬂ(s)e—yds—f(; Ot(zﬁt)dz—fé ﬁ(p,z)a'st’
0

because the later requires the program to compute a full vector of integrals at each time step,
which makes long time simulations intractable. What this modification change is that the ex-
ponential term under the integral in the adaptation and repair inflows are time-independent
but the repair inflow is suppressed altogether in hostile environment. It tends to slightly un-
derestimate adaptation when repair is not possible because in the exponential more cells
are suppressed “like they have repaired” than the quantity of cells actually repairing. This
modification thus leads to a slightly increased death term for damaged cells in hostile envi-
ronment. It is hard to be sure of which effect it has, but our guess is that the outcome would
be the same where we able to simulate the costly time-dependent repair and adaptation rates.
We choose the time-varying environmental function

20— xt\®
o = COS <?>

and we run the model in both a fixed and a time-varying environment from the same initial
datum (see Fig. 8). We can observe that at = 300 the results are very different. In the
case of the stable environment, as in Fig. 7, the mass moves towards +o0o. However, with
the time-varying environment, the solution moves slowly towards the left. This numerical
result strengthens the hypothesis of [44] that the heterogeneity in time of the adaptation to
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DNA process could be due to a bet-hedging mechanism when cells face an unpredictable
environment.

7 Conclusion and Perspectives

In this article, we have investigated a cooperative two-population system of non-local
parabolic PDEs motivated by a particular application in genetics: the understanding of the
so-called adaptation to DNA damage phenomenon. We used a Hamilton-Jacobi approach
which is well understood for one population non-local models [5, 6, 8]. This approach is
well adapted to characterize a guess of the main trait in the limit population as it is under-
lined in [38]. Such a guess can be useful for instance in the context of cancer treatment as
it is developed in [2, 17, 18] (and the references therein). It also appears that studying the
Hopf-Cole transform (1.8) u; instead of the solution n; allows to compute the ratio Z—’ It
would be helpful to calibrate the system. '

First, in order to prove a similar result in our setting, we combined the approach for
the one-population model with tools developed in [7] for non-local systems. We wrote the
Hamiltonian associated with the system in terms of an eigenvalue of the matrix D 4+ R. After
performing a Hopf-Cole transform, we first prove uniform regularity results on the solutions
u;, which allows us to pass to the limit and obtain the constrained Hamilton-Jacobi equation
for the limit . When the diffusion coefficients of the two populations are identical, we
obtain the additional result that n{/nj converges in time towards a corrective term g (x)
dependent only on 7y, 17, &1, 6;.

Then, we have derived from the ODE model of [44] a PDE system modelling the evo-
lutionary dynamics of adaptation to DNA damage in a population of eukaryotic cells. Our
theoretical results and numerical simulations allow us to support the findings of [44] that:

e natural selection could be responsible for the apparition of a precise mean timing for the
adaptation phenomenon.

e the experimentally observed heterogeneity of individual adaptation timings in a popu-
lation of cells could be explained by a bet-hedging mechanism while facing an unpre-
dictable environment.

Our modelling approach is also more general and realistic than the one proposed in [44],
because we take into account both mutations and competitions between cells presenting dif-
ferent genotypes in a same environment. It allows us to understand better why a particular
trait is selected for the average timing in adaptation to DNA damage: using the optimal
average timing allows cells to reproduce and thus out-compete populations with other phe-
notypes

Yet, this study leaves open several questions on both the mathematical and biological
sides that this multiple population approach could help answer in the future.

First, our method relies heavily upon the cross terms §; and &, being positive. In the case
of a competitive system or a prey-predator setting, we cannot apply the same techniques. In
particular, it is unlikely that the convergence towards a fixed corrective term ¢ (x) will hold
true.

We did not address rigorously the question of the long time behaviour of the system. Our
heuristic reasoning and the numerical simulations indicate strongly that there is convergence
in time of n{ + nj towards a stationary state of the one-population model endowed with the
Hamiltonian fitness of the system. A careful analysis is needed to validate this result.
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Moreover, the use of a system of non-local PDEs open the possibility to test more hy-
potheses on adaptation to DNA damage or other natural selection mechanisms. For example
by coupling with other equations representing predators, we could sharpen our understand-
ing of the selection dynamics. The presence of dynamically evolving predators densities
could introduce an Allee effect, giving ill-adapted cells lesser chances of survival.

Regarding the bet-hedging explanation for the heterogeneity of adaptation to DNA dam-
age, our theoretical framework has to be adapted to prove solid results. It would be very
useful to have a theory able to encompass the same kind of system but with time-varying
coefficients as in [24] for a single species. The question of periodically changing environ-
ment is important in many biological applications [3]. It would be especially important to
study theoretically and numerically the influence of the time period of those coefficients with
a more systematic and realistic approach. For now, we can conclude with our numerical ex-
periments that the varying environment changes radically the dynamics, but the convergence
is very slow. We did experiments for longer time and it was still unclear if a stable equilib-
rium was reached or not. An inappropriate time-step can also produce strange resonances
in the numerical solution, further hindering the numerical exploration. Implementing the
asymptotic-preserving scheme recently proposed in [13] could be a route for a better under-
stand of the evolution for small ¢ in a variable environment.

It would also be interesting to study this kind of two populations system in higher dimen-
sion. In particular, in our biological setting, it would be interesting to have a bi-dimensional
space (x, p) for the genetic trait with Neumann boundary conditions on the boundaries x =0
and p = 0 in order to validate the idea that in a stable environment the solution concentrates
on a Dirac mass moving at the same time towards the line (x*, p) and the direction p = +o00
in the € — 0 limit. In this bi-dimensional space for the genetic trait, it would also be possible
to study the effect of a time-periodic environment in a more realistic framework.

Last, it could be useful to study the more complex model (5.5)—(5.8) theoretically and
numerically in order to verify that the quasi-static approximation does not hide key features
of the biological phenomenon. This might require cumbersome computations and significant
computing power, but it remains feasible in principle with a carefully crafted numerical
scheme.

Appendix A: Existence and Bounds of N,

We prove in this section the existence of a solution of (1.5). We use the classical Picard
Banach fixed point Theorem. The details follow the Appendix A of [8]. We recall that we
have made the assumptions (H1)-(H4).

Let T > 0 be a given time and .A be the following closed subset:

A= l(Z;) e C([0, T], (Li_(]R*'))z) :on; >0, / ni(x,t) +nr(x,t)dx < a}
R+

o0 o o CRT ..
where a = (fo nf o(x) +n§,0(x)dx)e =~ and Cg = C, + C; for some positive n;, €
€

L'(R*). In the following, we will denote ny = <ZSIO) Next, we define & the following
2,0
application

o A - A
() = ()
ny nop
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m . .
where m = <m1> is the solution of
2

1~
om — ¢Do,,m= —R(x, N,)m for (x,1) e Rt x [0, T),
€

9,m(x =0)=0 (A.1)
m(t = O) =1

where
+00 +00
N, :/ (1 Dn(x, t)dx :/ [mi(x,t) +ny(x,t)]dx
0 0

and

R(x, %”) if N <cy.
R(x.N)={R(x,N) ifNe <%”,CN),
R(x,2Cy) if N>Cy.

The aim is to verify that ® satisfies two claims:

1. ® maps A into itself,
2. @ is a contractive application for 7 small enough.

Proofof claim 1 Let n € A and m = ®(n). By the maximum principle, we have that m; > 0.
It remains to prove the L' bound. According to (A.1), we have

+oo 1 +oo -
am/ mi(x, 1)+ my(x, H)dx) = g/ ((r1 0, Ny + 8:,00)m (x, 1)
0 0
+ (r2(x, Np) 4 81 (x))ma(x, 1))dx

CR +o00
<— / my(x, 1) +my(x, 1)dx
& Jo
with IV,, = max(cy, min(N,, Cy)). Next, we conclude thanks to the Gronwall Lemma that
+00 +00 gt
/ my(x,t) +mo(x,)dx < (/ nio(x) + n;o(x)dx> e e
0 0

+00 CRT
< </ nio(x) + ng,o(x)dx> et —a.
0

It finishes the proof of claim 1. ]

Proofofclaim2 Letn;,n, € A, m; = ®(n;) and m, = ®(n,). We have
1~ 1 ~ ~
0;(m; —my) =¢eDo,(m; —my) + ER(X’ Ny)(m; —my) + E[R(X, N>) —R(x, Np)]my,.
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We recall that m, ||, <a and [R(x, N;) — R(x, N1)] = (N} — N)I. Next, by multiplying
at left by (1 1 ) and integrating over space, we deduce that

CR a
Ol —mal < = =l

Since ||(m; —my)(t =0)]|, 1= 0, we conclude thanks to the Gronwall Lemma that

CRT

ea
[y —my e ;1 < C—(e = Dl —mf e g1
B ;
CpT
Remarking that é—‘;(e = 1) > 0 as T — 0, we conclude that for T > 0 small enough, ®
is contractive. It concludes the proof of existence. ]

Next, we focus on the bounds of N,. According to (1.5), we have
1 +00
9N (1) = —/ (1 1)R(x, Non®(x, 1)dx.
€ Jo
Adding the two first equations of the system (1.5) and integrating over x leads to

N, N
min  (r;(x) +8;(x) = N;)— <N, < max (ri(x)+35;(x)—N,)—.
i,je{l,2}, i#j £ i, jel1,2), i#j &

Therefore, since each components of the min (resp. max) in (H3) is decreasing with respect
to N, we deduce that if N, (ty) = cy then 9, N, (ty) > O (resp. if N.(fp) = Cy then 9, N.(tp) <
0). The conclusion follows.

Appendix B: Checking the Technical Hypotheses in the Main
Application
LemmaB.1 Denote
400
Ao ::/ a(s)ds < 400 (B.1)
0
Then, there exists k € RY such that
Vx e Ry, 8,(x) = De 4 (1 4 e *F)e 2,

Proof Note first that the form of 8 implies that
2x
dk e R}, Vx eRE, B(x,s)ds > kx. (B.2)

Then, we have for all x € R,

+o00
8,(x) > De 4 / B(x, s)e_fo Bl Ddzo=vas g g
0
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By integration by parts we have

+o00 s +o0 s
Bx, s)e*ff) Bz g—vas gg 1 — )/d/ e Jo Bz =vas g ¢
0 0

2x s +o00 s
—1— Vd(/ eff(‘) ﬂ(x,z)dzefydxds +/ e—f(‘) ﬁ(x,u)duefydsds )

0 2x

=w1 (x) =wy(x)
Moreover,
+o0 1
w1 (x) < / e ds = — (1 —e 1),
2x Yd
and with (B.2),

+00 oy +00 e kX
wr(x) < / e Jr Poadzg=vas gg < gk / ey = e ¥,
2x 2x Yd

Thus, we have

+0oo )
Blx,s)e™ ho Peddze=vas gg > (1 — ™ *)e 2,
0

and the result follows.

LemmaB.2 Assume D < 1, then
Vx eRy, &(x) <1,
and there exist K3, K4 € R such that
Vx e Ry, 8, (x) < kge 537,

Proof Note that there exists two constants K, K> € R such that

%
Vx e RY, / B(x,s)ds < Ke X2,
0

‘We have

+o00 s s
82(x) < B(x, s)efl/dxff() a(@)dz=[5 B,z g ¢
0
By positivity of y,; and A(-),

+oo " " s=+400
8 (x) < B(x, s)elo Prodzgg [—e_/() ’3("’2)‘”] =1,
0 s=0

because lim Jo B(x,2)dz =~o00.
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We compute:

5 ; 400 .
8(x) < / B(x,s)e vl Peddzgg o B(x, s)e 3o Poadz g
0 x

2

e =wy(x)
Moreover,
: K
w1 (x) < B(x, s)ds < Kie K2,
0
and
%d +oo s
wy(x) <e 27 B(x, 5)elo Bradz g g
3
=e ¥ [—e*ftfﬂ(xv“dzroc — o Fxe Ji Busds _ o~ Hx
b
Hence,
o Yd
8y < (14 Ky~ min(T-Kax, .
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