Table 2.
TEs outputted by machine learning analysis. These eight TEs were able to discriminate pre and normal condition patients with an AUC accuracy of 69%
Chr | Start | End | TE | Gene |
---|---|---|---|---|
22 | 23,900,208 | 23,900,715 | MER9a2 | NA |
16 | 67,141,398 | 67,142,927 | MER52A | C16orf70 |
2 | 26,305,911 | 26,306,395 | LTR15 | AC10896.1 |
19 | 11,853,714 | 11,854,477 | HERVK3-int | ZNF439 |
17 | 67,398,160 | 67,399,008 | HSMAR1 | PITPNC1 |
2 | 97,505,313 | 97,505,837 | MER1A | ANKRD36B |
20 | 44,217,986 | 44,218,725 | L1ME4b | OSER1-DT |
19 | 54,668,341 | 54,669,123 | L1M5 | LILRB4 |