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A scalable, open-source implementation of a
large-scale mechanistic model for single cell
proliferation and death signaling
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Mechanistic models of how single cells respond to different perturbations can help integrate

disparate big data sets or predict response to varied drug combinations. However, the

construction and simulation of such models have proved challenging. Here, we developed a

python-based model creation and simulation pipeline that converts a few structured text files

into an SBML standard and is high-performance- and cloud-computing ready. We applied this

pipeline to our large-scale, mechanistic pan-cancer signaling model (named SPARCED) and

demonstrate it by adding an IFNγ pathway submodel. We then investigated whether a

putative crosstalk mechanism could be consistent with experimental observations from the

LINCS MCF10A Data Cube that IFNγ acts as an anti-proliferative factor. The analyses sug-

gested this observation can be explained by IFNγ-induced SOCS1 sequestering activated EGF

receptors. This work forms a foundational recipe for increased mechanistic model-based data

integration on a single-cell level, an important building block for clinically-predictive

mechanistic models.
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The ever-increasing availability and accumulation of FAIR1

(findable, accessible, interoperable, and reproducible) and big
(omics) datasets requires new computational methods and

models to integrate, analyze, and interpret the underlying
information2–4. How can we leverage the totality of available
information not only to learn more about biology but also to make
predictions, especially those that are clinically relevant? Advances in
statistical and machine learning approaches enable (mostly) data-
driven exploration and hypothesis generation from big datasets5–8.
Trained on features of the input dataset(s), such models can be used
for, as just a few examples, to predict drug responses9–11 or decide
tumor type/stage12–15. Although transformative, such machine
learning and statistical models have shortcomings. Most notably,
they often fail to explain predicted outcomes with detailed
mechanistic reasoning16–20 – a major scientific gap and a roadblock
to reconciling and integrating such models.

Besides such “black-box” modeling approaches, an alternative
and complementary vehicle for data integration are so-called
“mechanistic models”20. Mechanistic models provide an inter-
pretable integration of different data types, because they have
explicitly modeled biophysical correlates, while enabling further
exploration for underlying logic behind heterogeneous, nonlinear,
and often unintuitive relationships across big datasets21. If
mechanistic models are available towards the whole-genome or
whole-single-cell scale, one can start to predict complex, multi-
network, and emergent cellular behaviors22,23, elucidate pheno-
typic responses to multiple perturbations24,25, tailor and train on
patient-specific data for personalized, pharmacologic decision
making26,27, or use them as “data integrators” for data consistency
checking28. However, most published mechanistic models are
“small” scale; built for single pathways with a handful of genes,
meant to interpret a single dataset29–38. Such small-scale
mechanistic models provided important insights into processes
such as yeast response to pheromones35, lac operon regulation in
E. coli34, or phenotypic responses to different ligand stimulations29.
However, the limited scope of small-scale models means they
inherently will struggle to integrate multiple datasets. Large-scale
mechanistic models23,39–41, on the other hand, can provide a more
extensive representation of cellular interactions and are thus well-
poised for data integration that complement shortcomings of
machine learning approaches.

One of the many ways of mechanistic model construction is the
use and modification of existing models by inserting new species or
interactions to explain new experimental observations38,42,43. Model
merging, the act of stitching pre-existing models together, is an
extension of this method for creating larger models. However, such
an approach requires extensive detail checking and harmonizing
species/parameter definitions. Often, unfortunately, sufficient
annotation is not provided which makes this task harder. Moreover,
while most mechanistic models are comprised of ordinary differ-
ential equations (ODEs), many large-scale models require multiple
sub-modules of different mathematical formalisms. For example,
metabolic processes are usually described by steady-state flux-bal-
ance models44,45, gene expression events are stochastic46–48, and
protein signaling events are represented by a system of ODEs29,30,38.
Thus, sorting out a single platform for different modeling formal-
isms to create a large-scale model is a daunting task. It is so far only
achieved by creating highly custom-structured and custom-coded
model-agglomerates that are not well-suited to further alterations or
re-use23,40. The latter, Bouhaddou2018 pan-cancer model40, is pre-
viously published by our group to study single-cell responses to
mitogens and drugs.

A second way of constructing models is to build them bottom-up
by writing out every reaction one by one. In this regard, rule-based
modeling (RBM) provides an innovative approach49. RBM software,
such as BioNetGen50,51, Kappa52, and PySB53, enables researchers to

write “rules” for repeated reaction events following specific patterns.
RBM software then creates the reaction network by propagating the
rules from the initial set of species. Although RBM revolutionized
large-scale model construction by minimizing manual equation
scripting (i.e., writing out every differential equation), some limita-
tions exist. First, it can generate a vast (even infinite) number of
reactions from a small set of rules (usually called the curse of
combinatorial complexity). This makes interpreting, analyzing, and
debugging such models cumbersome, if possible. Tools like NFsim54

can overcome such problems by simulating events based on the rules
rather than a priori generating the entire reaction network. Thus,
such software becomes advantageous when a small number of rules
create a very large number of reactions, e.g., polymerization,
aggregation, or multi-site phosphorylation55. However, such
network-free simulators typically require an explicit representation
of every molecule in the system, which dramatically increases the
computational cost and renders such methods inefficient for large-
scale mechanistic models. Secondly, current RBM implementations
dictate that reactions taking place via the same rule have the same
rate constant parameter values. Often, allostery or site cooperativity
precludes this simplifying assumption, leading to manually writing
out every such reaction in the model (or writing one rule for each
reaction), which then obviates the advantages of RBM. Finally, with
its capability of capturing biological complexity via simple rules, the
RBM concept is quite powerful but additional efforts are needed to
enable merging of existing non-rule-based models, creating a mix-
ture of different modeling formats (i.e., mixed-grain modeling), and
defining different simulation settings (i.e., hybrid modeling =
deterministic + stochastic parts).

Regardless of how a large-scale model is constructed, it should
have certain properties for FAIRness (findable, accessible, inter-
operable, and reproducible) and re-useability56–58. Porubsky
et al.57 recently summarized the best modeling practices and
reinforced: providing metadata/annotations and model creation
steps/files (Practices 1–5), using standard and cross-platform
model files (Practice 3), and open-source, license-free, version-
controlled, and reproducible model dissemination (Practices
8–9). As the size of the model increases, conforming to modeling
standards (e.g., simulation type, simulation speed, software to use,
scripting package to use, algorithm to use) gets harder. That is
why most of the large-scale (many genes or whole-cell) models
are necessarily custom-structured, are composed of multiple
submodules, or are lacking sufficient annotations and metadata
(e.g., ENSEMBL or HGNC identifiers)23,39–41. These custom-
made models also do not yet follow a single standard format, a
key property for easy distribution, re-use, and model merging and
expansion with other models. The SBML (Systems Biology
Markup Language) format59,60 offers a long-established and well-
defined way of specifying annotated model structures, with an
explicit and structured definition of each element of a mechanistic
model (species, reactions, volumes, initial concentrations, para-
meters, rules, events, equations). SBML is an extensible, machine-
readable markup language and not a simple text file. SBML has
interfaces and packages in most programming languages (like
Python, C++, Perl) and can be imported by most software
(Python, MATLAB, COPASI61, Virtual Cell62, and another ~300
packages). However, it is non-trivial to write thousands of reac-
tions in SBML standards, directly or with available GUI-based
software. To circumvent this problem, there are efforts to convert
other model formats to SBML, like Antimony63. The Antimony
format is defined in simple text format and is human readable
and interpretable. Regardless, any constructed mechanistic model,
in SBML format or not, must be simulated with reasonable CPU
time. Although simulating models on local machines is often
done, High Performance (HPC) or Cloud Computing (CC)
platforms are suitable for larger tasks such as parameter
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sensitivity/estimation or multiple single-cell simulations64–67.
Therefore, another milestone for large-scale mechanistic models
is inherent HPC/CC compatibility, especially for single-cell
simulations and heterogeneous data integration.

Here, we provide a framework and model construction recipe for
large-scale mechanistic modeling that converts our lab’s previous
large-scale pan-cancer model into a format that conveys several
crucial properties noted above. First, we define a simple set of
structured and annotated input text files that set model specifics:
genes, species, reactions, reaction stoichiometry, cellular compart-
ments, transcriptional regulations, input omics data, and parameter
values (Fig. 1). These text files enable easy creation or alteration of
the model network, with minimal coding or software usage
requirements (but they are easily amenable to such things if desired).
We then use Jupyter notebooks68 to process the input files and to
create a human-interpretable Antimony file, which is then converted
into an SBML (community gold-standard) model file. We simulate
the model using SBML compatible Python packages including
AMICI, specifically designed for efficient simulation of large-scale
models67,69, and our own Python submodule for stochastic gene
expression that enables single-cell simulations. We also develop an
HPC/CC (Kubernetes) compatible version of the pipeline that
enables simulating large number of single cells and/or stimulation
conditions. To apply our work, we re-create and extend our previous
single mammalian cell mechanistic model of proliferation and death

signaling and regulation40, which we call SPARCED (SBML, Pro-
liferation, Apoptosis, Receptor Tyrosine Kinases, Cell cycle,
Expression, DNA damage). The pipeline and model are available on
GitHub (github.com/birtwistlelab/SPARCED)70. Using the newly
created model format, we investigate if a putative mechanism could
explain the experimental observation that interferon-gamma (IFNγ)
inhibits epidermal growth factor (EGF)-induced cell proliferation.
The model analysis suggests that IFNγ could inhibit cell proliferation
through SOCS1-induction and reduced AKT and MAPK activity.
This large-scale mechanistic model construction recipe and the
SPARCED model outlined here is an important step towards
creating and testing large-scale mechanistic models as data inte-
gration and clinical decision-making tools.

Results
SPARCED model construction and unit testing. Current large-
scale mechanistic models are agglomerates of smaller models and
tools, used mainly within the same research lab. Most such
models also lack clear and satisfactory annotation and metadata,
making them harder to understand and alter23,40. The goals of
this work were (i) to build tools that help large-scale mechanistic
model construction and alteration, that is simple, efficient, open-
source, and cloud computing compatible; (ii) to provide a scalable
and re-useable big mechanistic model for a single mammalian

Fig. 1 SPARCED is a structured, human interpretable, and easy to modify big mechanistic model. a The schematic of the underlying model for SPARCED.
Image adapted from40. b The pan-cancer mechanistic model Bouhaddou2018 is re-written in open-source and structured file format. The steps of model
construction include input file creation and conversion into an SBML file. The optional initialization step calibrates model parameters for new cellular
contexts and phenotypic behaviors. The annotated SBML model file and stochastic module are simulated together at single-cell level locally or by using
cloud-computing. The benefits of the new SPARCED model include easy alteration and expansion capabilities through text file editing, human-readable
annotated input files, and use of Jupyter notebooks for model creation and simulation. The modeling pipeline introduced here are inline with good practices
of re-usable big mechanistic models57. c The Bouhaddou2018 model file types are simplified and converted into open-source platforms.
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cell; and (iii) demonstrate the work through application to a
biological question.

We first created a set of simple input files and scalable
processing scripts for one of the broadest cancer signaling models
in the literature40, called the Bouhaddou2018 model here (Fig. 1a).
The input files (Supplementary Data 1–7) are simple tab-
separated text files (Fig. 1b, c), unlike licensed file formats with
a mixture of hard-coded information in multiple interconnected
scripts commonly used in modeling literature. A Jupyter note-
book (Supplementary Data 8) processes the input files into an
Antimony text file (Supplementary Data 9). The model creation
code generates the SPARCED model file in SBML format
(Supplementary Data 10) using the Antimony text file and
annotations from the model input files (Supplementary Data 2
and 6). When the model construction step is complete and the
SBML file is created, it is imported and simulated using a Python
package called AMICI67,69. For every new cell line model, a pre-
calibration step called Initialization is employed to tune
parameter values. Here, we ensure total protein levels match
experimental observations and particular phenotypic criteria are
met; for example, we specify that serum and growth factor starved
cells on average do not traverse the cell cycle and do not die by
apoptosis within 48 h. The resulting initialized parameter values
and species concentrations are saved in a new SBML file, and the
model is compiled for model testing and other simulations.

The result is what should be a replica of the Bouhaddou2018
model, which we call SPARCED. Like the Bouhaddou2018 model,
the initial SPARCED model is based on non-transformed breast
epithelial MCF10A cell line data. We annotated all the species in
the model with HGNC gene identifiers, providing easier
programmatic filtering and curation of species list, while keeping
the user defined simpler names for complicated species structures.
However, the extent to which the models are congruent was not
yet clear, and thus we next set out to examine agreement between
the two. We verified that the previous Bouhaddou2018 model
simulations are reproducible and match expected experimental
observations through the same unit test concept (Table 1)
introduced for the original model40. Each unit test has a dedicated
Jupyter notebook on GitHub repository (github.com/birtwistle-
lab/SPARCED/SPARCED_Brep). We illustrate select unit testing
examples below, but all results are presented in supplementary
figures (Supplementary Figs. 2–11).

SPARCED model simulation. Before presenting particular unit
test applications, we wanted to provide an overview of model
simulation. We built a Jupyter notebook called runModel.i-
pynb (Supplementary Data 11) to simulate the SPARCED model
(Fig. 2). This notebook requires the model SBML (from cre-
ateModel.ipynb, Fig. 2a), along with the simulation duration
(th), the ligand concentrations (if desired), the name for the
output files, and whether the simulation should be deterministic
only or hybrid mode (flagD). The “Initialization” calibration step
is employed only when the model is being trained for a new omics
data or for different phenotypic criteria (Fig. 2b). The rest of the
runModel.ipynb notebook imports necessary packages and
model files and runs the simulation (Fig. 2c).

As mentioned, the SPARCED model consists of two modules:
deterministic and stochastic. The SBML file forms the basis of the
deterministic module whereas the stochastic module describes gene
states (active/inactive) and mRNA birth/death events for the genes
(Fig. 2c). When run in the hybrid simulation mode, the deterministic
and stochastic modules exchange information every 30 simulated
seconds (Fig. 2d, e). The current levels of select protein states can
induce changes in gene activation/deactivation or mRNA transcrip-
tion/decay rates. The newly updated mRNA copy numbers change

nascent protein translation rates in the deterministic module
(Fig. 2d). When run deterministically, the model does not
stochastically sample gene activation or mRNA transcription events,
and such simulations correspond to an average cell state.

Individual cells (in vitro on a dish or in vivo) exhibit mRNA and
protein expression variability, in part due to stochastic gene
expression processes47,48. To capture this phenomenon in silico,
we ran simulations in hybrid mode. In this mode, each simulation
has different initial mRNA and protein levels that are dictated by
burst like expression processes, and the expression throughout the
simulated time course follows suit. This leads to a natural and
typically observed amount of variation in total protein levels. We
hereafter refer to such settings and resulting trajectories as single-cell
simulations. Virtual cell population responses are sets of multiple
independent single-cell simulations, usually 100 cells. So, when the
runModel.ipynb notebook is run multiple times in hybrid
mode, different single-cell responses are simulated (Fig. 2f). For
instance, the activation and phosphorylation of ERK (Fig. 2f left, red
lines) and AKT (Fig. 2f right, blue lines) proteins in response to
growth factor treatment will show variability across three example
cells. Although the amplitude of initial response is similar for all
three cells, the longer-term responses are quite different. Our
previous analyses showed that such single-cell heterogeneity in the
initial concentrations of these proteins could help predict cellular
fate, namely cell division40. These Jupyter notebooks provide a
simple interface to interact with the SPARCED model.

SPARCED model unit testing: deterministic. We first tested
agreement between deterministic Bouhaddou2018 and SPARCED
model simulations. The SPARCED model simulations recapitu-
lated the response of an average (deterministic) cell under different
stimulation conditions, to within simulation error (Fig. 3a). As an
example, we highlight SPARCED model simulations of the cell
response (MCF10A cells) to treatment with EGF alone or EGF+
insulin (Fig. 3b and Supplementary Fig. 12). Treating growth factor
and serum-starved MCF10A cells with EGF and insulin induces
activation of ERK, AKT, and their downstream signaling partners,
which together influence cell proliferation40,71,72. The Bou-
haddou2018 model showed that compared to single ligand treat-
ments, EGF+ insulin stimulation increases and prolongs AKT and
its downstream EIF4EBP1 phosphorylation (Fig. 3b). The simula-
tion results from the Bouhaddou2018 model (the solid lines) and
SPARCED model (circles) are indistinguishable. The SPARCED-nf
implementation, which runs on a high-performance cloud com-
puting infrastructure, similarly reproduces the original simulation
data (Fig. 3b, triangles). These results, together with all other
deterministic tests in Table 1 (Supplementary Figs. 3–8 and 11),
confirm that the SPARCED model recapitulates the Bou-
haddou2018 model simulations and unit tests in deterministic
settings. Thus, the simple input file structure combined with
automatic model generation is equivalent to the prior MATLAB
instantiation in this regard.

SPARCED model unit testing: stochastic (hybrid). Next, we
evaluated the SPARCED model for stochastic unit tests in single-
cell simulations. Each single simulated cell has different initial
protein levels and dynamics due to stochastic gene expression,
and thus may respond differently to the same treatment. A
simulated cell population is a collection of multiple single cell
simulations, usually 100 unless otherwise noted. The SPARCED
model stochastic simulations closely matched Bouhaddou2018
model results, to within simulation error (Fig. 3c and Supple-
mentary Fig. 13a). As an example, we highlight here how single
cells respond stochastically to DNA damage. Etoposide, a che-
motherapy drug, induces double- and single-stranded DNA
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damage, causes cell cycle arrest, and leads to cell death73. Previous
experimental data40 showed that in the absence of EGF and
insulin (to promote cell cycle exit), there is minimal etoposide-
induced cell death (Supplementary Fig. 13b, c). However, in the
presence of EGF and insulin (to drive cell cycle progression),
etoposide-induced cell death increases over time and reaches
around 60% of the cells (Fig. 3d, e). Simulating etoposide treat-
ment of cycling cells induces robust p53 pulses, disruption of
Cyclin A dynamics/cell cycle arrest (Fig. 3d), and more cell
death relative to non-cycling cells (Fig. 3e). The SPARCED
simulation results closely match experimental data and
Bouhaddau2018 simulations. We conclude that SPARCED model
captures DNA damage induced single-cell death percentage and
cell cycle state-dependent effect of etoposide. The SPARCED
model also passed all other stochastic/hybrid unit tests (Table 1,
Supplementary Figs. 2, 6, 7, 9, and 10).

SPARCED model unit testing: context change. Different cell
types have different mRNA and protein expression levels, and
many mechanistic models assume that it is different expression
levels that drive different phenotypes, as opposed to changes in
biochemical rate constants. These constants are based on bio-
physical events like binding, which are based on molecular
structures. Here, we tested the ability of the SPARCED model to
be re-“initialized” to study different cell types by changing initial
levels of total proteins and mRNAs without changing the model
topology. Thus, we introduced a protocol to enable SPARCED
model context change (Supplementary Fig. 14a and Supplemen-
tary Data 12 and 13). In short, OmicsData, Species,
and Ratelaws input files are updated with new cell line

information, including mRNA levels, protein/species levels, and
constitutive translation rate constants. Then, the new model is
created by running the “createModel” Jupyter notebook or by
submitting a new SPARCED-nf job.

The re-calibration step for context change followed in Bouhad-
dou2018 model was called Initialization, where protein-specific
translation rates and key parameters important for cell decision
making are estimated to ensure agreement with new omics datasets
and expected phenotypic behavior with respect to proliferation and
apoptosis. Here we also provide a new, python-based version of the
Initialization procedure for SPARCED models (see Computational
Methods), where the outputs are species concentrations and rate
parameter values updated in a new SBML file. Here, to test the drug
combination response differences in different cell lines, we changed
SPARCED model context (i.e., parameter values and species
concentrations) by initializing the model to the U87 glioma cell
line. Following the protocol outlined in Supplementary Fig. 14a, we
replaced MCF10A cell line values in the input files with values from
U87 cell line data.

U87 cells are PTEN-deficient and more sensitive to AKT
inhibition compared to MCF10A cells40. Both cell lines show
minimal sensitivity to MEK inhibition alone and AKT & MEK
inhibitors are both needed to kill MCF10A cells. In contrast, AKT
inhibition alone is sufficient to kill U87 cells. To simulate the U87
cell response to AKT and MEK inhibitors, we first updated the
OmicsData input file (Supplementary Data 1) using U87
mRNAseq data from Bouhaddou2018 model (Supplementary
Data 14). Here, we did not use U87 cell line proteomic data and
estimated the initial total protein levels using the new mRNA
levels and gene-level mRNA/protein ratios from MCF10A data

Table 1 List of SPARCED model unit testing and comparisons to Bouhaddou2018 model.

Descriptions of unit tests Simulation type Figure # Original paper
Figure #

Functional test to ensure the deterministic module is updated every 30 s with mRNA
numbers generated by the stochastic module.

Hybrid Supp. Fig. 2 2B

Simulated ligand-receptor cooperativity coefficients for the receptor tyrosine kinases match
experimental observations (negative cooperativity: EGF, FGF, IGF, INS; no cooperativity:
HGF, NRG1, and positive cooperativity: PDGF).

Deterministic Supp. Fig. 3a 3A+ S3A

Activated EGF receptors internalize and peak ~30min after ligand treatment. Deterministic Supp. Fig. 3b S3B
EGF and insulin stimulation activates both ERK and AKT pathways. Dual stimulation with
the two ligands induces prolonged AKT activation.

Deterministic Supp. Fig. 4, 5 3B, C, D+ S3C

Double and/or single stranded DNA damage activates p53 and DNA damage repair
mechanisms represses its response.

Deterministic Supp. Fig. 6a 3E

Increasing DNA damage amount in single cells leads to higher number of activated
p53 peaks.

Hybrid Supp. Fig. 6b, c 3F+ S3E

Increasing simulated TRAIL dose decreases the time it takes to die for an average cell. Deterministic Supp. Fig. 7a, b 3G
The fraction of surviving cells decreases as stimulated TRAIL dose increases. Hybrid Supp. Fig. 7c 3H
Increasing ERK and AKT activity levels prolongs TRAIL induced time to death, whereas
increasing PUMA and NOXA expression levels decreases the time it takes for cells to die.

Deterministic Supp. Fig. 7d 3I

Increasing Cyclin D mRNA levels induces proper cyclin-CDK complex progression and
oscillations for cell cycle entry and progression.

Deterministic Supp. Fig. 8a 3J

Etoposide treatment induces cell cycle arrest and cell death. Cycling cells (with prior growth
factor stimulation) show increased percentage of death to etoposide treatment, compared
to non-cycling cells.

Hybrid Fig. 3d, e 4A, B, C

Inhibition of AKT and ERK pathways together synergistically increase cell death, in EGF and
insulin stimulated cells.

Hybrid Supp. Fig. 9 5A

ERK and AKT inhibition-induced cell death mechanisms are predominantly BIM dependent,
not BAD dependent.

Hybrid Supp. Fig. 10a 5C

EGF and insulin cooperatively induce cell cycle entry, with insulin inducing very little cell
cycle entry alone.

Hybrid Supp. Fig. 10b 6B

Activation of both ERK and AKT pathways is required for robust cell cycle entry. Time
averaged ppERK and ppAKT levels correlate with Cyclin D levels.

Deterministic Supp. Fig. 11 6E

The number of ribosomes within the cell doubles within 24 h. Deterministic Supp. Fig. 8b S2D

The SPARCED model passed each test depicted and recapitulated experimental and simulation observations reported by the Bouhaddou2018 model. Supp.: Supplementary.
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(Supplementary Data 15). We set the PTEN translation rate to
zero and set values of rate parameters dictated by Initialization in
the Ratelaws input file (Supplementary Fig. 14b and Supple-
mentary Data 12). Additionally, we provide an improved Python
based initializer initializeModel.ipynb notebook (Sup-
plementary Data 16 and 17), which re-creates (Supplementary

Fig. 15) the un-stimulated steady-state initial conditions for
species and adjusts translation rate constants using cell-line
specific initialization input file (Supplementary Data 18). We also
updated the species initial conditions in the Species input file
using steady-state values for U87 cells from the Bouhaddou2018
model (Supplementary Data 19). We created a new model SBML

Simulating 
SPARCED

model

• SpeciesTraj = [] # Matrix to store species concentrations
• GeneStatesTraj = [] # Matrix to store gene states
# Run 30sec (ts) simulations :
• for each 30 sec (until final “th” is reached):

# Update model mRNA values
• genestates,mRNAvals = SGEmodule(…)

# Run the next 30sec simulation:
• model.setInitialStates(mRNAIndDs,np.dot(mRNAvals))
• simdata = amici.runAmiciSimulation(model, solver)  

# Store the data:
• SpeciesTraj = np.vstack([SpeciesTraj, simdata(end,:)]) 
• GeneStatesTraj = np.vstack([GeneStatesTraj, genestates]) 

# check for cell death 
• If [cPARP] > [PARP] :

• print('Apoptosis happened’)
• break

a SPARCED model creation

Simulating single cell responses using SPARCED

e
Gene Switching – A Poisson process
For each gene “ ”:
• ~ . = 0, =

# kG are gene switching rate constants [40]
• ~ . 0,1

• If is “ON” and > � is “OFF”
• If is “OFF” and > � is “ON”

mRNA birth/death – Another Poisson process
For each mRNA species “ ”:
• ~ .

# vTC: transcription rate
• ~ .

# vTCd: transcript degradation rate
•

( )
= + −

Stochastic gene expression (SGEmodule.py)

f

d

Run panel (c) three times � Three single-cell responses

c

Hybrid simulation of SPARCED (RunSPARCED.py)

SPARCED Model Initializationb

SBML

Fig. 2 SPARCED-jupyter enables single-cell response simulations using Jupyter notebooks. a The model creation notebook processes the input files and
converts them into the model SMBL file, which is compiled for simulations using the AMICI python package. b When a model is generated for a new
cellular context (using new omics input data), next is an initialization step to adjust protein translation rate constants and cell death/DNA damage related
parameters. c The model simulation starts with specifying and importing the SPARCED model SBML. The user defines the model file name and the sets
four additional parameters: (i) The flag (1 or 0) to specify if the model should run in deterministic or in hybrid mode (see d and e), respectively. (ii) The
time duration in hours for which the model should run. (iii) The vector of ligand concentrations (in nM) to stimulate the cells. (iv) The output file name.
Next, the species initial conditions are, by default, read-in from the “Species” input file. Then, the model file is imported and simulated according to the
specified input. The model outputs three matrices: species concentrations over time, the activation states of genes over time, and the time points of
simulation in seconds. d The model is simulated iteratively for each 30 s, where the current species concentrations are inputs for the gene expression
module, which then outputs new mRNA levels to update the SBML model states. The model is then run for another 30 s, until the total simulation time
reaches the user input (th) or until the cell dies. The cell is considered dead when [cleaved-PARP] > [PARP]. e In the gene expression module, in hybrid
mode, the model randomly decides which genes become active or inactive, and which mRNAs are transcribed or degraded. This SGEmodule.py script is
called every 30 s with updated species concentrations, simulated using the models SBML with AMICI package. fWhen the model is hybrid-simulated three
times, the different cell responses are observed. Shown are serum-starved average cells stimulated with full growth media for 24 h. Plotted are free ppERK
and ppAKT species concentrations (nM).
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file (SPARCED_U87) using the updated input files. SPAR-
CED_U87 model simulations of response to MEK and AKT
inhibitors reproduced the Bouhaddou2018 model results and
experimental observations (Supplementary Fig. 14c). We con-
clude that changing model context by changing input files is

possible and contributes towards the goal of easy model alteration
to study of different cell types.

When the cellular context (omics input data) for the
SPARCED model is changed, all appropriate Unit Tests should
be passed. We expect that addition and alteration of the list
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provided (Table 1) will accommodate increasingly different prior
knowledge about the new context. Examples of such information
include cell line mutations, growth condition differences, or
tumor cell behavior.

Illustrating easy model expansion by application to the IFNγ
pathway: SPARCED-I. The SPARCED model reproduces origi-
nal model results and experimental observations, but how can we
use the new simple model expansion capabilities? Here, we
focused on experimental observations that interferon-gamma
(IFNγ) inhibits MCF10A cell proliferation. Specifically, as part of
a much larger LINCS consortium effort to deeply profile the
MCF10A cell line dynamic response to perturbations (synap-
se.org/LINCS_MCF10A), we observed that IFNγ inhibits EGF-
induced cell proliferation (Fig. 4a). We wanted to use the
SPARCED model expansion functionality to evaluate the suit-
ability of candidate mechanisms by which IFNγ might inhibit
proliferation.

We thus merged a model for interferon-gamma receptor
(IFNGR) signaling into SPARCED, creating the model variant
SPARCED-I. The newly added Yamada2003 model74 captures
how IFNγ binds to pre-JAK-bound receptors, inducing dimeriza-
tion. The ligand-bound receptor homodimers are activated by
JAK, which also phosphorylates STAT1 when bound to the active
receptor complex. Activated STAT1 then dimerizes and translo-
cates to the nucleus, inducing transcription of SOCS1. SOCS1
mRNA is exported to the cytoplasm and translated into SOCS1
protein. SOCS1 protein binds to and inhibits activated receptor
homodimers. In this model, there are three phosphatases (SHP2,
PPX, and PPN) acting on multiple species.

Following the model alteration protocol in Supplementary
Fig. 14a and Supplementary Data 13, we added 34 new species, 8
corresponding genes, and ~70 reactions (Fig. 4b) based on the
Yamada2003 model74. New genes (IFNG, IFNGR, JAK2, STAT1,
SHP2, SOCS1, PPN, PPX) corresponding to the proteins in the
model are added as new rows and mRNA levels are inserted into
the OmicsData input file. Gene copy numbers are taken as
two40. The genes are also added as new rows to the GeneReg file
(Supplementary Data 20). In the Yamada2003 model, activated
nuclear STAT1 dimers (STAT1*Dn) induce SOCS1 mRNA
transcription, and this is captured by adding a new column in
the GeneReg input file, with the only non-zero element at the
STAT1*Dn and SOCS1 gene intersection. Next, each protein,
protein complex, and mRNA species are inserted into the
Species and StoichiometricMatrix input files as new
rows. Each new reaction is inserted into the Ratelaws input
files as rows, and into the StoichiometricMatrix input file
as new columns. This expansion brought the total number of
species of SPARCED-I model to 954, and the number of reactions
to 2540 (Fig.4c, Supplementary Data 21).

SPARCED-I model unit testing. The SPARCED-I model, with
parameter values from the Yamada2003 model, should reproduce
the original results exactly, which we verified (Fig. 4d, red lines &
diamonds, respectively). We then modified the mRNA, protein,
and compartment volume values to that of MCF10A cell context
(data from40). However, the MCF10A data (Supplementary
Data 22) had missing values for IFNGR and (arbitrary) phos-
phatase species PPN and PPX. So, we initialized the concentra-
tion of IFNGR as half of JAK2 concentration (the receptor is
typically rate limiting74). The concentrations of PPN and PPX
phosphatases were equal to half of SHP2 concentration in
Yamada2003 model, so we updated their values to half of SHP2
concentration in MCF10A cells. In addition to the reactions from
the Yamada2003 model, we added new translation (for the new

eight genes) and degradation (for all new species) reactions into
the model. The rate constants of these extra reactions are initially
assumed to be equal to the average of corresponding reactions of
SPARCED model genes. Starting from these parameter values, the
SPARCED-I model showed unrealistic (ultrafast) receptor acti-
vation and STAT1 phosphorylation/nuclear transport rates.
Therefore, we varied six parameters that have high impact on
STAT1 activation dynamics (see Methods) to approximate the
timing (within the first hour) of STAT1*Dn pulses reported by
Yamada (Fig. 4d) and others75,76. Changing rate constants in
such a manner accounts for the entangled effects of unmodeled
cellular context and mechanisms. Tuning these parameters pro-
duced expected pulsing times and response behavior of
STAT1*Dn, SOCS1, and SOCS1 mRNA levels (Fig. 4d black
lines). The final values are updated in the SPARCED-I model file
(Supplementary Data 21).

A key feature of SPARCED-I is its ability to simulate a virtual
cell population response and the above-observed reduction in
proliferation induced by IFNγ is inherently a population-based
property. As a unit test, we simulated 100 single cell trajectories
(Fig. 4e) of SPARCED-I model and concluded that SPARCED-I
model recapitulates observations from earlier models (i.e.,
qualitative STAT1 and SOCS1 dynamics) and passes all unit
tests (i.e., hybrid mode works).

SPARCED-I model variant analysis: hypotheses testing. Next,
we wanted to use the expanded model to help us interpret the
experimental observations. How does IFNγ inhibit EGF-induced cell
proliferation? The SPARCED model captures regulation of cell
proliferation via the ERK and AKT pathways. Growth-inducing
ligands, like EGF, bind to and activate receptor tyrosine kinases
(RTKs), which in turn leads to upregulation of AKT and ERK
phosphorylation. The two pathways together induce upregulation of
cyclin D through cJUN, cFOS, and cMYC activities40,71,77.

In the literature, there are different mechanisms by which IFNγ
was suggested to play a role in cell proliferation78–81. The
SPARCED-I model enabled us to evaluate one of these
hypotheses for consistency with experimental observations
(Fig. 4a), where the simulation steps are matched to the
experimental setup (Fig. 5a). The mechanism involves the
negative regulator of IFNγ signaling, SOCS1. SOCS1 protein
has different binding domains, including SH2 domains82,83. SH2
domains bind to phosphorylated tyrosine residues on other
proteins84,85. It is proposed that SOCS1 not only binds to
activated IFNγ receptors, but also to many other activated
receptor complexes with free phosphorylated tyrosine residues
(Fig. 5b)83,86,87. Thus, IFNγ-induced SOCS1 protein can bind to
growth factor-activated receptor complexes (or the so-called
signaling competent dimers – pSCD) and prevent further
downstream signaling by sequestration. This mechanism was
modeled by adding SOCS1 binding to activated receptor
complexes (pSCDs) reactions in the Ratelaws input file. The
SPARCED-I SOCS1 model contained 1302 species (348 new) and
3584 reactions (1044 new) (Supplementary Data 23). GRB2
proteins also contain SH2 domains that bind to tyrosine
phosphorylated receptors (pSCDs) and the rate constants of
SOCS1 interaction with all these complexes are taken as the
average of such parameters of GRB2 complexes.

Before evaluating the SOCS1 crosstalk model responses, the
initial conditions must be set. The SPARCED-I model initial
conditions are based on serum and growth factor starved MCF10A
cells. However, the experiments with IFNγ (Fig. 4a) were done in
media with horse serum. Horse serum upregulates ppAKT levels
by four-fold (Supplementary Figs. 16 and 17), possibly thorough
IGF/IGF1R pathway88–90. Including 0.02 nM IGF meets this basal
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activity increase constraint, and therefore is included in simulations
prior to and during simulated EGF and IFNγ treatments (see
Methods and Supplementary Figs. 16–19).

After creating the SPARCED-I SOCS1variant and defining the
simulation conditions, we stochastically simulated the model with
IGF treatment for 24 h for 100 different single cells to provide a
baseline. Then, either EGF or EGF+ IFNγ are added for an

additional 48 h for each cell (Fig. 5a). As a simulation metric for cells
in S-phase at 48 h, we counted cells for which the sum of
concentrations of Cyclin E, A, and B is greater than 20 nM40. We
counted such cells for different values of the dissociation constant
(Kd) (Fig. 5d). We varied the unbinding rate constant (log10 within
the range −4 to 3) and ran different 100 cell simulations for each
condition. Looking at the ratio of number of cells in S-phase in IFNγ
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treated cells to EGF-only cells, we saw that the model (Fig. 5d, blue
and orange bars) can capture the experimental data of ~%50
decrease (Fig. 5d, gray bar), especially for the lower end of the Kd

values. This range of Kd values is consistent with previous
experimental observations for such interactions91,92. We conclude
that the SOCS1 mechanism model is not inconsistent with decreased
proliferation in IFNγ treated simulated cells.

We investigated responses of simulated cells to explore why
fewer simulated cells enter the cell cycle (Fig. 5d). We saw a
simulated decrease in both AKT and MAPK activation in IFNγ
treated cells, supported by experimental RPPA data (synapse.org/
LINCS_MCF10A), which was not fitted (Fig. 5e). For the
estimated Kd value simulations shown (orange bar in Fig. 5
dIthe greatest decrease occurs at around one hour after ligand
treatment and stays decreased for 48 h. Both simulations and
experiments show decreased ppAKT and ppMAPK levels at 1–8 h
post-ligand treatment (Fig. 5e, compare experimental black bars
to median simulation orange lines). The variability in the 8 h
measurement for ppAKT was large, and the 24 h measurement
showed still reduced ppAKT. By 48 h, ppAKT is upregulated in
the experimental data, which is in part captured by the simulation
variance (the 70th quantile), but the model does not fully explain.
These results suggest that downregulation of both AKT and

MAPK responses leads to decreased cell proliferation, as
previously investigated by Bouhaddou et al.40 and others72,93–95.

Is the somewhat subtle decrease in MAPK and AKT activity for
~1 day enough to prevent cell cycle entry in MCF10A cells?
Bouhaddou et al. showed that a slight change in time integrated
MAPK and/or AKT activity dynamics can tilt the cell cycle
progression decisions significantly (see Supplementary Fig. 11
and ref. 40 for further details) and here we saw both ppMAPK and
ppAKT levels show a statistically significant decrease after IFNγ
treatment, which may explain fewer proliferative cells. Taken
together, these results suggest that:(1) the SPARCED model
formalism can be used for simple implementation of large-scale
mechanistic model-based hypotheses testing, (2) crosstalk
between IFNγ and EGF pathways may occur through
SOCS1 sequestration of activated receptor domains, and (3)
SOCS1-induced inhibition of AKT and MAPK activation may
contribute to proliferation suppression.

Discussion
Here, we have re-created one of the largest mechanistic models in
the literature, using our new python-based creation and simulation
pipeline. Our modeling pipeline and model creation recipe are based
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on structured and easy to modify input text files and uses Jupyter
notebooks or scripts (for scaled cloud-computing) to create and
simulate model files. It also enables easier model alteration (species/
rate law or parameter value changes), omics data integration, and
model variant vs. hypotheses testing. Our exemplar model, called
SPARCED, is available online on GitHub (github.com/birtwistlelab/
SPARCED)70. While the pipeline we introduce is a recipe for large-
scale model construction, the SPARCED model itself can serve as a
basis for creating context-specific (personalized) model variants,
studying virtual cell population responses, and as a building block
towards whole-cell-scale models.

First, we showcased the use of SPARCED model by changing
the cellular context of the model from MCF10A breast epithelial
cells to U87 glioblastoma cells, by only replacing parameter values
in a few input files. Although we used previously calculated values
from the Bouhaddou2018 model to show reproducibility of the
subsequent analyses, it is notable that SPARCED pipeline cor-
rectly creates and simulates a large-scale mechanistic model file
only from an altered set of text-based input files. Additionally, we
provided a new version of the Initialization script (Supplementary
Data 16) that utilizes another cell-line specific input file (Sup-
plementary Data 18) to calibrate the model initial conditions. The
initialization allows distribution of total protein and mRNA level
omics data across all model species and estimates data-driven,
cell-line specific translation rate constants. As a customizable set
of steps, the initialization sustains user defined phenotypic
responses, like cells not going into apoptosis or cell cycle without
growth factor stimulation. Importantly, the procedure accom-
modates mRNA input alone (without proteomics data) and cal-
culates total protein levels using gene-level mRNA-to-protein
ratios from the default MCF10A values. The outputs of the
initialization procedure are species concentrations and parameter
values deposited into a new SBML file, which is exported with a
new name and re-compiled using AMICI.

Secondly, we investigated a candidate crosstalk mechanism to
explain how IFNγ can inhibit EGF-induced cell proliferation. We
created the model variant by only changing the input files and
hypothesized that IFNγ-induced SOCS1 sequestration of acti-
vated receptors is a putative crosstalk mechanism. Besides the one
tested here, there are others in the literature, like the positive
feedback of STAT1 inducing STAT1 and IRF1 transcription79, or
the inhibition of Bcl-2 by STAT178. However, here, we only
focused on demonstrating the capabilities of SPARCED pipeline
to easily create and test model variants to help explain one of our
experimental observations, where testing all possible mechanisms
was out of our scope.

Many existing big models are constructed in complicated and
hard-coded ways and are not available in standard modeling
formats, like SBML. For instance, the Bouhaddou2018 model we
used as our starting point was custom coded in MATLAB with
tens of different script files with thousands of lines. Although the
model performance was optimized for its topology, alteration and
expansion of the model was extremely difficult. However, models,
especially the large-scale and clinically relevant mechanistic
models, must become easy to formulate, understand, and dis-
seminate for reproducibility, re-useability, and applicability in
clinical decision making. Here, the model construction pipeline
and the SPARCED model contributes to this need by being built
upon structured and annotated input files, by using open-source
packages, and by being available publicly on GitHub.

One key advantage of the SPARCED model format is its
potential compatibility with RBM. The reactions and species
created by RBM software can be incorporated (manually or
programmatically) into the SPARCED model input files.
Although existing RBM software can export models in SBML

format and enable multiple features, the SPARCED models
enable single rate parameter changes and inclusion/exclusion of
individual rate laws at the input file level. Then, the SPARCED-nf
pipeline can be used to study large-scale variant analysis or to do
parameter scanning. One main goal of the AMICI package96 is
enabling large-scale parameter estimation, and our choice to use
this package was to enable such future endeavors when needed.
Combining this idea to test consistency across multiple datasets,
users can search for best-fit models or pinpoint discrepant
datasets given the model topology28.

Another advantage of the SPARCED model will be its ability to
integrate multiple omics datasets into a large-scale mechanistic
model, creating a “personalized” model variant reflective of
another cellular or patient context26,97. With the Initialization
procedure linked to our pipeline, users can incorporate mRNA,
copy number variation (CNV), and even proteomics data from
established databases like CCLE98, TCGA99–101, HPA102–104, and
Cellosaurus105 into the input files programmatically (Supple-
mentary Fig. 14) and test changing the initial conditions of the
model using the same network structure (Fig. 4).

The SPARCED model encodes intrinsic stochasticity of total
protein levels and mRNA numbers in its hybrid simulation mode,
making it unique (together with the Bouhaddou2018 model) to offer
stochastic as well as deterministic simulation settings within a single
model of this biological and time scale. There are other tools such as
COPASI that offer hybrid (deterministic+ stochastic) simulation
settings61,106. Our hybrid simulation approach treats the gene
expression module as stochastic (events modelled as Poisson pro-
cesses) and the protein signaling module as deterministic. COPASI
uses next-reaction-method107 for the part it determines as stochastic
based on molecule numbers of the interacting species. However, as
the developers stated, such implementations tend to be inefficient
and take prolonged simulation wall-times. Indeed, COPASI (v4.25,
build 207, on Windows 10 Pro) fails when we try to simulate our
model. A next step for the SPARCED model is to combine the gene
expression (scripted) and protein signaling (SBML file) modules into
a single SBML model file. Such a change would enable broader
cross-platform testing and usage of the SPARCED model. As stated
above, even the current SPARCED model SBML is too big for most
tools available to accurately simulate for the relevant time scales
(24–72 h). New numerical/algorithmic methods are required to
simulate large-scale hybrid models108. The single-cell capability of
SPARCED allows one to capture some important aspects of cell line
and tumor heterogeneity compared to an average cell condition (the
way many mechanistic models are built). Users can leverage this
feature to simulate virtual populations and study a cell population
response to drug treatment, which is often a single-cell readout as
are most cellular phenotypes. However, such simulation settings
require larger computational resources and thus model compatibility
for high performance computing environments. The SPARCED
model is built to be compatible with cloud computing, where it can
be used to simulate thousands of single cells with single job execu-
tion (see Methods).

There are, of course, some shortcomings and remaining chal-
lenges. Although we extensively showed that the SPARCED
model creation/alteration is much easier compared to previous
version, it still is a (careful) stitch-together of other models. There
are certainly other models that can be substituted and tested. The
tab-separated input files separate model details from the simu-
lation itself and offers multiple advantages mentioned throughout
this work. However, it can be seen cumbersome for some
modelers. These input files include species and compartment
annotations, but there are other recent efforts to standardize such
metadata/annotation sharing, which we would conform to when
fully developed109. The hybrid mode of SPARCED includes
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Python scripts for stochastic simulation of gene expression
module. By defining this module in another SBML file, and using
packages like SBML comp110, one can start exploring other
methods and tools for performance testing. However, a full
comparison to other hybrid and stochastic methods requires
computational tools that are yet to be developed that work with
models of this size. Additionally, we do not provide scripts to
merge new models into SPARCED, and the field of model mer-
ging is an active research area111–113. For instance, researchers
can write code to insert new reactions and species from other
model files into existing input files, which would then also require
to update OmicsData.txt input file with new gene informa-
tion. Yet, in our experience, model merging often necessitates
human interaction to define the mechanisms by which species
interact with one another and what rate laws should define those
interactions. Finally, if one desires to alter the model at the
Antimony file stage, there are currently no automated ways we
provide to map the changes onto input files. This would be
possible if desired but was not studied here.

SPARCED is a large-scale pan-cancer pathway model that
incorporates six major sub-modules, making it one of the state-of-
the-art computational models for mammalian signaling. However,
it does not yet include one of the hallmarks of cancer, the cellular
metabolism mechanisms114. Additionally, the current version of
the SPARCED simulation code does not explicitly track cell divi-
sion events, although the cell cycle itself is modeled. However, this
is ongoing work and will enable us to better capture and compare
to experimental observations and data, such as traditional drug
dose viability response experiments that are fundamentally related
to tracking single cells and their division/death events.

One of the challenges is to explore simulations of spatially aware
single cells. Currently, the SPARCED model captures intrinsic
heterogeneity of cells (by having stochastic gene switching and
mRNA birth/death events) but these cells cannot “talk” to each
other. In the future, by having scenarios where spatial orientation
of cells are recorded and the secreted or stimulated molecules are
shared between them, we can better capture tissue microenviron-
ment and heterogenous pharmacokinetics115,116. Related to this
first task, the second challenge is to create and simulate scenarios
with multiple cell types (i.e., models trained on data from different
subtypes of cells) or defining events to capture differentiation of
cells. For example, one may be able to use single cell RNAseq data
to train SPARCED-like models to enable tissue-level simulations
with the critical cell types in the proper geometric locations. This
overall vision would enable spatially aware, single-cell level, large-
scale mechanistic models trained on individual patient data for in
silico drug screening. The pipeline presented here is an important
step towards this goal.

Another challenge to achieve using large-scale models is a
whole-cell level mechanistic model for mammalian cells56,117.
With our approach, the SPARCED model can be enlarged using
other small-scale models for pathways and mechanisms not
currently included in the model. By utilizing the unit testing
approach, one can then verify the model performance and get
larger, more comprehensive models. The open-source framework
presented here increasingly facilitates community contribution
for model context-change and parameter tuning based on new
experimental conditions.

Our introduced method of large-scale mechanistic model con-
struction, and the SPARCED model as a basis, will enable
researchers to more easily create and manipulate new model ver-
sions, test different mechanisms of action to interpret experimental
observations, and change the model’s cellular context. The models
created by the SPARCED pipeline can incorporate multiple (omics)
datasets, providing non-“black-box” data integration and modeling;

however the extent to which a fixed “initialization” pipeline can be
successfully applied to a variety of cell lines remains to be tested.
These SPARCED models additionally provide single-cell level
simulations, compatibility with cloud computing, and human-
interpretable & annotated model files in SBML format (as do other
modeling tools, albeit not at this scale). The SPARCED model now
can more easily be re-used as one of the largest mammalian-cell
mechanistic model in the literature and serves a primer role in
creation of context-specific, hypotheses testing, and expandable
models. In conclusion, the SPARCED model format contributes
towards important foundations of reusable big models, paving the
way towards personalized mechanistic models for data integration.

Methods
Experimental methods
Cell culture. MCF10A cells (ATCC #CRL-10317, acquired from LINCS Con-
sortium/Gordon Mills and STR verified internally in March 2019) are cultured in
DMEM/F12 (Gibco #11330032) medium supplemented with 5% (by volume) horse
serum (Gibco #16050122), 20 ng/mL EGF (PeproTech #AF-100-15), 0.5 mg/mL
hydrocortisone (Sigma #H-0888), 10 μg/mL insulin (Sigma #I-1882), 100 ng/mL
cholera toxin (Sigma #C-8052), and 2 mM L-Glutamine (Corning #25-005-CI).
Cells were cultured at 37 °C in 5% CO2 in a humidified incubator and passaged
every 2-3 days with 0.25% trypsin (Corning #25-053-CI) to maintain subcon-
fluency. Serum starvation medium is DMEM/F12 medium supplemented with
2 mM L-Glutamine. Experimental starvation medium is DMEM/F12 medium
supplemented with 5% (by volume) horse serum (Gibco #16050122), 0.5 mg/mL
hydrocortisone (Sigma #H-0888), 100 ng/mL cholera toxin (Sigma #C-8052), and
2 mM L-Glutamine (Corning #25-005-CI).

Tissue culture treated, non-collagen coated plates with full serum starvation. The
cells were seeded in full growth media at 150,000 cells/well in tissue culture treated
six well plates (Corning # 08-772-1B). The next day, cells are washed once with 1X
PBS (one phosphate buffered saline tablet (Sigma #P4417-100TAB) in 200 mL
milli-Q water, autoclaved) and the media was exchanged to serum starvation media
(DMEM/F12 medium, 2 mM L-Glutamine) for 16–24 h. Then, the cells were
treated with vehicle control, EGF (10 ng/mL, PeproTech #AF-100-15), and HGF
(40 ng/mL, R&D Systems #294-HGN-005) for 0, 5, and 60 min in a humidified, 5%
CO2, 37 °C incubator.

Collagen-coated plates and growth-factor starvation only. Collagen-coating mixture
was prepared as follows: 7.5 mL diluent buffer (20% v/v glycerol, 10 mM EDTA,
PBS), 1.5 mL Tris-HCL, 0.6 mL COL1 (Cultrex #3442-050-01), and 5.4 mL PBS.
950 μL coating mix was added into each well of a six-well plate. After making sure
that the entire well surface was covered, the plates were incubated one hour at
room temperature. After incubation, any remaining liquid is aspirated and dis-
carded. The wells were washed twice with sterile PBS and left lid-open under a
sterile laminar flow hood until wells were fully dry (~one hour). Upon replacement
of the plate lid, the plates were stored in a benchtop desiccator at room temperature
for a minimum of 3 days before use. Then, MCF10A cells were seeded in full
growth media at 150,000 cells/well. After being allowed to attach for 7–8 h, the
wells were washed once with PBS and the media was changed to full growth media
without EGF and insulin for 18 h. Then, the cells were treated with vehicle control,
EGF (10 ng/mL), and HGF (40 ng/mL) as above for 0, 5, and 60 min.

Cell lysis. After growth factor treatment, the plates were removed from the incu-
bator and put on ice. The media in the wells were aspirated and the wells were
washed with PBS. 110 μL of freshly-prepared, ice-cold RIPA buffer (50 mM Tris,
pH 7–8 (Acros Organics #14050-0010), 150 mM NaCl (Fluka #71383), 0.1 % SDS
(Fisher #46040CI), 0.5% sodium deoxycholate, 1% Triton-X-100, filter sterilized,
stored at 4 °C) with protease & phosphatase inhibitors (1 μg/mL aprotinin, 1 μg/mL
leupeptin, 1 μg/mL pepstatin A, 10 mM β-glycerophosphate, and 1 mM sodium
orthovanadate) was added into each well, while gently rotating the plate to cover
the full surface area. The plates were transferred to the cold room for 15–20 min,
with slow rocking. The lysate was scraped off from the wells with a cell scraper.
100 μL of cell lysate from each well were transferred into labeled Eppendorf tubes
on ice. Each tube was vortexed three times to homogenize cell debris, keeping other
tubes on ice. All tubes were then centrifuged at 4 °C for 15 min at 17,135 g. 80 μL of
the supernatant from each tube was transferred into new Eppendorf tubes on ice.
These cleared lysate samples were stored at −80 °C for long-term storage or used
immediately as below.

Protein quantification. Total protein quantification was done using the BCA-Pierce
660 Assay (Thermo Scientific #23225). As the reference, BSA stock (Thermo Sci-
entific #23209) was used according to the manufacturer protocol. In short, 10 μL of
samples and BSA standards were loaded into wells, in triplicate, in a 96-well plate
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(Corning #3370). 150 μL BCA Protein Assay Reagent was loaded into each non-
empty well. The plate was covered and incubated at room temperature for 5 min.
The absorbance at 660 nm was measured on a plate reader (BioTek #Epoch2). The
average reading of blank wells was subtracted from all other readings, and then
average readings were calculated. The standard curve was fitted by a polynomial
using blank-corrected mean values of each standard condition versus its BSA
concentration. The fitted curve was used to determine the protein concentration in
each sample.

Immunoblotting and quantification. The lysates were put on ice and the amount of
sample to load into each well was calculated using the total protein concentrations
determined above (3 μq loaded here). Each sample was mixed with 2X Sample Buffer
(950 μL of Laemmli’s Buffer (BioRad #161-0737), 50 μL beta-mercaptoethanol
(Fisher #03446I-100)) in a 1:1 ratio and transferred into a new Eppendorf tube. The
sample solutions were heated at 95 °C for 5 min on the heating plate and then briefly
spun in benchtop microcentrifuge to return any condensation to the bottom of the
tube. 10% acrylamide gels were prepared, and samples were loaded into the wells. A
pre-stained protein ladder (LI-COR #928-70000) was loaded in the first and last
wells. The gel was run in SDS running buffer (100mL 10X Tris-Glycine-SDS buffer
(IBI Scientific #IB01160)+ 900mL milli-Q water) at constant 220 V until the dye
front runs off the gel. Then, wet-transfer to nitrocellulose membrane (0.45 µm pore
size, VWR #10063-173) was done using cold transfer buffer (3.03 g Tris-base (Acros
Organics #14050-0010), 14.4 g glycine (Acros Organics #220910050), 100mL
methanol (BDH #BDH1135-4LP), volume adjusted to 1 Liter with milli-Q water)
and running the cassette with ice block at constant 100 V for one hour. 1X TBST
(Tris-Buffered Saline, 0.1% Tween) was prepared: 100mL of 10X TBS solution (24 g
Tris-base, 88 g NaCl (Fluka #71383), adjusted pH to 7.6, adjusted final volume to 1
Liter with milli-Q water, autoclaved), 1 mL Tween-20 (Fisher #BP337-100), and
milli-Q water until final volume of 1 Liter (~900mL). When the transfer was fin-
ished, the membrane was blocked using BSA-TBST blocking buffer (2.5 g bovine
serum albumin (Fisher# BP1600-100), 50mL 1X TBST) for 45min at room tem-
perature. The blocking buffer was discarded, and the membrane is incubated in
primary antibody solution (1:1000 dilution, 10 μL primary antibody in 10mL 5%
BSA-TBST blocking buffer) overnight in cold room. The primary antibodies used
were: AKT_pS473 (Cell Signaling #4060; 1:1000), AKT (Cell Signaling #2920;
1:1000), ERK_pT202_pY204 (Cell Signaling #4370; 1:1000), ERK (Cell Signaling
#4696; 1:1000), alpha-tubulin (Novus #NB100-690, 1:1000), and β-actin (LI-COR
#926-42212, 1:1000). After primary antibody incubation, membranes were washed
three times for 15min each with 1X TBST at room temperature, with gentle rocking.
Then, the membranes are incubated with LI-COR secondary antibodies in 10ml
TBST blocking buffer for 45min (anti-rabbit 800CW, LI-COR #926-32211 or anti-
mouse 680LT, LI-COR #925-68070; 1:8000) at room temperature, with gentle
rocking. Membranes was washed three times for 15min each, with 1X TBST, on
rocker. The imaging was done with a LI-COR Odyssey Infrared Imager, where bands
were quantified using LI-COR Image Studio Lite v5.2 software (Supplementary
Figs. 16–19).

Computational methods
The Bouhaddou2018 model. The Bouhaddou2018 model (Fig. 1a) is one of the
largest single-cell mechanistic models for mammalian cell signaling regulating
proliferation and death. The first version of the model used as a test case in this
work was written in MATLAB (The MathWorks, Inc.)40. The model is a hybrid of
deterministic and stochastic modules. The deterministic module describes the
concentration dynamics of 774 proteins, protein complexes, and post-
translationally modified species through 2449 reactions using the Sundials
CVODEs package for simulation118. The stochastic module describes gene state
(active/inactive) and mRNA birth/death dynamics for 141 genes. The deterministic
and stochastic modules exchange information every 30 simulated seconds. In short,
the current levels of select protein states can induce changes in gene activation/
deactivation and/or mRNA transcription/decay rates. The newly updated mRNA
copy numbers change nascent protein translation rates in the deterministic mod-
ule. See40 for further details.

The SPARCED model. We converted the Bouhaddou2018 model into a Python +
SBML59 format (Fig. 1b). The deterministic module is ultimately encoded in an
SBML file (.xml) whereas the stochastic module is written in Python. A founda-
tional and important feature of this recoding effort is that the SBML file is gen-
erated from a small set of simple structured input text files (Fig. 1c) via Python
scripts. Introduction of such structured input files and associated Jupyter note-
books enables simple alteration of model structure and/or parameter values, for
example turning on/off certain interactions. The input files also enable rigorous
annotation of model features using, for example, ENSEMBL119 and HGNC120

identifiers, which is seldom done in such mechanistic modeling.

Input files. There are six SPARCED model input text files (tab separated values),
each with a defined structure as detailed below. The user can change these files to
create and compile a new model.

(1) OmicsData: This file (Supplementary Data 1) includes the gene copy
number, mRNA copy number, and proteomic data. This input file also

contains rate constants for the stochastic module and initialization
procedure. Each row of the file corresponds to one gene and the columns
are different data types. The first column is gene name (HGNC identifiers),
the second column is gene copy number, the third column is mRNA
molecule copy number per cell (mpc), the fourth and fifth columns are rate
constants of gene inactivation and activation respectively (s−1), the sixth
column is constitutive transcription rate constants (molecules per second),
the seventh column is maximal transcription rate constants (molecules
per second), the eighth column is mRNA degradation rate constants (s−1),
the ninth column is protein copy number (mpc), the tenth column is
protein half-life parameters (seconds), and finally the eleventh column is the
translation rate constants (s−1). These latest set of rate constants are from
literature and provided for genes for which our omics input lacked protein
level data. All the rate constants are taken from the Bouhaddou2018 model.
Users can add new rows to this file, using RNAseq data to estimate mRNA
levels for the genes to be added40. When adding genes (rows) to the model, a
reasonable starting point for rate constants (or other values), in the absence
of any other data, is to use median values from the genes/parameters
currently in the model.

(2) Species: This file (Supplementary Data 2) contains information about the
species in the deterministic module. Each row corresponds to one species
(protein, protein complex, post-transcriptionally modified species). Tran-
scripts (in nM) are also included in this file because they are regarded as
species with updated concentrations in the stochastic module every 30 s and
are used in translation rate laws. The first column is the species name.
Names can be arbitrary so long as they are unique in the model.
Importantly, the name list needs to match the first column in the
StoichiometricMatrix file described below. The second column is
the species home compartment. The home compartment of a species defines
its cellular localization. A species can reside in a compartment defined in the
Compartments input file: currently Cytoplasm, Mitochondria, Nucleus,
or Extracellular. The third column is initial condition in nM units, with
respect to the home compartment volume. These values are taken from the
Bouhaddou2018 model, post-initialization. The fourth column is a comma
separated list of ENSEMBL gene identifiers corresponding to gene products
present in the species.

(3) Ratelaws: This file (Supplementary Data 3) has a row for each reaction
in the deterministic module. The first column is the unique (arbitrary)
name of each reaction. Currently, we named each reaction based on the
related sub-module (e.g., vA1–87 for Apoptosis and vC1–104 for Cell
Cycle). The number and order of rows in this file should match the
columns in the StoichiometricMatrix input file defined below.
The second column in this file contains the home compartments for the
reactions. The designated compartments should be one defined in the
Compartments input file: currently Cytoplasm, Mitochondria, Nucleus,
or Extracellular. The home reaction compartments define the effective
search volume for each reaction and is used to rescale concentrations
when appropriate. Note that both species and reactions have home
compartments defined, where a species can participate in a reaction
defined in a different compartment. For instance, the EGF binding to
EGFR reaction occurs in extracellular space (volume Ve), where EGF’s
home compartment is the extracellular space and EGFR’s home
compartment is cytoplasm (Vc). A volumetric correction for EGFR
concentration in this rate law is done by multiplying by the ratio of Vc/Ve.
The third column can have either a number or a reaction formula. If it is
a number, it means the corresponding reaction is mass-action type, and
the number is the rate constant for that reaction in units of nM and
seconds. Note that the reactants and products are defined in the
StoichiometricMatrix input file. If the third column is a formula,
it means the reaction will follow that rate law, and the next set columns in
that row are the values of each parameter defined in the formula in the
third column, again in units of nM and seconds. The rate law can include
any species name described in the Species input file. The parameter
names in the rate law should start with “k” and be unique in that formula.
We distinguish multiple parameter names with an underscore and
ascending list of numbers (e.g., kA_1, kA_2). During model generation,
all parameter names in this file are re-named in an ascending order based
on the number of rate laws. The full list of parameter name/value pairs
are outputted into a new file (ParamsAll) for user reference.

(4) StoichiometricMatrix: This file (Supplementary Data 4) defines the
reaction stoichiometry, and therefore the reactants and products of model
reactions. The rows correspond to the Species input file and the columns
correspond to the rows in the Ratelaws input file. Here, the species and
rate law names should match the names defined in Supplementary Data 2
and 3. Each element (starting at the second row and second column index)
has a stoichiometric coefficient (typically −2, −1, 0, 1, or 2), where negative
sign indicates reactants, and positive sign implicates products of a reaction.
We also provide an option to not use the stoichiometric matrix as an input
file (see github.com/birtwistlelab/SPARCED/tree/noStoicMat)121. Instead,
the reactions are defined within a new column in the updated Rate-
lawsNew input file.
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(5) GeneReg: This file (Supplementary Data 5) describes transcriptional
activation and inhibition interactions, where rows correspond to genes (the
same order as the first column of Supplementary Data 1) and columns to
species that are defined as activators or repressors of transcriptional activity.
The first column is gene name (HGNC format). There are currently seven
more columns in this file, each corresponding to one species defined as an
activator or a repressor (e.g., p53 induces p21 transcription or AP1 inhibits
cFOS transcription). A single value of zero indicates no effect. A non-zero
entry in row i and column j denotes that species j regulates gene i
transcription. The non-zero entries have the form “A; B”, where “A” is the
hill coefficient and “B” is the half-maximal concentration of the species “j”
effect. To simplify the input file structure, we use positive values of “A” to
denote activation, and negative “A” values to denote inhibition. This file is
used by the stochastic module script to update mRNA levels. To add
additional transcriptional regulators (activators or repressors) into the
SPARCED model, users should add as many columns as new regulator
species and populate the columns with corresponding rate constants.

(6) Compartments: This file (Supplementary Data 6) contains the names of
compartments in the model (first column), the volume of the compartment
in liters (second column), and the corresponding GO-term of the
compartment (third column). The compartment names should match the
compartment names listed in Species and Ratelaws input files.

(7) Observables: This file (Supplementary Data 7) contains information
about model observables. Each observable corresponds to the
compartmental-volume-corrected summation of all formats of a protein.
There are 102 observables defined (columns) for the model species (rows) in
this file. The entries are either 1 (the species in the row is part of the
observable in the column) or 0 (otherwise). The “createModel” Jupyter
notebook (Supplementary Data 8) uses this file to define an observables
variable as an input for the AMICI model compiler.

(8) Initializer (Optional): This file (Supplementary Data 16) contains
information used for model initialization. Species concentrations (columns
1–2), mRNA level adjustments (columns 3–4), parameter values (columns
5–7), observables to exclude from translation rate adjustments (column 8),
and single parameter scan range (columns 9–11) are populated for each step
of initialization. The steps used here are shown to work to get a good
starting point for serum starved MCF10A cells, which do not undergo
apoptosis or enter cell cycle without growth factor stimulation, in
deterministic simulation mode.

Dependencies.

(1) Docker: All model dependencies and runtime environments are Dock-
erized into a downloadable image for self-contained model execution. To
run the SPARCED model using Jupyter notebooks (SPARCED-jupyter),
Docker must be installed. Then, by downloading the docker image, built on
the Ubuntu-18.04 operating system with python3 installed (hub.dock-
er.com/repository/docker/birtwistlelab/sparced-notebook), users can run the
Jupyter notebooks defined below in any web-browser within the docker
container. The Docker image includes system utilities required for the
simulation package AMICI67,69.

Jupyter notebook 1: model creation. The input files described above are processed
by the “createModel” Jupyter notebook68 (Supplementary Data 8 and con-
verted into an Antimony63 text file (Fig. 1b and Supplementary Data 9). This
intermediate step and file provide an additional means to model input, fine-
tuning, and alteration for experienced users. It can be explored via any text
editor and it lists all elements of the model: species, rate laws, parameters,
compartments, and corresponding values (Supplementary Data 9). This text file
is then converted into an SBML (.xml) file, using libantimony in the same
script. The Antimony format does not, to our knowledge, support addition of
structured annotations, so the annotations (species and compartments) are
added to the newly created SBML file using libsbml and the model input files
(Supplementary Data 2 and 6). Finally, the annotated SPARCED model file
(.xml) is generated (Supplementary Data 10).

Deterministic module. The model SBML file forms the basis of the deterministic
module. When run deterministically, the model does not account for stochastic
gene switching and mRNA transcription events (see next section). The default
parameters and concentrations of the SPARCED model correspond to an average,
serum-starved cell state in deterministic mode.

Stochastic module. In addition to the deterministic module, the SPARCED model
includes a stochastic module. The stochastic module describes gene states (active/
inactive) and mRNA birth/death events for genes (currently 141 of them). The
deterministic and stochastic modules exchange information every 30 simulated
seconds. The current levels of select protein states can induce changes in gene
activation/deactivation and/or mRNA transcription/decay rates. The newly

updated mRNA copy numbers change nascent protein translation rates in the
deterministic module. See40 for further details.

The stochastic module constitutes two short Python scripts. At the start of each
simulation, one of the scripts (RunPrep.py) reads in the OmicsData input file,
processes parameter values, and sets the initial transcript levels and stochastic
module rate constants. The second script (SGEmodule.py) uses information
from RunPrep.py and species concentrations from the deterministic module to
simulate mRNA transcription/degradation and gene activation/inactivation events.
One output of the second script is the new concentrations of mRNAs, which is
updated in the deterministic module to calculate rates of translation for the next
30 s simulation. The second output is the state of all gene copies (active or inactive).

Jupyter notebook 2: model initialization. Making use of the created model file and
the Initializer input file, total protein abundance data are converted protein
and protein complex starting concentrations by adjusting translation rate con-
stants. The “initializeModel” notebook (Supplementary Data 16) also
verifies that the simulated cells behave as expected in serum-starved state. It is
possible to modify the steps of initialization to confer new basal behavior (such as
cycling) or a mutational effect (loss of PTEN in U87 cells), as introduced by
Initialization protocol in Bouhaddou2018 model. Running this file is optional and
recommended only when new models are created for new cell contexts.

Jupyter notebook 3: model simulation. Supplementary Data 11 includes an example
of simulation setup and input parameters of the SPARCED model. The notebook
“runModel” imports a user specified model SBML file and stochastic module
scripts to run simulations using the AMICI package69,122. AMICI is an interface
for Sundials CVODEs solvers that converts SBML files into executable C code
for fast simulation. Other required input parameters for model simulation include:
a flag to specify if the simulations are fully deterministic (flag= 1) or hybrid
(flag= 0), the total simulation time in hours (th), input ligand concentrations, and
a flag (1 or 0) to indicate if results should be exported.

The SPARCED-I model. We created a new enlarged version of the SPARCED
model called SPARCED-I. We merged Yamada2003 model74 of interferon-gamma
receptor (IFNGR) signaling into SPARCED. The expansion included addition of 34
new species, 8 corresponding genes, and ~70 reactions. New genes (IFNG, IFNGR,
JAK2, STAT1, SHP2, SOCS1, PPN, PPX) corresponding to the proteins in the
model are added as new rows and mRNA levels are inserted into the OmicsData
input file. Gene copy numbers are taken as two40. Each new protein, protein
complex, and mRNA species are inserted into the Species and Stoichio-
metricMatrix input files as new rows. Each new reaction is inserted into the
Ratelaws input files as rows, and into the StoichiometricMatrix input
file as new columns. The new genes are added as rows to the GeneReg file. The
final SPARCED-I model has 954 species and 2540 reactions.

Parameter estimation of the SPARCED-I model. After expansion of the SPARCED
model with IFNGR pathway and setting the initial species levels from MCF10A
cells, SPARCED-I model showed ultrafast receptor and STAT1 activation dynamics
inconsistent with biological observations. Thus, we selected six rate constant
parameters for calibration based on substantial sensitivity for STAT1 activation
dynamics. The parameters calibrated are: (i) STAT1 binding to activated receptor
complexes, (ii) nuclear translocation rate of STAT1* dimers, (iii) SOCS1 mRNA
translation rate constant, (iv) SOCS1 protein degradation rate, (v) STAT1
unbinding rate from active receptor-SOCS1 complexes, and (vi) set the EIF4E-
dependent translation rate constant of SOCS1 to zero (see40 for details on the
EIF4E effect on translation). We fit the chosen parameters individually, while
keeping the values of “best fit” at each step: parameters with minimal sum of
squared errors of [STAT1*Dn] dynamics between COPASI and SPARCED-I-10A
simulations are retained. The range of variation was set at ±2 in log10 scale. The
SPARCED-I model was then run 1000 simulated hours, without any ligand sti-
mulation, for equilibration.

Context estimation of the SPARCED-I model. The SPARCED model initial con-
ditions are based on serum and growth factor starved MCF10A cells, grown in
standard tissue culture plates. However, the experiments involving IFNγ were done
in media with horse serum and collagen-coated tissue culture plates. The details of
both experimental procedures are explained below. “Bridge” experiments showed
that the horse serum upregulates active AKT (ppAKT) levels four-fold prior to
growth factor stimulation. We modeled increased basal levels of active AKT with
IGF1 treatment for 24 h and found that 0.02 nM IGF1 was consistent with the
above experimental observations (Supplementary Figs. 16 and 17). Therefore, we
simulate the SPARCED-I model with 0.02 nM IGF1 treatment for 24 h prior to
EGF or EGF+ IFNγ stimulation.

Cell proliferation (S-phase entry) estimation in SPARCED-I model. The Bou-
haddou2018 model used sum of concentrations of Cyclin E, A, and B when greater
than 20 nM to decide S-phase entry40. Here, we used the same condition as the
Bouhaddou2018 model to identify the number of cells in S-phase.
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SPARCED-nf (nextflow, model version running on Nautilus-Kubernetes cluster).
The SPARCED model can be ported to high-performance cloud computing
infrastructures for large-scale simulation, in the SPARCED-nf variant. Specifically,
we ran SPARCED-nf simulations using the Pacific Research Platform, a distributed
network of academic computing resources organized as a Kubernetes cluster64,66.
The prevalence of Kubernetes on both democratized and commercial cloud
compute networks makes the model portable, allowing users to run large-scale jobs
on distributed supercomputers on a wide range of platforms65.

Dependencies.

(1) Docker: As is the practice with Kubernetes-compatible workflows, all
model dependencies and runtime environments are Dockerized into a
downloadable image for self-contained model execution. This means when a
job for SPARCED-nf is launched on the Kubernetes cluster, it will download
the Docker image for SPARCED-nf and execute the model within that
container. The Docker image for SPARCED-nf is built on the Ubuntu-18.04
operating system with python3 installed, as well as a few minor system
utilities required for AMICI. The image can be found at https://hub.docker.
com/repository/docker/birtwistlelab/sparced.

(2) Nextflow (nf): In this cloud-scalable version of the model, the Jupyter
notebooks have been converted into python source code and re-
modularized for greater parallel-simulation efficiency. The process of
creating and executing the model is handled entirely by Nextflow, a
workflow-management application and language for building resilient
pipelines. When SPARCED-nf is launched, Nextflow begins by creating
a head pod on the cluster to coordinate each of the jobs needed to run the
model (Supplementary Fig. 1). The head pod creates smaller jobs that
each download the containerized dependencies from Dockerhub, pull the
model source files from the SPARCED-nf GitHub repository, and run the
assigned process. Once the model has completed execution, the output
files are saved to a section of the Kubernetes cluster called the persistent
volume claim (PVC), where they remain stored in the cloud for user
download.

SPARCED-nf model simulation set-up. SPARCED-nf uses the same tab-separated-
value input files as SPARCED. For SPARCED-nf to build and execute, the files are
copied into the aforementioned PVC for workflow access. This is done with
kube-runner (https://github.com/SystemsGenetics/kube-runner), a submodule
for automating common PVC tasks with Kubernetes’ kubectl tool. The kube-
load.sh file is used to write new input to the PVC, and kube-login.sh is
used to access and delete old input files from the cluster.

Along with its scalability, SPARCED-nf is also highly customizable. The
nextflow.config configuration file is used to define the specifics of simulation
scenarios.

(1) nextflow.config: This configuration file has two main sections. In the first
section (called K8), users define the Kubernetes namespace specifics and
folder configurations. In the second section (called params), users customize
runtime arguments for simulation settings. The available parameters are
input_dir_name (the directory name of the input files), flag_deterministic
(flag= 1 for deterministic or flag= 0 for hybrid simulations), sim_time
(simulation time in hours), Vol_nuclear (volume of nuclear compartment in
liters), Vol_cyto (volume of cytoplasmic compartment in liters), speciesVals
(species names + initial concentration values to start from), ratelawVals
(parameter names + values), and numCells (number of single cells if the
simulations are hybrid). Importantly, the “speciesVals” and “ratelawVals”
parameters allow users to pass in a formatted string to specify parameter
sweeps. Using these in conjunction with the “numCells” parameter, the user
can simulate thousands of cells in hundreds of different microenvironments
in a single execution.

(2) SPARCED-nf:model_build: Analogous to “createModel.ipynb”
in SPARCED-jupyter model, this phase of the Nextflow pipeline constructs
all necessary files for the model simulation.

(3) SPARCED-nf:split_from_params: This is the major parallelizing
step of SPARCED-nf. Having received the relevant model files from the last
step, the workflow ingests the speciesVals, ratelawVals, and numCells
arguments set by the user in the nextflow.config. Using the input files, it
creates new input files to satisfy the user-specified parameter sweeps. Each
new input file permutation is moved into its own new folder, and each such
folder is duplicated numCells times.

(4) SPARCED-nf:model_run: This final step of the Nextflow workflow is
responsible for model execution and output generation. Each folder created
in the previous step above serves as the unique runtime environment in this
step. The model pulls assigned simulation input files associated with the
folder. Each instance of this step is run in parallel across different simulation
environments (Supplementary Fig. 1b). Functionally, the code executed is
very similar to the “runModel.ipynb” notebook and the model outputs
are saved to the PVC.

When the models complete execution, each SPARCED-nf:model_run
instance saves its output to a unique folder on the PVC. To download these folders
to the local filesystem, users can employ kube-save.sh (from the kube-
runner module).

Computational standard-error-of-the-mean. We report the s.e.m. for simulations
(Fig. 3c, e, Supplementary Figs. 9a–e, 10a, b, 13a, 13c, and 14c) using the ratio of
binomial proportions. See Eq1. below, where the “Percentage of cells” corresponds
to the percentage of cells showing the phenotypic readout (i.e., percentage of cells
in S-phase, percent cell death) and the “Number of total cells” is the number of
starting single-cell simulations, usually 100.

s:e:m: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Percentage of cells � 100� Percentage of cells
� �

Number of total cells

s

ð1Þ

Data availability
The LINCS datasets analyzed during the current study are available in the Synapse
repository, synapse.org/LINCS_MCF10A. Western blot quantifications are in
Supplementary Data 24 and raw blot images are in Supplementary Figs. 18 and 19.
Source Data are provided with this paper at https://doi.org/10.6084/m9.figshare.
19658802.v1123.

Code availability
The final model scripts, files, and information are available in Birtwistle Lab GitHub
repository, github.com/birtwistlelab/SPARCED70 and github.com/birtwistlelab/
SPARCED/tree/noStoicMat121.
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