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involved in the function and maintenance of the NMJ, 
giving emphasis to the ones that might contribute to 
sarcopenia pathogenesis. Some conceivable biomark-
ers, such as C-terminal agrin fragment (CAF) and 
brain-derived neurotrophic factor (BDNF), and thera-
peutic targets, namely acetylcholine and calcitonin 
gene–related peptide (CGRP), can be retrieved, mak-
ing way to future studies to validate their clinical use.

Keywords BDNF · CAF · Denervation · Muscle 
wasting · Neuromuscular junction · Neurotrophins

Introduction

The global population is aging, with about 13.5% 
being 60 years of age or older in 2021, a number that is 
expected to increase during the next decades [1]. This 
rise in longevity exposes age-related conditions, such as 
sarcopenia. Sarcopenia is a progressive and generalized 
skeletal muscle disease defined by low muscle strength, 
muscle quantity or quality, and physical performance 
[2]. It affects 5–13% of people between 60 and 70 years 
old, and 11–50% of the adults older than 80  years 
[3–5]. In addition, sarcopenic subjects have a higher 
mortality risk than non-sarcopenic ones, with this risk 
being greater in people older than 79 years [6]. Sarco-
penia etiology is multifactorial, with many systemic 
factors being related to its development [7, 8]; however, 
the local neuromuscular environment is emerging as an 
important contributor to sarcopenia pathogenesis [9]. 
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Voluntary movement and the maintenance of muscle 
mass and strength require an efficient communication 
between the nervous and muscular systems through a 
normal innervation [10]. Age-related changes in the 
neuromuscular system manifest functionally as loss of 
muscle strength and coordination, which precedes the 
loss of muscle mass [11]. Indeed, in older people, the 
loss of muscle strength is significantly more rapid than 
the loss of muscle mass, and maintaining or gaining 
muscle mass does not avert the aging-related decrease 
in muscle strength [12]. More specifically, after 
75 years, strength is lost at a rate of 2.5–3% per year in 
women and 3–4% in men, while muscle mass is lost at a 
rate of 0.64–0.70% per year in women and 0.80–0.98% 
in men [13]. The early identification of the age-related 
impairment of the neuromuscular system will create the 
opportunity to clinically intervene and to avoid the irre-
versible loss of muscle mass and related negative health 
outcomes [2, 14], envisioning the improvement of the 
clinical management of sarcopenic subjects.

This mini-review discusses the current knowl-
edge on key neuromuscular system–related mecha-
nisms and players that may be responsible for the 
age-related impairment of the neuromuscular junc-
tion (NMJ), and so, that may contribute to the loss 
of muscle strength and mass with aging. The reader, 
however, should keep in mind that most of the avail-
able data on this topic come from experiments in ani-
mal models given the invasiveness underlying skel-
etal muscle collection, and that among the available 
clinical studies, most of them enrolled healthy older 
adults. Regarding the data provided from human mus-
cle biopsies, it is important to be aware that it is dif-
ficult to obtain several samples per subject [15], and 
one tissue sample represents less than 0.01% of the 
whole muscle and contains only about hundreds of 
fibers of even less motor units. This means that the 
data obtained from biochemical, histochemical, and 
morphometric analyses may not be representative of 
the whole muscle [16]. This mini-review hopes to 
make way to future studies, aiming to identify bio-
markers and therapeutic targets of sarcopenia.

Neuromuscular junction aging

The NMJ is a highly specialized synapse that ensures 
the efficient transmission of electric impulses from 
the presynaptic innervating motoneuron to the 

postsynaptic innervated muscle fibers to stimulate 
contraction. Briefly, when the motor nerve action 
potential arrives, calcium enters the presynaptic ter-
minal. Consequently, acetylcholine (ACh) is released 
from their synaptic vesicles into the synaptic cleft 
through the presynaptic active zones [17, 18]. ACh 
binds to its receptors (AChRs), which are tightly clus-
tered in the postsynaptic membrane of the muscle 
fiber (also known as motor endplate), depolarizing it, 
which initiates the muscle action potential, resulting 
in muscle contraction [19]. Besides ACh, other medi-
ators, namely neurotrophins (NTs), agrin, and calci-
tonin gene–related peptide (CGRP), are also released 
by the motoneuron. On another hand, signals derived 
from the skeletal muscle influence neuron survival, 
axonal growth, and maintenance of synaptic connec-
tions [20]. This bidirectional communication is vital 
for the survival of both muscle and nerve and for 
their mechanism of action [20]. Since both presyn-
aptic and postsynaptic mediators are fundamental to 
the function of the neuromuscular system, the func-
tional impairment of the NMJ may be a causative fac-
tor to the age-related loss of muscle strength [21, 22]. 
Nonetheless, there is a slight chance that the oppo-
site, i.e., the sarcopenia-associated alterations (e.g., 
inactivity), may promote maladaptive changes in the 
NMJ.

Age-related morphological/structural changes

Classic morphological features of NMJ impairment, 
like significant thinning of axons, increased number 
of sprouting axons and AChR clusters, lower den-
sity of postsynaptic AChRs, and synaptic detach-
ment and fragmentation of the postsynaptic appara-
tus, were observed in aged extensor digitorum longus 
(30 months) [23] and tibialis anterior (24 months) of 
mice [24] (Fig. 1). Comparative to rodents (mice and 
rats), human NMJs are significantly smaller and more 
fragmented, with smaller axon diameter and average 
area of AChR clusters [25]. In some human studies [26, 
27], the age-related features of NMJs observed were 
similar to those found in animals. For instance, in inter-
costal muscles (4–77  years), postsynapses were frag-
mented with increased length and degeneration of the 
junctional folds. Moreover, a higher number of smaller 
conglomerates of AChRs were found in the postsyn-
aptic side, suggesting a possible degeneration of the 
NMJs and muscle fibers. Nonetheless, a recent study 
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challenged these findings by declaring that human 
NMJs remain remarkably stable across the adult lifes-
pan (34–92  years) [25]. The disparity between these 
studies may be explained by, for instance, different 
methodologies used and the analysis of fresh versus 
postmortem tissue. Clearly, further studies are needed 
to better understand human NMJ age-related plasticity.

With chronological aging is observed a process 
of remodeling of motor units, resulting mostly in 

denervation of type II muscle fibers (fast-twitch and 
glycolytic) that tend to be reinnervated by small neu-
rons that innervate type I motor units [21, 28–31]. 
This remodeling results in the co-expression of mul-
tiple myosin heavy chain (MHC) isoforms and large 
fiber type clustering, i.e., an unusual number of adja-
cent fibers having the same fiber type [21, 32]. Since 
type II fibers are the ones capable of generating 
higher maximum force levels [33], changes in motor 

Fig. 1  The age-induced alterations that seem to preclude 
sarcopenia. Changes in the levels of key neuromuscular sys-
tem–related mediators associated to the impairment of the 
neuromuscular junction function and morphology are high-
lighted as well as alterations in signal transmission between 
the motoneurons and muscle fibers, and of the reinnerva-
tion process that culminate in impaired muscle function. The 
mediators analyzed in the serum in aging or sarcopenia con-
texts are preceded by “s”, while the ones not analyzed in these 
contexts (but in other conditions) are preceded by “(s)”. Fig-
ure produced with Servier Medical Art. Abbreviations: ACh: 
acetylcholine; AChE: acetylcholinesterase; AChR: acetylcho-

line receptor; BDNF: brain-derived neurotrophic factor; CAF: 
C-terminal agrin fragment; CGRP: calcitonin gene–related 
protein; CLR: calcitonin-like receptor; DOK7: downstream of 
kinase 7; GAP-43: growth-associated protein; GDNF: glial-
cell-line-derived neurotrophic factor; GFRα1: glial-cell-line-
derived neurotrophic factor family receptor alpha 1; LRP4: 
low-density lipoprotein receptor–related protein 4; MuSK: 
muscle-specific kinase; NCAM: neural cell adhesion molecule; 
SCs: satellite cells; SNAP-25: synaptosomal-associated protein 
of 25 kDa; TrkB: tropomyosin-related kinase; VGCC: voltage-
gated calcium channel
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unit composition may be the main cause responsi-
ble for the loss of muscle strength that is reported in 
adults over 55 years [29], as shown in [34].

When the denervation rate outpaces the reinnerva-
tion one, due, for instance, to the age-related impair-
ment of the reinnervation process, the resulting den-
ervated muscle fibers [11] will atrophy [28] and be 
lost [11]. Some examples of this impairment were 
reported. On one hand, aging muscle has a blunted 
neural cell adhesion molecule (NCAM) response to 
denervation. This molecule, which is nearly absent 
in adult muscles [35], reappears in the extrasynaptic 
region of the adult muscle fibers in response to den-
ervation to help in the reinnervation process [35–37]. 
For instance, the partial denervation of the exten-
sor digitorum longus of aged mice (22–30  months) 
did not produce a NCAM response, while in young 
mice (2 months), an enhanced NCAM response was 
observed [37]. On another hand, in older humans 
(65–94 years), the vastus lateralis had small muscle 
fibers co-stained with NCAM and MHC neonatal iso-
form (MHCn) [38]. These small fibers may be long-
term denervated fibers that have atrophied over time 
and reverted to an immature MHC configuration. In 
fact, it has been suggested that the presence of either 
MHCn or embryonic (MHCe) isoforms indicates 
denervated muscle fibers [38, 39]. In aged rat soleus 
(30  months), the number of MHCe-positive fibers 
increased with the degree of sarcopenia, so being 
associated with a poor outcome [39].

The maintenance and function of the NMJs involve 
highly synchronized and fine-tuned actions of, for 
instance, (i) mediators involved in the organization 
of presynaptic active zones, fundamental for ACh 
release [40]; (ii) presynaptic mediators, such as agrin 
and ACh, and of their postsynaptic receptors and 
downstream proteins [22]; and (iii) neurotrophins 
[41]. Hence, the disruption of the action of any of the 
mediators involved in these processes may play a role 
in age-related neuromuscular dysfunction, and there-
fore, in sarcopenia.

Age-related changes in presynaptic signaling

Active zones

Upon arrival of an action potential, the synaptic trans-
mission at the adult NMJs initiates by the opening of 
P/Q-type voltage-gated calcium channels (VGCCs) in 

the active zones, causing local calcium influx, fusion 
of the synaptic vesicles with the presynaptic mem-
brane, and the release of the neurotransmitter ACh 
into the synaptic cleft [42, 43]. Presynaptic active 
zones are sites of accumulation and release of synap-
tic vesicles, and harbor specialized multidomain scaf-
fold proteins, such as Bassoon, CAST/Erc2, Munc13, 
Piccolo, and Rim1 [19, 44]. These proteins seem to 
function as structural organizers of the active zone 
and as regulators of the exocytosis of ACh, being 
also involved in the recruitment of VGCCs [45, 46]. 
Specifically, Bassoon and Piccolo have been impli-
cated in the local regulation of protein ubiquitination 
and proteasome-mediated proteolysis at presynapse, 
which may contribute to short-term presynapse plas-
ticity [46]. In addition, these two scaffold proteins 
seem to connect presynaptic activity to neuronal gene 
expression reprogramming, potentially contributing 
to long-term alterations of the presynaptic function. 
This demonstrates the importance of the regula-
tion of the levels of active zone proteins to ensure a 
normal NMJ function. The organization and main-
tenance of NMJ active zones rely on cues provided 
by the synaptic basal lamina, a layer of extracellular 
matrix placed at the synaptic cleft [43]. A key com-
ponent of this lamina is laminin-β2 that binds to the 
presynaptic receptor P/Q-type VGCC, which is con-
centrated at the presynaptic terminus, initiating active 
zone assembly [47]. The VGCC β1b- or β4-subunit 
binds to the cytosolic active zone protein Bassoon or 
CAST/Erc2 [44].

Changes in the levels of these active zone proteins 
were observed during aging (Fig.  1). For instance, in 
old rodents (24 and 29 months old), the levels of P/Q-
type VGCC and Bassoon were significantly lower than 
in adult ones [42, 48]. The low levels of Bassoon led 
to an attenuation of P/Q-type VGCC activity, and con-
sequently, to an attenuation of calcium influx, signal 
transmission, and muscle contraction [42] (Table  1). 
The decrease of these levels seems to precede denerva-
tion, since the presence of the neuronal proteins Bas-
soon and Piccolo in aged NMJs indicates that nerve 
terminals are present [48]. Indeed, Bassoon levels were 
decreased at innervated NMJs (of sternomastoid) of old 
mice (27 months), while in denervated ones, a complete 
absence of Bassoon was observed [40]. Interestingly, the 
levels of the protein Piccolo  were not decreased [48], 
suggesting a selective reduction of active zone proteins 
during aging. The correct function of both Bassoon and 
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Piccolo seems to be supported by integrin-α3, a key 
adhesion receptor of the presynaptic active zone [43]. 
The NMJs of integrin-α3-knockout mice presented a 
reduction of the localization of Bassoon and Piccolo and 
typical structural changes that have been related with 

aging, namely fragmentation, less AChRs clusters, ter-
minal nerve sprouting, and excessive axon branching, 
which can result in a deficient synaptic transmission 
[43]. Therefore, integrin-α3 may contribute to NMJ dys-
function and consequent denervation in aging, but the 

Table 1  Effect of aging on key neuromuscular junction (NMJ) mediators and the possible outcomes in the NMJ that may contribute 
to sarcopenia

ACh, acetylcholine; AChRs, acetylcholine receptors; BDNF, brain-derived neurotrophic factor; CGRP, calcitonin gene–related pro-
tein; GAP-43, growth-associated protein; GDNF, glial-cell-line-derived neurotrophic factor; LRP4, low-density lipoprotein receptor–
related protein 4; p-MuSK, phosphorylated muscle-specific kinase; VGCC , voltage-gated calcium channel

Mediator Effect of aging Possible outcomes in NMJ References

Presynaptic signaling

P/Q-type VGCC ↓ • ↓ P/Q-type VGCC activity [48]
• ↓ Calcium influx

Bassoon ↓ • ↓ Signal transmission [40, 42, 48]
• ↓ Muscle contraction

ACh ↑ • NMJ fragmentation [58]
• Denervation
• Axon sprouting

Agrin ↑ • NMJ fragmentation [77]
• Nerve terminal branching
• Denervation
• Smaller AChRs clusters

LRP4 ↓ • ↓ Agrin-LRP4-MuSK signaling [68]
p‑MuSK ↓

BDNF (serum) ↓ • Denervation (?) [89–91]
• ↓ ACh release (?)
• ↓ Synapse maintenance (?)

BDNF (mRNA) = • ——————— [67]

GDNF (mRNA) ↓ • ↓ ACh release (?) [95]
GDNF =/↓ • ↓ Postsynaptic maintenance (?)

Postsynaptic signaling

CGRP ↑ • ↓ Reinnervation (?) [77]
GAP-43 ↑ [77, 113]
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effects of aging on presynaptic active zone proteins in 
humans are still unknown.

Another fundamental active zone protein is the 
synaptosomal-associated protein of 25  kDa (SNAP-
25), a component of the soluble N-ethylmaleimide 
sensitive factor attachment protein receptor (SNARE) 
protein complex. SNAP-25 is presented in motor 
nerve endings, being responsible for the fusion of 
ACh-containing vesicles with the plasma membrane 
during synaptic transmission [49, 50]. Moreover, 
SNAP-25 also inhibits VGCC function, controlling 
calcium responsiveness to depolarization [51, 52]. 
However, the effects of aging on the levels of SNAP-
25 in the NMJ are still unknown. Despite this, some 
studies suggest that SNAP-25 may be a target of reac-
tive oxygen species (ROS), which leads to dysfunc-
tion in neurotransmitter release [53, 54]. Therefore, 
it is plausible to think that the age-related increase 
in oxidative stress [55, 56] may be involved, at some 
extent, in the deficient synaptic transmission observed 
in sarcopenia. It would be important to investigate 
this possible association.

Acetylcholine signaling

The principal mediator to NMJ function is ACh, 
which activates the AChRs located in the postsyn-
aptic membrane, allowing sodium ions to enter the 
muscle and the generation of the endplate potential 
(EPP). If the EPP reaches the threshold, the sodium 
channels located in the borders of the motor endplate 
open, allowing a higher influx of positive ions, initi-
ating the muscle action potential, which spreads in 
a wave-like effect throughout the sarcolemma [17, 
18]. The action potential activates the voltage-gated 
dihydropyridine receptors (DHPRs) in the t-tubule 
membrane, and by induction, the ryanodine recep-
tors (RyRs), releasing calcium from the sarcoplasmic 
reticulum and culminating in force production and 
muscle contraction [57]. It was observed an increase 
in the basal levels of ACh in the gastrocnemius of old 
mice (28 months vs. 8 weeks), which may indicate a 
compensation for decreased NMJ signals, i.e., den-
ervation [58] (Table 1). Moreover, the mRNA levels 
of acetylcholinesterase, the enzyme that catalyzes 
the breakdown of ACh, was decreased in these ani-
mals, which might have contributed to the ACh levels 
observed [58]. In line with these results, it was dem-
onstrated that increased levels of ACh at the synaptic 

cleft prematurely result in age-related structural alter-
ations in the NMJs, including fragmentation, dener-
vation, and axon sprouting, prior to muscle atrophy 
[59] (Table 1), which may indicate that ACh modu-
lates the NMJ in a quantity-dependent manner. In 
fact, moderately reducing ACh levels promoted sev-
eral positive effects on aged NMJs (17 months mice) 
and muscle fibers, such as an increase in NMJ area, 
muscle fiber cross-sectional area (CSA), and in the 
number of satellite cells (SCs) [60]. Therefore, mod-
erately reducing ACh may constitute a therapeutic 
strategy to sarcopenia, as already suggested by [60].

The AChR in adult skeletal muscle forms a hetero-
pentamer that harbors two α, one β, one δ, and one 
ε subunit (the ε subunit in adult AChR replaces the 
γ subunit in fetal AChR) [61]. These subunits also 
suffer changes in their expression during aging [62]. 
For instance, in the vastus lateralis of older women 
(71–78  years) was observed a robust increase of 
AChR γ mRNA expression and a decrease of AChR 
β1, compared to young women (20–28  years) [63]. 
These older women had a great amount of denervated 
fibers [63], which may explain the increase in the γ 
subunit, since its levels increase in response to den-
ervation and neurotransmitter blockage [63, 64]. In 
another study, however, age (65–94 years) was nega-
tively associated with AChR γ mRNA in the vastus 
lateralis, but existed a large interindividual variation 
in the mRNA levels of the participants of this study 
[38]. Human muscle biopsies may be accompanied by 
variability in the levels of the studied mediators due 
to, for instance, sampling site selection [65]. Thus, 
preclinical studies were considered. The mRNA 
levels of AChR α and γ were increased in the gas-
trocnemius (24 months vs. 4 months; 28 months vs. 
8 weeks) [58, 66] and vastus lateralis (35 months vs. 
8  months) of aged rodents [67], as well as the pro-
tein levels of AChR δ on the diaphragm of old mice 
(24  months vs. 8  months) [68]. However, no differ-
ences were found in protein levels of AChR α, β, and 
ε subunits in the muscles of aged animals compared 
to young ones [66, 68]. It was also suggested that 
the simple activation of AChRs by the ACh released 
from motoneurons is sufficient to prevent alterations 
associated to denervation, like the de novo synthesis 
and incorporation of connexins hemichannels into the 
sarcolemma, which initiates a sequence of deleteri-
ous changes, including sarcolemma permeabiliza-
tion, increased cytosolic calcium and sodium levels, 

GeroScience (2022) 44:1199–12131204



1 3
Vol.: (0123456789)

and upregulation of atrogenes, which leads to pro-
tein catabolism and muscle atrophy [69]. Moreover, 
AChR subunits may play a critical role in NMJ stabil-
ity after denervation with the main goal of maintain-
ing NMJ function [70]. However, in old animals and 
contrarily to what occurs in young ones, the protein 
levels of AChR α did not increase after nerve injury 
[66], which may jeopardize NMJ functions.

Agrin-LRP4-MuSK signaling

Data suggest that agrin-low-density lipoprotein recep-
tor–related protein 4 (LRP4)-muscle-specific kinase 
(MuSK) signaling pathway may be impaired during 
aging (Fig.  1). Neural agrin, which is released from 
motoneurons and accumulates at the synaptic basal 
lamina, binds to its co-receptor LRP4 on the cell sur-
face of muscle fibers, activating the tyrosine kinase 
domain of the receptor MuSK to self-phosphorylate 
[71, 72]. Activated MuSK is transported along the 
axons and released into the synaptic basal lamina of 
the NMJs, transmitting the extracellular signal into 
the myotubes, where it triggers the assembly of the 
postsynaptic apparatus, including AChRs clustering 
and stabilization of presynaptic structures [73]. In 
muscle fibers, activated MuSK also recruits and phos-
phorylates downstream of kinase 7 (DOK7), promot-
ing DOK7 dimerization that, in turn, enhances MuSK 
phosphorylation through a positive feedback loop 
that has to be finely controlled for normal NMJ struc-
ture and function [71]. Activated DOK7 leads to the 
recruitment of two adapter proteins Crk and Crk-L 
[74]. This signaling cascade stimulates the cytoplas-
matic membrane structural protein rapsyn to self-
aggregate and interact with agrin and MuSK, which 
also induces AChRs clustering and postsynaptic spe-
cialization [74–76].

With aging, the activity of this signaling path-
way in the NMJs appears to become dysregulated. 
A significant increase of the expression of agrin in 
the NMJs of the tibialis anterior, extensor digito-
rum longus, and soleus of old mice (24–30 months) 
was observed [77]. These animals had a deficient 
locomotor activity and the NMJs presented typical 
age-related structural alterations, namely fragmen-
tation, nerve terminal branching, denervation, and 
smaller AChRs clusters [77]  (Table  1). However, 
LRP4 levels were found markedly reduced in the 
diaphragm of old mice (24  months vs. 3  months), 

which may be explained by the enhanced LRP4 
ubiquitination observed [68]. Accordingly, MuSK 
phosphorylation was found reduced in aged dia-
phragm (24  months vs. 3  months) [68], despite its 
mRNA levels being increased in the vastus lateralis 
of old mice (35 months) comparatively to young ani-
mals (8  months) [67]. These results suggest a com-
promised agrin-LRP4-MuSK activation with aging 
(Table 1), which may contribute to the alterations in 
NMJ function and structure. On the other hand, the 
levels of the intracellular adaptor protein rapsyn were 
increased in the vastus lateralis of old rats (35 months 
vs. 8  months) [67], but mutations in human rapsyn 
gene were already associated with NMJ-related dis-
eases [78].

Another cause to age-related NMJ impairment may 
be the augment of the proteolytic cleavage of agrin by 
the neuronal serine protease neurotrypsin (Fig. 1) [79]. 
This agrin inactivation occurs by its cleavage at two 
homologous, highly conserved sites and results in the 
release of the soluble 22-kDa C-terminal agrin frag-
ment (CAF) into circulation making it detectable in 
serum [80], and therefore a great candidate as sarcope-
nia biomarker. The increase in the serum levels of CAF 
with aging [73, 81, 82] translates an enhanced agrin 
degradation that may symbolize reduced levels of agrin 
at the NMJs, compromising agrin role in the mainte-
nance of a functional NMJ. Actually, overexpression 
of neurotrypsin in motoneurons of young adult mice 
established the sarcopenic phenotype (reduced num-
ber of muscle fibers, increased heterogeneity of fiber 
thickness, fiber type grouping, and increased propor-
tion of type I fibers) and led to an excessive fragmen-
tation of the NMJ [83]. A neurotrypsin inhibitor (NT-
1474) showed efficacy in vivo (mice) in reducing CAF 
serum levels by 44% [81]. Unfortunately, NMJs were 
not investigated. Nevertheless, in another study, mus-
cular and junctional sarcopenic alterations were less 
pronounced in neurotrypsin-overexpressing aged mice 
(24  months; soleus) by transgenic co-expression of 
cleavage-resistant agrin, which seems to protect NMJs 
from disassembly and also exerts a survival-promoting 
effect for denervated fibers by enhancing reinnervation 
[83]. This was further strengthened in a posterior study 
where injection of neurotrypsin-resistant agrin acti-
vated agrin signaling and almost fully reversed the sar-
copenia-like phenotype in neurotrypsin-overexpressing 
mice and also accelerated muscle reinnervation after 
nerve crush [84].
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Neurotrophins

The skeletal muscle and nerves interact through electri-
cal activity and neurotrophic regulation [41]. The latter 
occurs by the release of neurotrophic factors, like NTs 
[41]. The family of NTs harbors nerve growth factor 
(NGF), NT-3, NT-4, brain-derived neurotrophic fac-
tor (BDNF), and glial-cell-line-derived neurotrophic 
factor (GDNF), which regulate motoneuron survival, 
enhance presynaptic release of ACh, and promote the 
maintenance of the postsynaptic region [85, 86]. NTs 
are synthesized and released from both neurons and 
muscles [87]. NT signaling is mediated by the tropomy-
osin-related kinase (Trk) receptor and by the p75 neu-
rotrophin receptor (p75NTR) [85]. BDNF is one of the 
most studied NTs and potentiates ACh release through 
TrkB phosphorylation and PKC activation [41]. In addi-
tion, it is involved in the regulation of synapse function 
and maintenance in the neuromuscular system and also 
in muscle development and metabolism [41]. Indeed, 
inhibition of BDNF-TrkB signaling at early old age 
(18 months) induced NMJ denervation [88]. Studies sug-
gest that an age-related decrease in BDNF serum levels 
occurs [89–91] (Table 1). This may be explained by the 
hypothesis that BDNF is a contractile-inducible protein 
[92, 93] and older people tend to be more sedentary 
[94]. In the vastus lateralis of old mice (35 months), no 
changes were observed in the mRNA levels of NT-3, 
NT-4, BDNF, or GDNF compared to young animals 
(8 months), despite the presence of marked denervation 
and increased mRNA levels of the neurotrophic tyrosine 
kinase receptor type 3 (NTRK3) [67]. This may suggest 
that a normal neurotrophic signaling is insufficient to a 
successful maintenance of the neuromuscular system.

A decrease of GDNF mRNA was also observed in 
both aged rats’ gastrocnemius and soleus, but GDNF 
protein levels were maintained without alterations 
in the NMJs throughout adulthood [95]  (Table  1). 
Nevertheless, the time analyzed was very low (birth 
to 3 months). In another study, 17-week rats showed 
lower GDNF levels on the soleus and extensor digi-
torum longus comparatively to 4-week animals [96].

Age-related changes in postsynaptic signaling

Calcitonin gene–related peptide

CGRP is a neuropeptide present in motoneurons where 
it is stored in dense-core vesicles, possibly coexisting 

with ACh, being released upon nerve stimulation 
[97–99]. In the skeletal muscle, CGRP binds to calci-
tonin-like receptor (CLR), a Gs protein–coupled recep-
tor highly presented in the NMJs, and increases the 
levels of intracellular cyclic adenosine monophosphate 
(cAMP) that leads to the activation of cAMP-dependent 
protein kinase (PKA) and phosphorylation of cAMP 
response element-binding protein (CREB) [97], suggest-
ing that CGRP regulates gene expression. It is known 
that CGRP increases the number of AChRs and the rate 
of AChR desensitization and decreases the expression 
of acetylcholinesterase, potentiating muscle contraction 
[97, 100]. This may be indicative that this neuropep-
tide acts on skeletal muscle to regulate the elements of 
the postsynaptic apparatus [100]. Despite CGRP levels 
being high during NMJ development, they markedly 
decrease in mature NMJs [101]; however, CGRP is 
upregulated following nerve injury, suggesting a func-
tion in NMJs during the process of reinnervation and 
nerve sprouting, with its levels declining with the mor-
phological and functional recovery of the NMJ [77, 
102]. Recent data also suggest that upon muscle dener-
vation, CGRP is involved in NMJ stabilization through 
the transcriptional inhibition of forkhead box O (FoxO)/
transcription factor EB (TFEB)–regulated autophagic 
genes, stimulation of mammalian target of rapamycin 
complex 1 (mTORC1), and inhibition of the calpain 
system. Hence, CGRP may be used as both a potential 
biomarker for age-induced denervation and a therapeu-
tic target [103]. Indeed, mammalian target of rapamycin 
(mTOR) signaling must be fine-tuned to maintain NMJ 
function. A role for mTORC1 in NMJ morphology and 
function has been discussed. Typical morphological 
features of age-related NMJ instability like significant 
thinning of axons, increased number of sprouting axons, 
higher number of AChR clusters, and lower density of 
postsynaptic AChRs were observed in mice with sus-
tained activation of mTORC1 (TSCmKO, 9  months, 
extensor digitorum longus) [23]. In contrast, mTORC1 
inhibition (10  months mice, tibialis anterior) also 
resulted in denervation, NMJ fragmentation, and higher 
number of AChRs clusters [104]. Furthermore, partial 
mTORC1 inhibition (via RAD001, a rapalog, admin-
istrated at a low dose) reduced the age-induced tran-
scriptional upregulation of denervation-associated gene 
markers in aged tibialis anterior (24 months); however, 
no differences were verified in the gastrocnemius or 
plantaris muscles [105]. Still, more studies are needed 
to clarify the role of mTOR signaling in NMJ function.
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A significant increase in CGRP immunoreactiv-
ity was observed in the NMJs of old tibialis anterior, 
soleus, extensor digitorum longus, and gracilis mus-
cles (24–30 months vs. 4 months) [77]. This continu-
ous increase with aging without a subsequent decline 
may symbolize the occurrence of denervation without 
reinnervation, which may indicate failure in the func-
tional recovery of the NMJs (Fig. 1 and Table 1). In 
fact, those animals exhibited frequent endplate den-
ervation and classic age-related structural changes 
on their NMJs [77]. More studies on the effect of 
aging in the function of this signaling pathway are 
necessary, given that CGRP levels can be measured 
in human plasma [106], which makes it an attractive 
biomarker. Additionally, in vivo application of CGRP 
on the soleus of adult rats induced a local accumula-
tion of AChRs on the extrajunctional surface where 
the AChRs are usually absent [98], indicating CGRP 
as a possible therapeutic strategy to counteract the 
impaired neuromuscular transmission observed with 
aging.

Growth-associated protein

Another mediator that is upregulated upon denerva-
tion is growth-associated protein (GAP-43) that is 
present in virtually all neurons during axonal growth, 
being particularly abundant in axonal growth cones 
[77]. GAP-34 is widely expressed in the central nerv-
ous system during the perinatal period, with its lev-
els decreasing as maturation progresses [107, 108]. 
Mature motoneurons and their corresponding nerve 
terminals display low levels of GAP-43 [77]. None-
theless, GAP-43 seems to be involved in the muscle 
regeneration process [109] with an upregulation of 
its levels following denervation [110], and also in the 
modulation of calcium dynamics and its intracellular 
roles [111, 112]. Indeed, GAP-43−/− mice showed, 
among others, decreased body weight, reduced mus-
cle strength, altered myofiber ultrastructure, and dys-
regulated calcium homeostasis in the muscle [111], 
possible by the lack of the interaction of GAP-43 with 
DHPR and RyR [111, 112]. In old animals, a signifi-
cant increase of GAP-43 levels was observed in the 
NMJs of the tibialis anterior, soleus, extensor digi-
torum longus, and gracilis muscles (24–30  months 
vs. 4  months) [77]. Moreover, aged (30  months vs. 
2–3  months; rat) motoneurons revealed increased 
GAP-43 immunoreactivity and GAP-43 levels seem 

to be associated to the severity of the neuromuscular 
dysfunction [113] (Fig. 1). Thus, the increased levels 
of GAP-43 observed in old age may be indicative of 
denervated muscle fibers (Table 1). Indeed, increased 
muscle levels of this protein are present in denerva-
tion [114] and myopathies [115], and no immunore-
activity was found in the absence of those conditions; 
thus, GAP-43 may be a good candidate as sarcope-
nia biomarker. Hence, its study in age and sarcopenia 
contexts would be important.

Satellite cells

Muscle regeneration also relies on muscle stem cells 
designated SCs [116] that under resting conditions 
are quiescently located underneath the basal lamina 
[117]. Upon tissue injury, SCs exit quiescence and 
proliferate to myoblasts that later differentiate to myo-
cytes (muscle cells) to regenerate the damaged tissue 
[117]. This regenerative capacity of skeletal muscle 
is greatly affected by aging, since SCs abundance 
declines with age in both human (22–76 years; vastus 
lateralis) [118] and animal muscles (3–33  months; 
soleus, extensor digitorum longus, tibialis anterior) 
[119, 120] (Fig. 1), which may suggest that SC popu-
lation is not adequately replenished throughout life. 
Despite this decline in SC pool, some studies dem-
onstrated that the myogenic potential of SCs does 
not decline with aging, despite a slower rate of SCs 
activation after an injury in both old (22–30 months) 
and geriatric (29–33  months) muscles [119, 121]; 
however, it was also suggested that in geriatric mice 
(28–32  months), resting SCs lost their reversible 
quiescence state and switch to an irreversible pre-
senescence state, being unable to activate and repair 
the muscle upon injury [122]. Specifically, it was also 
demonstrated that SCs frequency declines in both 
synaptic and extra-synaptic regions in old age (18 and 
24 months) [123]. In line with this, depletion of SCs 
resulted in an impaired NMJ reinnervation, reduction 
in postsynaptic morphology, and loss of post-synaptic 
myonuclei in response to denervation [124]. Moreo-
ver, SCs depletion at 12 months accelerated the onset 
of age-related impairment of NMJ integrity, and a 
decline in postsynaptic myonuclei and myofiber size 
(vs. 18 and 24 months) [123]. Therefore, the impor-
tant role that SCs have in maintaining NMJ function 
is noteworthy, a role that may be impaired as a result 
of aging and that is important to explore in future 
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studies. Immunostaining of muscle sections with 
SCs markers has been the methodological approach 
used to evaluate the age effect on SCs remodeling. 
In human skeletal muscles, SCs have been identi-
fied using the NCAM/CD56 antigen [125]. Despite 
being considered a reliable molecular marker to 
identify SCs, NCAM is also expressed in myoblasts, 
myotubes, and muscle fibers during regeneration, as 
described before [125]. Thus, other markers are used, 
namely M-cadherin (M-Cad), c-Met, and Pax7, which 
are thought to be exclusively expressed in SCs of 
mature muscles [125].

Conclusions

The study of the effect of aging on the NMJ morphol-
ogy and function is challenging, particularly in the 
clinical set. Muscle collection from aged subjects may 
raise ethical questions and the obtained samples may 
not be representative of the whole muscle. Besides, 
the NMJs may not be collected in the biopsy, and if 
so, may have a negative impact on the older subjects’ 
muscle function, potentially aggravating an already 
impaired muscle. Hence, preclinical studies allow the 
generation of data from whole muscle that cannot be 
collected from humans. Despite all these constrains in 
the study of NMJs, the analysis of the literature high-
lights several interesting findings. With aging, the 
NMJ structure alters, jeopardizing the communication 
between the nervous and muscle systems. The rein-
nervation rate in older ages is not sufficient to counter-
weight the rate of the appearance of denervated fibers, 
possible due to an age-induced incapacity to enhance 
reinnervation-related processes, such as the NCAM 
response. The maintenance and function of the NMJ 
rely on different signaling pathways involving players 
that ensure the stability of the pre- and postsynaptic 
apparatus and a proper signal transmission through 
ACh and reinnervation following denervation. Agrin, 
ACh, and NTs (such as BDNF and GDNF) signaling 
is impaired at old ages, resulting in a deficient neuro-
muscular transmission. Moreover, the role of SCs and 
proteins involved in the reinnervation process, namely 
CGRP and GAP-43, is compromised during aging, 
contributing to the accumulation of denervated muscle 
fibers. The effect of aging on these key mediators and 
the consequent outcomes on the NMJ are overviewed 
in Table 1. The evidence provided here suggests a key 

role of NMJ-related players to sarcopenia pathogenesis 
and highlights potential biomarkers and therapeutic 
targets, paving the way to future studies. Nonetheless, 
it remains elusive the relative contribution of NMJ dys-
function to sarcopenia pathogenesis, a question that 
deserves to be explored to improve sarcopenia man-
agement. Future investigations should consider analyz-
ing older individuals (animals, at least) and evaluate 
the mediators that have the potential to be analyzed in 
serum, such as CAF, BDNF, and CGRP, envisioning 
the translation to the clinical set.
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