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Assessment of image quality 
on color fundus retinal images 
using the automatic retinal image 
analysis
Chuying Shi1, Jack Lee1, Gechun Wang2, Xinyan Dou3, Fei Yuan2 & Benny Zee1*

Image quality assessment is essential for retinopathy detection on color fundus retinal image. 
However, most studies focused on the classification of good and poor quality without considering 
the different types of poor quality. This study developed an automatic retinal image analysis (ARIA) 
method, incorporating transfer net ResNet50 deep network with the automatic features generation 
approach to automatically assess image quality, and distinguish eye-abnormality-associated-poor-
quality from artefact-associated-poor-quality on color fundus retinal images. A total of 2434 retinal 
images, including 1439 good quality and 995 poor quality (483 eye-abnormality-associated-poor-
quality and 512 artefact-associated-poor-quality), were used for training, testing, and 10-ford cross-
validation. We also analyzed the external validation with the clinical diagnosis of eye abnormality 
as the reference standard to evaluate the performance of the method. The sensitivity, specificity, 
and accuracy for testing good quality against poor quality were 98.0%, 99.1%, and 98.6%, and for 
differentiating between eye-abnormality-associated-poor-quality and artefact-associated-poor-
quality were 92.2%, 93.8%, and 93.0%, respectively. In external validation, our method achieved an 
area under the ROC curve of 0.997 for the overall quality classification and 0.915 for the classification 
of two types of poor quality. The proposed approach, ARIA, showed good performance in testing, 
10-fold cross validation and external validation. This study provides a novel angle for image quality 
screening based on the different poor quality types and corresponding dealing methods. It suggested 
that the ARIA can be used as a screening tool in the preliminary stage of retinopathy grading by 
telemedicine or artificial intelligence analysis.

Image quality, in real-world settings, is a significant aspect for diagnosis because the proportion of poor-quality 
images has been reported to reach up to 19.7% in non-mydriatic retinal photography1. Poor images are the main 
reason for decreasing the accuracy of retinopathy detection2. It has been investigated for decades to improve the 
automatic mage quality assessment, such as clarity assessment techniques including spatial techniques3–11 and 
wavelet transform (WT) techniques12–16. However, despite low computational complexity, traditional methods 
requiring human intervention only can identify some characteristics of image quality and have poor generaliza-
tion to other datasets. Recently, some research focused on using the deep learning (DL) approach to assess image 
quality on color fundus retinal images. As the most popular deep learning architecture, a deep convolutional 
neural network (CNN) can automatically identify and extract hidden or latent features inherent in the input 
images with no need to define hand-crafted features17, and shows superior performance than traditional machine 
learning methods. The main studies about CNN method are summarized in the following paragraphs and Table 1.

In 2016, Mahapatra et al.18 combined unsupervised information from saliency maps and supervised informa-
tion from CNN with 5 convolution layers to assess image quality. A dataset from the diabetic retinopathy (DR) 
screening initiative with 9653 ungradable retinal images and 11,347 gradable images was used and graded by 
human graders. In 2017, Yu et al.19 used a dataset including the training set with 3000 images and the test set 
with 2200 images from the Kaggle database labelled by the professionals. They extract CNN-based features as 
well as the unsupervised saliency map-based features and fuse them. In 2017, Saha et al.20 trained a deep learning 
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framework using 3428 images (3179 accept, 249 reject, and 147 ambiguous), and the rest 3425 images (3302 
accept and 123 reject) were used for evaluation. All the images were labelled by three retinal image analysis 
experts including one ophthalmologist from the EyePACS. They defined about 2% of the images of observation 
discrepancy between graders as ‘ambiguous’ category and found that they confuse the network and decrease 
overall performance when used for training. However, these three studies did not validate the algorithm on 
other datasets.

In 2018, Zago et al.21 used a pre-trained deep neural network (Inception-v3) and selected two public data-
bases, namely, DRIMDB(216 retinal images divided into 125 good, 69 poor, and outlier classes) and ELSA-Brasil 
(842 retinal images divided into 817 good and 25 poor). The intra-database cross-validation and inter-database 
cross-validation (train from a database and test from another database) were used to evaluate the algorithm’s 
performance.

In 2019, Chalakkala et al.22 proposed a deep learning-based approach and tested on seven public databases. 
They used images from one database (DR1) as the training set and the images from all the other databases as 
the validation set. The training set consisted of 1500 images (800 medically suitable retinal images (MSRI) high-
quality and 700 low-quality), and the validation set consisted of 7007 images (5009 MSRI high-quality and 1998 
low quality). The classification of image quality was separately labelled by different graders in each database.

In 2020, Shen et al.23 proposed a novel multi-task deep learning framework, which can evaluate the overall 
image quality with quality factor analysis in terms of artefact, clarity, and field definition. It has three modules: 
(1) multi-task multi-factor image quality assessment; (2) landmarks (optic disc and fovea) detection; (3) semi-
tied adversarial discriminative domain adaptation. Dataset in this study including 18,653 retinal images (10,000 
for training and 8653 for testing) from Shanghai Diabetic Retinopathy Screening Program (SDRSP) labelled 
by three ophthalmologists. The training dataset and testing dataset were from different districts in Shanghai.

In 2021, Yuen et al.24 developed two DL-based algorithms (EfficientNet-B0 and MobileNet-V2) using 21,348 
retinal photographs (14,422 in the primary dataset and 6926 in the external dataset). In addition, one ophthal-
mologist and two medical students labelled images targeting image quality, a field of view, and the laterality of 
the eye. For image quality, they achieved AUC of 0.975, 0.999, and 0.987 in the internal dataset and external 1 
and 2 datasets, respectively.

In these studies, images were divided into predefined categories, usually binary classification according to 
whether retinal images can be used for assessment. However, among images with poor quality, except for tech-
nical failures (e.g., small pupil and wrong position of patients), some eye diseases in the late stage (e.g., mature 
cataract) are also noticeable causes of poor image quality25.

Some other studies using the automatic method in detecting retinopathy also considered the influence of 
image quality. Most of them manually excluded images with poor quality2,26–30 or created a classification model 
to select images with good quality31. However, an eye disease that can make images ungradable is usually very 
severe in clinic, such as central retinal vein occlusion (CRVO), or in the late stage, such as mature cataract and 
proliferative diabetic retinopathy (PDR). Grouping them as poor quality images will result in misdiagnosis for 
retinopathy and prompting treatment. Therefore, those images need to be detected in the image quality assess-
ment stage and then suggest patients with those images be referred to ophthalmologists. Only a few studies 
focused on this issue. Among them, two studies put all the ungradable images into the referral category32,33. 
Another study suggested adding the visual acuity assessment into retinal analysis in DR screening, and those 
with reduced vision should be given a referral34. Therefore, if automatic image quality assessment includes 

Table 1.   Review of studies using CNN method to assess retinal image quality. DL deep learning, CNN 
convolutional neural network, MSRI medically suitable retinal image, NA not available, Se sensitivity, Sp 
specificity, Acc accuracy, AUC​ area under the curve.

Author Year Database Method (architecture) Category of image quality Definition of classification Performance

Mahapatra et al.18 2016 A DR screening initiative CNN, and local saliency 
map Gradable, ungradable NA Se: 98.2%, Sp: 97.8%, Acc: 

97.9%

Yu et al.19 2017 Kaggle CNN(Alexnet), and saliency 
map Good, poor NA Se: 96.63%, Sp: 93.10%, Acc: 

95.42%

Saha et al.20 2017 EyePACS CNN (Alexnet) Accept, reject, ambiguous Yes Acc: 100%

Zago et al.21 2018 DRIMDB and ELSA-Brasil CNN (Inception-v3) Good, poor, outlier NA
DRIMDB: Se: 97.10%, 
Sp:100.0%, AUC: 99.98%
ELSA-Brasil: Se: 92.00%, Sp: 
96.00%,AUC: 98.56%

Chalakkala et al.22 2019
DRIMDB, DR1–DR2, HRF, 
MESSIDOR, UoA-DR, Kag-
gle, IDRiD,

Six pre-trained CNN 
(AlexNet, GoogLeNet, 
ResNet50, ResNet101, 
Inception-v3, SqueezeNet)

MSRI high quality, low 
quality Some databases Se: 98.38%; Sp: 95.19%; Acc: 

97.47%

Shen et al.23 2020 Shanghai Diabetic Retinopa-
thy Screening Program

Multi-task deep learning 
framework (VGG16) Gradable, ungradable Yes Se: 83.62%, Sp: 91.72%, 

AUC: 94.55%

Yuen et al.24 2021

Primary dataset: CUHK Eye 
Center, National University 
Hospital
External dataset: Hong Kong 
Children Eye Study, Queen’s 
University Belfast

Two CNN (EfficientNet-B0, 
MobileNetV2) Gradable, ungradable Yes Se: 92.1%, Sp: 98.3%, Acc: 

92.5%, AUC: 97.5%



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10455  | https://doi.org/10.1038/s41598-022-13919-2

www.nature.com/scientificreports/

differentiation between eye-abnormality-associated-poor-quality and artefact-associated-poor-quality, it would 
neither overlook the eye diseases with the need of a referral, nor lead to the waste of medical resources for addi-
tional examinations and invalid referral.

On the other hand, in terms of technique, images with eye-abnormality-associated-poor-quality should also 
be detected. There are two options to make images with poor quality gradable:

1.	 A recapture of images23,35.
2.	 Using artificial methods to improve image quality36.

However, neither of them is effective for quality improvement of eye-abnormality-associate-poor-quality. 
For the first option, recapturing images can only fix the technical problem of photography rather than chang-
ing the ocular structure. Thus, the repeated image acquisition for eye abnormality-associate-poor-quality leads 
to a waste of time, manpower, and medical resource. For the second option, even though researchers have 
successfully investigated and developed artificial methods to eliminate artefacts, they found that images with 
eye-abnormality-associated-poor-quality (e.g., asteroid hyalosis) could not be improved by those methods and 
remained ungradable36.

To the best of our knowledge, no study focuses on the automatic image analysis method in identifying eye 
abnormalities that contribute to the poor quality of the retinal image. In previous work, we developed an auto-
matic retinal imaging analysis (ARIA) approach to assess the risks of stroke and cardiovascular disease (CVD) 
and identify lesion patterns in retinopathy37–40. It showed great performance in detecting patterns and extracting 
the data mainly through fractal analysis, high order spectra analysis and statistical texture analysis. This study 
aims to train and validate ARIA to automatically assess image quality and distinguish eye-abnormality-associ-
ated-poor-quality from artefact-associated-poor-quality on color fundus retinal images.

Method
Primary dataset.  Kaggle database, a publicly available database, was used for training and testing. The 
images in the dataset come from different types of cameras under various illumination. This data set contains 
35,126 training images and 53,576 testing images, and many uninterpretable images with poor quality under dif-
ferent circumstances. Although most of the images were derived from the Kaggle database, we added a subgroup 
of 118 images with CRVO collected from Zhongshan hospital of Fudan University using TOPCON TRC-50DC 
Retinal Camera into the primary dataset because the Kaggle database lacks images with CRVO. This common 
retinal disease can make images ungradable. Two thousand four hundred and thirty four color fundus retinal 
images composed the primary dataset (Table 2). Among them, 1439 images were labelled as good quality, and 
995 images were labelled as poor quality. Among images of poor quality, 483 were labelled as eye-abnormality-
associated-poor-quality, and 512 as artefact-associated-poor-quality. Eye abnormalities included 220 cataracts, 
118 CRVO, 83 asteroid hyalosis, and 62 vitreous opaque (Fig. 1).

Image quality classification and labelling.  Our study’s definition of image quality was evaluated 
according to two clinical established aspects: visibility and clarity. Images were labelled as poor quality if arte-
facts or eye abnormalities cover more than 1/4 of images or level III vascular arches or larger vascular arches 
are invisible (Table 3) based on the recommendation of the threshold of image quality23. Among images with 
poor quality, they were categorized into eye-abnormality-associated-poor-quality and artefact-associated-poor-
quality. Three ophthalmologists rated all the images in the training and external validation datasets; all of them 
have more than 5 years of experience. If there was a discordance result between ophthalmologists, another oph-
thalmologist with experience over ten years would make a final decision.

External validation dataset.  We used images from the Zhongshan Hospital of Fudan University for 
ARIA external validation. This study and data collection were approved by the Research Ethics Committee of 
Zhongshan Hospital and were performed according to the tenets of the Declaration of Helsinki. Images were 
captured by TOPCON TRC-NW100 Non-mydriatic Retinal Camera and TOPCON TRC-50DC Retinal Cam-

Table 2.   Summary of images in the primary dataset used for training, testing, and 10-fold cross validation. 
CRVO central retinal vein occlusion, AH Asteroid hyalosis, VO Vitreous opaque.

Category Subgroup
Number
n (%)

Subgroup
n (%)

Total
n (%)

Good 1439 (59.12)

Poor

Eye-abnormality-associated-poor-quality 483 (19.84)

995 (40.88)

Cataract 220 (9.04)

CRVO 118 (4.85)

AH 83 (3.41)

VO 62 (2.55)

Artefact-associated-poor-quality 512 (21.04)

Total 2434 (100)
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era. It is worth mentioning that there was no overlap of selected images from the same eyes between the two 
cameras. Three hundred and fifty six color fundus retinal images composed the validation dataset (198 good 
quality, and 158 poor quality), and show on Table 4. Among images with poor quality, 104 were labelled as eye-

Figure 1.   Examples of (a) good quality, (b) artefact-associated-poor-quality, and eye-abnormality-associated-
poor-quality including (c) cataract, (d) central retinal vein occlusion (CRVO), (e) asteroid hyalosis, and (f) 
vitreous opaque.

Table 3.   Definition of image quality classification.

Image quality Visibility Clarity

Good Artefacts or eye abnormalities cover less than 1/4 of 
image Level III vascular arches are visible

Poor

Eye abnormality associated Eye abnormalities cover more than 1/4 of image Level III vascular arches or larger vascular arches are 
invisible

Artefact associated Artefacts cover more than 1/4 of image Level III vascular arches or larger vascular arches are 
invisible
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abnormality-associated-poor-quality, and 54 as artefact-associated-poor-quality. Eye abnormality included 56 
cataracts, 32 CRVO, and 16 vitreous opaque. The definition of image quality classification was the same as the 
training and testing dataset. The labels of specific eye abnormalities were the clinical diagnosis confirmed by 
ophthalmologists.

Training, testing, and external validation.  In the primary dataset, the model(s) building with 70% of 
images was for training and 30% for testing. The study included deep learning models for (1) classification of all 
good quality and all poor quality images, (2) classification of all good quality and eye-abnormality-associated-
poor-quality, (3) classification of all good quality and artefact-associated-poor-quality and (4) classification of 
eye abnormality-associated poor quality and artefact-associated-poor-quality.

We used the automatic retinal image analysis(ARIA) method developed using Matlab, which has been 
reported (US Patent 8787638 B2)41. It incorporates deep learning techniques to classify image quality and shows 
on Fig. 2. Firstly, we applied transfer net ResNet-50 deep network with retinal images (RGB) as input, and features 
generated at the layer of ’’fc1000_softmax’’ as output based on pixels associated with image quality42. We also 
used the ARIA automatic features generation approach to extract the texture/fractal/spectrum-related features 
written in Matlab41. Then we applied the Glmnet approach to select the most important subset of features based 
on the penalized maximum likelihood43. These refined features are highly associated with image quality and 
were used to generate models by random forest (RF) in Matlab. The rest, 30% of the primary dataset, was used 
to test the performance of models. After internal portion testing and the model built, we also applied a tenfold 
cross-validation with support vector machine (SVM) approach for the model assessment in order to avoid 

Table 4.   Summary of images in the external validation dataset taken by TOPCON TRC-NW100 non-
mydriatic retinal camera and TOPCON TRC-50DC retinal camera from the hospital. CRVO central retinal 
vein occlusion, VO Vitreous opaque.

Category Subgroup Number n (%) Subgroup total n (%) Total n (%)

Good 198 (55.62)

Poor

Eye-abnormality-associated-poor-quality 104 (29.21)

158 (44.38)

Cataract 56 (15.73)

CRVO 32 (8.99)

VO 16 (4.49)

Artefact-associated-poor-quality 54 (15.17)

Total 356 (100)

Input RGB images 

Extract all possible features by using: transfer net ResNet50 deep network with 
ARIA automatic features generation approach 

Applied Glmnet to extract potential significant features to identify the good images 
and poor images including eye abnormality associated and artefact associated  

Applied SVM classifier to carry out 10-fold cross validation: generate 
validated results for sensitivity and specificity (Figure 3, Table 5) 

Confirm the classification result with 
external data testing and interpret related 

model ( Figure 4, Table 6) 

Carry out the analysis for sensitivity and specificity based on RF model(s) using all 
above extracted features with random sampling of 30% for testing (Figure 3, Table 5) 

Figure 2.   Flowchart of the presented method in image quality classification. ResNet50 Residual network that is 
50 layers deep, Glmnet Generalized linear model via penalized maximum likelihood, RF Random forest, SVM 
Support vector machine.
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over-classification. Finally, we confirmed the ability of models to classify image quality in the external validation 
dataset and analyzed the false positive cases and false-negative cases.

Statistical analysis.  The performance of prediction models in training and testing dataset by calculating 
sensitivity, specificity, and accuracy from the testing dataset and 10-fold crossing validation. In external valida-
tion, the area under the curve (AUC) of receiver operator characteristic (ROC) curve of analysis, sensitivity, 
specificity, accuracy, and the proportion of the false-positive cases and false-negative cases of external validation 
were calculated. All analyses were performed using the software of SPSS 20 and Matlab 2020a.

Result
The performance of ARIA in differentiating different categories of image quality was summarized on Table 5 
and Fig. 3. Using a simple random sampling method, 1007 images with good quality and 696 images with poor 
quality (including 338 images with eye-abnormality-associated-poor-quality and 358 images with artefact-asso-
ciated-poor-quality) were assigned to the training dataset. The remaining 432 images with good quality and 299 
images with poor quality (including 145 images with eye-abnormality-associated-poor-quality and 154 images 
with artefact-associated-poor-quality) were held out for testing. The sensitivity, specificity and accuracy of the 
ARIA for testing good quality against poor quality were 98.0%, 99.1%, and 98.6%, and ones in tenfold cross-
validation were 99.0%, 98.3%, and 98.6%, respectively. The sensitivity, specificity and accuracy of the ARIA for 
testing good quality VS eye-abnormality-associated-poor-quality were 98.6%, 99.8%, and 99.5%, and ones in 
tenfold cross-validation were 99.0%, 99.7%, and 99.5%, respectively. The sensitivity, specificity and accuracy of 
the ARIA for testing good quality against artefact-associated-poor-quality were 98.7%, 99.8%, and 99.5%, and 
ones in tenfold cross-validation were 99.8%, 99.6%, and 99.6%, respectively. Last but not least, the sensitiv-
ity, specificity and accuracy of the ARIA for testing eye-abnormality-associated-poor-quality against artefact-
associated-poor-quality were 92.2%, 93.8%, and 93.0%, and ones in tenfold cross-validation were 92.2%, 93.8%, 
and 93.0%, respectively.

In the external validation, ARIA also showed comparable and robust results in distinguishing between good 
quality and poor quality (Fig. 4a), achieving a sensitivity of 100%, the specificity of 99.4%, the accuracy of 99.7%, 
and the area under the ROC curve of 0.997. The performance of ARIA was also evaluated in distinguishing 
between artefact-associated-poor-quality and eye-abnormality-associated-poor-quality (Fig. 4b). The sensitiv-
ity, specificity, accuracy, and area under the ROC curve were 87.5%, 92.6%, 98.2%, and 0.915, respectively. 
Furthermore, details of misclassification of artefact-associated-poor-quality and eye-abnormality-associated-
poor-quality were shown on Table 6 and Fig. 5. Eye abnormalities of false-negative cases included CRVO (n = 7) 
and vitreous opaque (n = 6), which showed that these images with these eye abnormalities were misclassified as 
images with artefacts.

Discussion
In this study, we trained and validated an automatic method, ARIA, to automatically assess image quality. In 
evaluating color retinal images from a multiethnic public dataset and an external dataset from the hospital, the 
ARIA had excellent performance in classifying good quality and poor quality compared to the performance of 
other automatic methods (Table 1). Additionally, the differentiation of two types of poor quality is more challeng-
ing than the classification of good and poor quality and did not investigate before. Our results also show that the 
ARIA can differentiate eye-abnormality-associated-poor-quality from artefact-associated-poor-quality. Therefore, 
this approach has the potential to be used as a screening tool for automatic retinal image quality assessment in 
the preliminary stage of retinopathy detection. Furthermore, poor quality images with eye abnormality can be 
filtered out and referred to an ophthalmologist. In contrast, images with artefact-associated-poor-quality require 
image improvement by the second photography or image processing.

Our study included some of the most common eye abnormalities that may cause poor image quality. Media 
opacity has been reported to play a critical role in causing poor image quality44–48, and some studies focusing on 
automatic retinopathy grading excluded them before the training procedure30,49. A cataract is lens opacity, a type 
of the most common opacity. According to the definition of four grades of cataract50, cataract in the advanced 
stage was labelled as eye-abnormality-associated-poor-quality and successfully detected in our study. Suppose 
we screened out images as poor quality during the image assessment procedure. In that case, patients will lose 
the opportunity for prompt cataract surgery. They may lead to hyper mature senile cataract (HMSC) or even 

Table 5.   The performance of ARIA in testing dataset. RF Random forest, SVM Support vector machine, 
EAAPQ Eye-abnormality-associated-poor-quality, AAPQ Artefact-associated-poor-quality, Se Sensitivity, Sp 
Specificity, Acc Accuracy.

Testing (using RF) Ten-fold cross validation (using SVM)

Se (%) Sp (%) Acc (%) Se (%) Sp (%) Acc (%)

Good quality VS poor quality 98.0 99.1 98.6 99.0 98.3 98.6

Good quality VS EAAPQ 98.6 99.8 99.5 99.0 99.7 99.5

Good quality VS AAPQ 98.7 99.8 99.5 99.8 99.6 99.6

EEAPQ VS AAPO 93.8 92.2 93.0 93.8 92.2 93.0
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Figure 3.   Confusion matrix of testing (1) and 10-fold cross validation (2). (a(1), a(2)) Good quality VS Poor 
quality; (b(1), b(2)) Good quality VS Eye-abnormality-associated-poor-quality; (c(1), c(2)) Good quality VS 
Artefact-associated-poor-quality; (d(1), d(2)) Eye-abnormality-associated-poor-quality VS Artefact-associated-
poor-quality.
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adverse complications such as lens-induced uveitis phagocytic glaucoma and rarely spontaneous dislocation of 
the nucleus51–53.

Besides cataracts, vitreous opaque, such as haemorrhage and proliferative membrane, and retinal vein occlu-
sion (RVO) are also the common eye abnormalities that can make images ungradable and should be promptly 
referred to doctors in case of the complication of retinal detachment, retinal tears, neovascular event, and retinal 
capillary nonperfusion54,55, which may lead to permanent vision loss or blindness. In addition, in external vali-
dation, we found that CRVO and opaque vitreous consist of the entire false-positive cases. It indicates that they 
are more likely to be misclassified as artefact-associated-poor-quality compared to cataracts, probably due to 
the relatively small amount of training images and various patterns of lesions on images. This investigation will 
be helpful for a better understanding of ARIA grading. In the future, to optimize the model, more images with 
CRVO and vitreous opaque can be included in the training dataset.

Asteroid hyalosis is an eye abnormality; that vitreous body contains small yellow-white, spherical particles 
known as asteroid bodies (ABs)56. Although it barely impacts on the patient’s vision, it can significantly influence 
the clinical examination of ophthalmologists on the fundus. Severe asteroid hyalinosis can even render fundus 
examination impossible56,57. Moreover, the estimated global prevalence of asteroid hyalinosis continues increas-
ing, and old people make up a substantial and increasing fraction57. Hence, although most of those patients do 
not need a referral, the images should also be screened out in the quality screening stage due to the increasing 
prevalence and impairment of fundus assessment. It is worth mentioning that cataract, asteroid hyalinosis, and 
RVO are the conditions becoming increasingly prevalent with age58,59. Therefore, in age-related retinopathy 
screening programs, such as age-related macula disease (AMD), a larger proportion of eye disease is associated 

Figure 4.   (a) The performance of ARIA to differentiate good quality from poor quality in the external 
validation dataset; (b) The performance of ARIA to differentiate artefact-associated-poor-quality from eye-
abnormality-associated-poor-quality in the external validation dataset.

Table 6.   The misclassification of ARIA in differentiating artefact-associated-poor-quality from eye-
abnormality-associated-poor-quality. CRVO central retinal vein occlusion.

No Proportion (%)

False-positive images

Blur 3 75.0

Underexposure 1 25.0

Total 4 100.0

False-negative images

CRVO 7 53.8

Vitreous opaque 6 46.2

Total 13 100.0
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with poor quality, which influences the retinopathy assessment. In the above, we should pay more attention to 
the eye abnormalities associated with poor image quality in those programs.

Conclusion
Our ARIA approach showed good performance in identifying eye-abnormality-associated-poor-quality and 
artefact-associated-poor-quality and distinguishing between good and poor quality. Thus, images with eye 
abnormality-associated-poor-quality can be filtered out and be referred to an ophthalmologist. On the other 
hand, images with artefact-associated-poor-quality denote a requirement for quality improvement by the second 
photography or image processing. Further research can enlarge the variety of eye diseases that can lead to poor 
image quality in the ARIA method and evaluate the applicability and utility of the real-world clinical practice.
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