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Analysis of complexity in the EEG activity of Parkinson’s 
disease patients by means of approximate entropy

Chiara Pappalettera · Francesca Miraglia · 
Maria Cotelli · Paolo Maria Rossini · 
Fabrizio Vecchio

entropy of PD patients may describe a condition of 
low order and consequently low information flow due 
to an alteration of cortical functioning and processing 
of information. Understanding the dynamics of brain 
applying ApEn could be a useful tool to help in diag-
nosis, follow the progression of Parkinson’s disease, 
and set up personalized rehabilitation programs.
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Introduction

Parkinson’s disease (PD) is a common progressive 
neurodegenerative disorder [1] which affects about 
1% of the population over 55  years of age world-
wide [2]. PD results from a complicated interaction 
of genetic and environmental factors affecting numer-
ous cellular processes and leading to a progressive 
degeneration of dopaminergic neurons in the substan-
tia nigra of the midbrain and related neural -including 
cortical- networks [3].

The series of symptoms and signs associated with 
PD are predominantly characterized by motor dys-
function, such as gait disturbance, bradykinesia, mus-
cle rigidity, resting tremor, and postural instability [1, 
4, 5] and non-motor deficits such as autonomic dys-
function, cognitive impairments, or psychiatric dis-
turbances [6, 7].

Abstract  The objective of the present study is to 
explore the brain resting state differences between 
Parkinson’s disease (PD) patients and age- and gen-
der-matched healthy controls (elderly) in terms of 
complexity of electroencephalographic (EEG) sig-
nals. One non-linear approach to determine the com-
plexity of EEG is the entropy. In this pilot study, 28 
resting state EEGs were analyzed from 13 PD patients 
and 15 elderly subjects, applying approximate entropy 
(ApEn) analysis to EEGs in ten regions of interest 
(ROIs), five for each brain hemisphere (frontal, cen-
tral, parietal, occipital, temporal). Results showed 
that PD patients presented statistically higher ApEn 
values than elderly confirming the hypothesis that 
PD is characterized by a remarkable modification of 
brain complexity and globally modifies the underly-
ing organization of the brain. The higher-than-normal 
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The neurodegeneration is working in the dark-
ness—namely without evident clinical symptoms—
for many years until the percentage of degenerated 
neurons in the substantia nigra is remarkably high. 
Therefore, early diagnosis—hopefully in a stage in 
which symptoms are approximately absent—would 
be highly desirable, but difficult to be reached in the 
early stage with the presently available technologies 
[6–8] and when it is based on clinical exam look-
ing for the presence of both cardinal motor dysfunc-
tion and response to levodopa [9]. PD disorders 
were largely studied by functional imaging methods, 
whereas there are still few scientific contributions 
exploring the disease using neurophysiological tech-
niques such as magnetoencephalography (MEG) or 
electroencephalography (EEG), probably because it is 
assumed that PD is mainly due to subcortical relays 
degeneration (i.e., basal ganglia). However, this is not 
a real obstacle since such relays are heavily and mutu-
ally connected with cortical areas (the main source of 
EEG signals for the brain complexity) and symptoms 
are mainly stemming from disruption of such connec-
tion, leading to full support the idea of using the scalp 
EEG recordings for the evaluation of brain activity 
modulation due to subcortical deregulation in PD. 
Furthermore, new approaches are required to improve 
PD early detection in order to set up an efficient treat-
ment and intervention on risk factors at the earliest 
possible time of neurodegeneration. As said above, 
one of such approaches could be the EEG, a non-
invasive technique able to depict brain electric activ-
ity with high temporal resolution and high test–retest 
reliability [10, 11]. In the last decades, clinical and 
basic research quantifying EEG rhythms led to obtain 
important biomarkers for several neurological disor-
ders, such as schizophrenia, major depressive disor-
der, Alzheimer’s disease, and epilepsy [12–16].

Many studies have focused on EEG abnormalities 
in PD patients by using traditional spectral analysis. 
With such a method of analysis, different pathologi-
cal brain features associated with PD have been iden-
tified; in particular, a generalized slowing of EEG 
activity in comparison to elderly healthy controls has 
been described [17–21]. Recently, a mathematical 
model of architecture of brain functional organiza-
tion, the graph theory, has been employed to analyze 
EEG data for the investigation of network differences 
between PD patients and healthy elderly subjects 
[22]. The small-world parameter, that reflects the 

balance between local processing and global integra-
tion and model the architecture of brain centers con-
nectivity, has been found lower in theta and higher in 
alpha 2 EEG frequency bands which highlighted the 
presence of significant modifications at EEG level 
due to the disease.

These studies indicate that quantifying EEG may 
be also useful in describing the PD alterations. There-
fore, it would be still necessary to use new analy-
sis methods to explore EEG signals of PD patients, 
which may contribute to reveal other features of brain 
organization and more important information under-
lying brain dysfunctions. Non-linear signal analysis 
is a different way of dealing with EEG complexity, 
considering the latter as the result of nonlinear deter-
ministic dynamics, possibly representing a chaotic 
process [23–25]. For example, Lainscsek and col-
laborators [26] used a non-linear dynamical analy-
sis, based on delay differential equations (DDE), to 
characterize and distinguish the EEG changes of PD 
patients from healthy controls providing the basis for 
a novel approach for the evaluation of the dynamics 
of neural activity in patients with PD.

A non-linear approach to determine the complex-
ity of EEG signals is a measure based on the patterns 
of recorded times series, specifically the entropy. Ini-
tially, the term “entropy” was introduced in thermo-
dynamics in the nineteenth century, and only later in 
1948, this measure was adapted for information the-
ory and signal analysis. Entropy was first defined as a 
measure of information comprised in a given amount 
of signals and as a measure of how information 
within a signal can be quantified with absolute preci-
sion as the amount of unexpected data contained in 
the signal itself. In this case, entropy represents and 
describes the irregularity, complexity, or unpredict-
ability characteristics of a signal [27]. In general, as 
neural systems have been shown to exhibit some kind 
of nonlinear chaotic behavior, it can be reasonable to 
apply methods from the theory of nonlinear dynam-
ics to the EEG signals to detect its variability that 
can emerge from neuronal circuits and extend over 
the entire brain. The entropic brain hypothesis sug-
gests that any given mental state can be indexed by a 
quantitative measure of the magnitude of entropy as a 
parameter to describe spontaneous brain activity, for 
example, recorded with EEG [28]. So, entropy rep-
resents a powerful approach for EEG analysis, and it 
can be used to quantify brain functions and alteration 
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across brain areas related to altered state, for example, 
due to a neurodegenerative disease [25, 29, 30].

In the past decades, several entropy measures (i.e., 
sample entropy, approximate entropy, Tsallis entropy, 
permutation entropy, multiscale entropy) have been 
introduced to study brain activity, some of which 
have already been applied to PD patients’ EEGs even 
if the investigation of these associated with PD is still 
in its infancy [31, 32].

In the present study, we selected approximate 
entropy (ApEn) compared to other measures of 
entropy, because of the properties that facilitate its 
use: it can be applied with good reproducibility to 
time series [25], it is almost unaffected by noise, it is 
finite for composite, stochastic, and noisy determinis-
tic processes [33], and it detects the changes in under-
lying episodic behavior undetected by peak occur-
rences or amplitudes [34]. Moreover, ApEn has been 
extensively used in studies of time series of physio-
logic parameters to assess their degree of randomness 
[35, 36]. For all the exposed reasons, ApEn would be 
extremely helpful in brain function understanding, 
given the complex and dynamical characteristics of 
the cerebral systems.

Within this theoretical frame, the aim of the pre-
sent study was to explore the resting state brain activ-
ity differences between PD patients and age- and 
gender-matched healthy subjects (elderly) applying 
the ApEn analysis. In particular, the current study 
expands the existing research literature, investigat-
ing the complexity of EEG activity in different brain 
areas, selecting 10 cerebral networks, 5 for each hem-
isphere (frontal, central, parietal, occipital, temporal), 
to explore the brain abnormalities due to PD, com-
pared to a healthy brain.

Subjects and methods

Participants

Two groups of Parkinson’s patients (n = 13) and 
healthy subjects (n = 15) matched for sex (8 female) 
and age (61,54 ± 2,47 (mean ± standard error)) were 
enrolled.

The informed consent of each participant was 
obtained according to the Code of Ethics of the World 
Medical Association (1997), and the experimen-
tal procedures were carried out conforming to the 

Declaration of Helsinki. The EEG recordings were 
performed following the safety guidelines procedures.

For each PD patient included, the disease was 
diagnosed taking into account the medical history 
and neurological and physical examinations as well 
as response to levodopa drugs. Exclusion criteria 
included atypical Parkinsonism, neuroleptic drug use, 
antidepressants, dopamine blocking agents, alcohol 
abuse, presence of other neurological or psychiatric 
conditions, and any other severe illness. As measure 
of severity of motor disability, the Unified Parkin-
son’s Disease Rating Scale-III (UPDRS) was used. 
The UPDRS score was 15.1 ± 1.2 (mean ± standard 
error). All PD patients underwent the MMSE scales, 
showing a mean score of 28.2 ± 0.3 (mean ± standard 
error).

For the control group, the subjects were physically 
and intellectually healthy with no symptoms or his-
tory of any neuropsychiatric disorder.

Data recordings and preprocessing

Each subject underwent EEG clinical recordings 
measured at rest in eyes-closed condition, without 
performing any tasks, for at least 6  min. The EEG 
recording was conducted after about 1–2  h from 
administration of morning medications. During the 
recording, subjects were seated in a comfortable arm-
chair. EEG signals were recorded using 19 electrodes 
for PD group and 32 electrodes for elderly, positioned 
according to the International 10–20 system.

Vertical and horizontal EOGs separate channels 
were used to monitor eyes blinking. Impedance was 
kept below 5 KΩ and the sampling rate frequency 
was set up at 256 Hz.

The data were processed in Matlab (MathWorks, 
Natick, MA) using scripts based on EEGLAB toolbox 
(Swartz Center for Computational Neurosciences, La 
Jolla, CA) [37–39].

The data were band-pass filtered from 0.2 to 
47  Hz using a finite impulse response (FIR) filter. 
EEG recordings were processed segmenting the sig-
nal in 2-s duration epochs in order to remove prin-
cipal artifacts, such as eye movements, scalp mus-
cle contraction, and cardiac activity first by an EEG 
expert visual inspection, and then with Infomax 
ICA algorithm [40, 41], that allows the separation 
of statistically independent sources from multichan-
nel EEG recordings [42–46] as implemented in the 
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EEGLAB. At the end of the artifact removal proce-
dure, at least 5  min EEG recordings remained for 
subjects.

Entropy analysis

Entropy analysis was computed on the artifact free 
epochs by means of a homemade software devel-
oped in Matlab. The core of the software is the 
ApEn evaluation, which was realized by using 
the algorithm already implemented in Matlab: 
approximate entropy (ApEn) function estimates 
the approximate entropy of the uniformly sampled 
time-domain signal by reconstructing the phase 
space. The software is implemented as follows: for 
each channel and for each epoch, a value of ApEn 
is computed; then, those values are averaged among 
the epochs in order to obtain only one ApEn value 
for each channel and for each EEG session [24, 25, 
47].

Two input parameters, the window length m and 
tolerance factor r, are specified to compute it. r is also 
called similarity factor used to detect a range in which 
data points are similar. The ApEn generates values 
from 0 to 2: an ApEn value equal to 0 corresponds 
to a time series that is perfectly regular, whereas an 
ApEn value equal to 2 is produced by random time 
series [48]. The ApEn is computed as in the study of 
Lee and collaborators [49]: the first segment of length 
m is compared to all the other sequences of the same 
length point by point. A point of a sequence is simi-
lar to its corresponding point in the original sequence, 
when its value is not above its original value plus 
the tolerance factor r. The same process is applied 
to sequences of length m + 1, starting with the first 
sequence of m + 1 points. The process is repeated for 
all possible sequences. All results are summed and 
normalized with respect to the total number of data 
samples N.

In summary, the ApEn is calculated as 
ApEn = Φm − Φm+1:

where Ni represents the amount of points that are 
within r of their corresponding point in the original 
sequence Y, at point i:

Φm = (N − m + 1)−1
N−m+1∑

i=1

log(Ni)

In the present study, the Matlab default values for 
the input parameters were selected: so m was equal to 
2 and r to 0.2*variance(x) [49–52], where x is a 2-s 
long epoch of a specific channel.

These well-established values are selected because 
they have been demonstrated to produce good statis-
tical reproducibility for time series of length N > 60 
[53]. Normalizing r in this manner gives ApEn 
a translation and scale invariance; in this way, it 
remains unchanged under uniform process magnifi-
cation, reduction, or constant shift to higher or lower 
values [54]. In the current study, since the sampling 
frequency was set to 256 Hz, time series of 2 s were 
512 points long.

Through the homemade software, ApEn was eval-
uated on each single epoch for each channel. Only 
later, the ApEn values were averaged over the epochs, 
in order to get a single value of ApEn for each chan-
nel [55].

Once computed, in order to obtain a single value 
of entropy for each region of interest (ROI), the ApEn 
values evaluated in each electrode were averaged over 
ten ROIs (five left and five right: frontal, central, pari-
etal, occipital; temporal), grouping the electrodes as 
shown in Table 1 referred to 32 electrodes’ montage 
[24, 25, 56]. The electrodes along the midline were 
excluded (Fig. 1).

Statistical evaluation

A statistical ANOVA design was addressed for the 
ApEn between the factor group (PD, elderly), hemi-
sphere (left, right), and ROI (frontal, central, pari-
etal, occipital, temporal). The normality of the data 
was tested using the Kolmogorov–Smirnov test, and 
the hypothesis of Gaussianity could not be rejected. 
Greenhouse and Geisser correction was used for the 
protection against a possible violation of the sphe-
ricity assumption in the repeated measure ANOVA. 
Besides, post hoc analysis with the Duncan’s test and 
significance level at 0.05 was performed. To confirm 
the ability of ApEn to distinguish PD group from 
elderly, the probability of PD was estimated from 
the given set of features, coming from ApEn val-
ues for each ROI (frontal, central, parietal, occipital, 

Ni =

N�

i=1,i≠k

(‖Yi − Yk‖∞ < r)
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temporal) and each hemisphere (left, right), for a 
total of 10 predictors. The features are used to train 
a binary classifier based on support vector machine 
(SVM). To realize this approach, the dataset was split 
into training set, used to train the model, and test set, 
to evaluate the model performances, in particular 
classification accuracy. In order to have a complete 
model evaluation, we followed a cross-validation 
technique (i.e., fivefold): the dataset was randomly 
split in 80% training set and 20% test set.

Results

The ANOVA for the evaluation of ApEn index 
showed a statistically significant main effect (F(1, 

26) = 55.517, p < 0.00001) for the factor group (PD, 
elderly) as illustrated in the Boxplot reported in 
Fig.  2. The Duncan post hoc testing showed statis-
tic differences between PD and elderly; in particu-
lar, ApEn in Parkinson shows higher values in PD 

Table 1   The table shows the grouping of the electrodes for 
each region of interest (ROI) and for each hemisphere

Frontal

Le�

Central

Le�

Parietal

Le�

Occipital

Le�

Temporal

Le�

FP1 FC1 CP1 PO7 F7

AF7 FC5 CP5 O1 T7

F3 C3 P3

P7

Frontal

Le�

Central

Le�

Parietal

Le�

Occipital

Le�

Temporal

Le�

FP2 FC2 CP2 PO8 F8

AF8 FC6 CP6 O2 T8

F4 C4 P4

P8

Fig. 1   The figure shows the grouping of the electrodes for 
the regions of interest (ROIs of the brain networks) explored 
the two groups of subjects: full shapes for the left hemisphere, 
empty shapes for the right hemisphere. Triangle for frontal, 
circle for central, square for parietal, rhombus for occipital, 
and star for temporal ROI

Fig. 2   Boxplot of the approximate entropy (ApEn) values for 
the two groups (PD, Elderly). The middle line represents the 
median of the ApEn values, the box represents the quartile, 
and the whiskers represent the range
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patients than in controls (p < 0.05). Although the 
limited number of samples must be taken into consid-
eration and the following result is only preliminary to 
future research, the resulting classifier based on SVM 
showed 96.4% of accuracy and the average receiver 
operating characteristic (ROC) had an area under the 
curve equal to 1, indicating very high classification 
power of PD respect to control subjects.

Discussion

Parkinson’s disease (PD) is a neurodegenerative dis-
order caused by major alteration in the basal ganglia 
function [57], which may also result in changes of the 
brain activity recorded by EEG.

In the past decades, electrophysiological tech-
niques and mathematical analysis approaches have 
been applied to identify in the EEG signals the 
characteristics of cortical dynamics of PD patients. 
Among these, from the idea that human brain can 
be modeled as a highly complex dynamical system, 
in the last decade, non-linear measures have been 
increasingly used to understand the nature of both 
physiological and pathological conditions. In this 
framework, non-linear analysis have proven to be a 
powerful and innovative tool to describe eventual 
changes of the dynamics in EEG, providing novel evi-
dence about the alterations in such neurodegenerative 
process, for example, associated with the Parkinso-
nian condition. Among these, entropy is an innovative 
non-linear parameter used to measure the irregular-
ity, the complexity, and therefore the unpredictability 
and randomness of a time series; in particular, greater 
entropy has been associated with randomness and less 
regular system.

On this context, the present study aimed to inves-
tigate the brain complexity differences between PD 
patients and healthy elderly subjects, in particular 
by means of approximate entropy (ApEn) measures 
applied on closed eyes, resting state EEG recordings, 
with the aim of evaluating the PD influence on brain 
dynamics with respect to a healthy brain condition. 
ApEn appears to be one of the finest indexes for its 
properties that facilitate its use for EEG non-linear 
analysis [24, 25, 56].

The main novelty of the present study has been the 
computation of the novel method of ApEn selecting 
ten cerebral regions of interest (ROIs), five for each 

hemisphere (frontal, central, parietal, occipital, tem-
poral), allowing to probe the effect of PD on EEG 
activity with a relatively fine topography, as well as 
more specific in the investigation of possible differ-
ences across the entire brain.

Because of the relatively limited sample size (still 
larger than the majority of studies in the literature 
with EEG), this study can be considered a pilot study.

The result of the current research showed that 
PD patients presented statistically significant higher 
ApEn than age- and gender-matched healthy partici-
pants in all the brain areas confirming the hypothesis 
that, also at non-linear level, PD is characterized by a 
remarkable modification of the entire brain complex-
ity. The brain chaotic behavior has been revealed in 
all the explored regions confirming that there is not 
a specific brain area or hemisphere with a different 
behavior during the eyes-closed resting state EEG 
recording condition.

In line with our study, Pezard and collaborators 
examined both linear and nonlinear EEG character-
istics in a smaller number of non-demented patients 
in the early stages of PD (n = 9) and showed that the 
local entropy of EEGs was increased in PD patients 
compared to healthy controls [23]. In a further study, 
brain activity abnormality of PD was investigated by 
means of alternative type of entropy, called “wavelet 
packet entropy,” which indicated that the EEG signals 
for PD patients were more complex and less predict-
able than in controls [58]. Moreover, Muller and col-
leagues [59] analyzed the resting state EEGs of PD 
patients and healthy subjects by the dimensional 
analysis of correlation, which determines the number 
of state variables required to describe the EEG sig-
nals, revealing slight differences, but not significant, 
between the two groups.

Although it is notable that EEG signals present 
an entropy increase in PD patients, there is still a 
lack of information on the relationship between 
higher entropy and what happens at the neural cir-
cuit level. Some results of previous studies have 
suggested a causative relationship between ben-
eficial effects of anti-Parkinsonian treatments and 
a decrease in the complexity of dynamic firing of 
neuronal assemblies in the basal ganglia [60]. This 
finding, by Lafreniere-Roula and collaborators [60], 
demonstrated that the administration of apomor-
phine, a rapidly acting alkaloid used in the treat-
ment of PD (e.g., administered during deep brain 
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stimulation [DBS] surgical procedure), decreases 
neuronal entropy of the signals, recorded by depth 
electrodes in the subthalamic nucleus, helping for 
the first time to link neurotransmission and neuronal 
entropy.

We can speculate that these results obtained at 
neuronal level may reflect a network disorganiza-
tion and an increase in the complexity of the signal 
recorded through the EEG.

In general, an increase of complexity, namely 
higher entropy, is interpreted by the hypothesis of 
Shannon–Brillouin as a condition of low knowl-
edge, low order, and consequently low information 
flow/processing [61]. The hypothesis is that when 
synaptic structures are deteriorating, new different 
synapses or vicarious connections can be estab-
lished to fill the gap, to change connection pathway 
limiting order and organization. Thus, this reduction 
of information and disruption of cerebral rhythms 
might be interpreted as an alteration of cortical 
functioning and processing of information [62].

In summary, although the present pilot study is 
largely speculative, it expands the existing research 
literature, demonstrating that the resting state EEG 
complex dynamical analysis by means of ApEn 
could be an easily available and powerful tool to 
distinguish PD patients from elderly healthy con-
trols. Certainly, some potential methodological 
limitations should be taken into account, first of all 
the small sample size or, for example, the volume 
conduction error, which intrinsically affecting each 
EEG experiment [63]. Although the electrodes can-
not be placed in the same fixed position for all the 
participants, we can perform such an approxima-
tion, computing the value of ApEn in each ROI as 
the average of the ApEn values of each electrode. 
Accordingly, the localization error was minimized 
as the values of the ApEn come from a set of aver-
aged electrodes representative of a larger brain area 
and not only from a single electrode. Moreover, the 
same approach should be attempted in neurode-
generative disease different from PD (e.g., Alzhei-
mer) in order to test the specificity of the present 
findings.

Altogether, we conclude that ApEn parameters 
could represent in a near future a way to find an 
innovative biomarker to support PD diagnosis in 
the early stages and individualized rehabilitation 
treatments.

Conclusion

Parkinson’s disease is a complex neurodegenera-
tive disease of unknown etiology. In future stud-
ies, it could be interesting to study the ApEn from 
EEG signals during other conditions, such as the 
eyes open condition. It could be also interesting to 
evaluate its power of PD’s biomarker, for instance, 
following the stages of disease and assessing the 
patients through EEGs recorded in various follow-
ups. It will be also crucial to deepen the ApEn clas-
sification power, first of all increasing the number of 
participants. Surely, as a step forward, the results of 
the present research showed that resting brain net-
works exhibit a different degree of entropy between 
Parkinson’s patients and control subjects in all the 
regions analyzed, without differences between hem-
ispheres, suggesting that Parkinson globally modu-
lates the underlying organization of the entire brain. 
In conclusion, entropy could be a useful param-
eter to help in a diagnosis and follow the progres-
sion of Parkinson’s disease and plan rehabilitation 
interventions.
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