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Investigating the combination of plasma amyloid‑beta 
and geroscience biomarkers on the incidence of clinically 
meaningful cognitive decline in older adults

Wan‑Hsuan Lu  · Kelly Virecoulon Giudici · John E. Morley · Sophie Guyonnet · Angelo Parini · 
Geetika Aggarwal · Andrew D. Nguyen · Yan Li · Randall J. Bateman · Bruno Vellas · 
Philipe de Souto Barreto · for the MAPT/DSA Group

increased risk of worsening CDR were observed 
as each nature log unit increased in plasma Aβ lev-
els. Models incorporating Aβ plus multiple plasma 
biomarkers performed similarly to models included 
Aβ alone in predicting dementia and CDR progres-
sion. However, improving Aβ model performance 
for composite cognitive score (CCS) decline, a proxy 
of dementia, was observed after including plasma 
monocyte chemoattractant protein 1 (MCP1) and 
growth differentiation factor 15 (GDF15) as covari-
ates. Participants with abnormal Aβ, GDF15, and 
MCP1 presented higher CCS decline (worsening cog-
nitive function) compared to their normal-biomarker 
counterparts (adjusted β [95% CI], − 0.21 [− 0.35 
to − 0.06], p = 0.005). In conclusion, our study found 

Abstract We investigated combining a core AD 
neuropathology measure (plasma amyloid-beta [Aβ] 
42/40) with five plasma markers of inflammation, cel-
lular stress, and neurodegeneration to predict cogni-
tive decline. Among 401 participants free of demen-
tia (median [IQR] age, 76 [73–80] years) from the 
Multidomain Alzheimer Preventive Trial (MAPT), 
28 (7.0%) participants developed dementia, and 
137 (34.2%) had worsening of clinical dementia 
rating (CDR) scale over 4  years. In the models uti-
lizing plasma Aβ alone, a tenfold increased risk of 
incident dementia (nonsignificant) and a fivefold 
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limited added values of multi-biomarkers beyond the 
basic Aβ models for predicting clinically meaningful 
cognitive decline among non-demented older adults. 
However, a combined assessment of inflammatory 
and cellular stress status with Aβ pathology through 
measuring plasma biomarkers may improve the eval-
uation of cognitive performance.

Keywords Alzheimer’s disease · Cognitive decline · 
Amyloid-beta · Inflammation · Neurodegeneration · 
Aging

Introduction

Alzheimer’s disease (AD) is a complex and burdening 
neurodegenerative disorder [1]. Biomarkers of brain 
amyloid-beta (Aβ) accumulation, a neuropathological 
hallmark of AD [1], are essential tools for the iden-
tification of high-risk individuals [2, 3]. Brain amy-
loidosis is frequently confirmed by positron emission 
tomography (PET) or by the increased Aβ levels in 
cerebrospinal fluid (CSF) [4]. Recently, plasma meas-
ures of Aβ using updated techniques showed similar 
accuracy as classical imaging and CSF markers [5–7] 
and were prospectively associated with clinical cog-
nitive outcomes [8–10]. However, their associations 
with cognitive impairment or conversion to AD are 
still not definitely concluded [10, 11].

AD development has multiple pathophysiologic 
mechanisms involved. Aggregated Aβ peptides acti-
vate an innate immune response in the brain, releas-
ing numerous pro-inflammatory molecules and con-
tributing to disease progression and severity [12]. 
Indeed, some studies observed that elevated circulat-
ing pro-inflammatory markers such as tumor necrosis 
factor receptor 1 (TNFR1) [13, 14] and interleukin 6 
(IL6) [15] were associated with an increased risk of 
mild cognitive impairment (MCI) or dementia. Fur-
thermore, plasma levels of monocyte chemoattractant 
protein 1 (MCP1), an important chemokine involved 
in the chemoattraction of immune cells at the brain 
lesion site [16], were not only associated with cog-
nitive decline [17, 18] but also showed a significant 
interaction with Aβ levels on brain neuronal integrity 
[19]. In addition, higher circulating levels of growth 
differentiation factor 15 (GDF15), a stress-response 
cytokine involved in the regulation of inflamma-
tion [20] and energy metabolism [21], have been 

associated with worsening of cognitive function [22] 
and incident dementia [23]. On the other hand, neu-
rodegeneration is widely accepted as the ultimate 
stage of AD disease course [3]. Plasma levels of neu-
rofilament light chain (NfL), a structural protein of 
neurons considered a nonspecific marker for neuro-
degeneration [24], have been demonstrated to reflect 
AD severity [25] and to be a potential indicator for 
longevity [26]. Therefore, concurrently measuring the 
presence of neurodegeneration with other pathologi-
cal markers might increase the prediction of AD.

Considering the diverse underlying pathologies of 
AD, previous studies had proposed that models com-
bining multiple blood-based biomarkers can improve 
the prediction of AD dementia and longitudinal cog-
nitive function [11, 25]. To the best of our knowledge, 
one pilot study had investigated the cross-sectional 
association of AD diagnosis with a plasma signa-
ture of Aβ levels and inflammatory factors includ-
ing TNF-α and IL6 [11]. In this study, the authors 
demonstrated that using composite biomarker scores, 
which included plasma Aβ40, Aβ42, TNF-α, and other 
four inflammatory molecules, better correlated with 
AD diagnosis than considering age and sex only. 
However, the predictive abilities of combined plasma 
biomarker profiles on dementia still need to be evalu-
ated in longitudinal studies.

This study aimed to investigate whether combining 
measures of plasma Aβ with other important circulat-
ing markers potentially involved in AD (i.e., markers 
of inflammation (TNFR1, IL6, MCP1), cellular stress 
(GDF15), and neurodegeneration (NfL)) would bet-
ter determine clinically meaningful cognitive decline, 
including dementia, worsening of clinical dementia 
rating (CDR) status, and longitudinal cognitive per-
formance in community-dwelling older adults.

Methods

Data source

This observational study is retrieved data from the 
Multidomain Alzheimer Preventive Trial (MAPT), 
a multicenter, 3-year randomized controlled trial 
whose details have been published elsewhere [27, 
28]. Briefly, the MAPT Study failed in showing the 
protective effect of omega-3 polyunsaturated fatty 
acid (PUFA) supplementation and multidomain 
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lifestyle interventions (including exercise advice, 
cognitive training and nutritional counseling) on cog-
nitive decline in community-dwelling older adults 
[27]. After the 3-year intervention phase, an addi-
tional 2-year observation (without any intervention) 
was performed. The MAPT Study was registered at 
ClinicalTrials.gov [no.: NCT00672685], approved by 
the French Ethical Committee located in Toulouse 
(CPP SOOM II) and authorized by the French Health 
Authority. All participants signed informed consent.

Study population

The MAPT Study enrolled 1,679 adults 
aged ≥ 70  years and presented subjective memory 
concerns. Among them, 427 subjects had available 
data on all plasma biomarkers investigated in this 
study (details provided below). We excluded 3 sub-
jects due to CDR scale > 1 (probable dementia) at 
the time biomarkers were measured (12 months after 
MAPT Study enrollment); 2 subjects due to diagnosis 
of dementia before biomarker measures; and 21 sub-
jects due to the lack of longitudinal data during the 
follow-up period. Finally, 401 subjects were included 
in this study. Compared to 401 participants included 
in this study, 21 subjects excluded due to loss to 
follow-up had higher IL6 levels (Supplementary 
Table 1). The comparison of baseline characteristics 
for MAPT participants included and not included in 
this study is presented in Supplementary Table 2; par-
ticipants enrolled in the current study have a lower 
proportion of females than the rest of the MAPT 
population.

All the data used in this study comes from the 
time biomarkers were measured (the 12-month visit) 
onwards (until the last visit at 60 months). The time-
point of plasma biomarker measurement (i.e., the 
12-month visit) was defined as the baseline in the pre-
sent study. Supplementary Fig. 1 depicts the data col-
lection timeline for plasma biomarkers and cognitive 
outcomes.

Measurement of plasma biomarkers

Six biomarkers were measured from the blood 
samples of participants collected at the 12-month 
visit: Aβ42/40 ratio, NfL (pg/mL), GDF15 (pg/mL), 
TNFR1 (pg/mL), IL6 (pg/mL), and MCP1(pg/mL). 
The details of plasma biomarker assessment were 

described in supplemental materials. We used the 
continuous value of plasma biomarkers to build risk 
prediction models for cognitive decline; all bio-
marker values were natural log-transformed to cor-
rect skewness.

Main outcome measures

Primary outcomes were the incidence of any type 
of dementia and worsening of CDR status dur-
ing the 4-year follow-up period. Dementia was 
determined by an expert committee composed 
of physicians, psychologists, and intervenors of 
multidomain intervention in each center, using the 
Diagnostic and Statistical Manual of Mental Dis-
orders (DSM-IV) and National Institute of Neuro-
logical and Communicative Diseases and Stroke/
Alzheimer’s Disease and Related Disorders Asso-
ciation (NINCDS-ADRDA) criteria. Each case was 
then validated by an independent committee of phy-
sicians not involved in the MAPT Study. The CDR 
status was evaluated annually (i.e., at 12, 24, 36, 48, 
and 60 months) and scored from 0 to 3, with higher 
values indicating worse cognitive function[29]. 
Worsening of CDR status was defined as changing 
from score 0 at 12 months to ≥ 0.5 or from score 0.5 
to ≥ 1 during the follow-up.

Considering the few cases of dementia observed 
in our population (28 out of 401 subjects in the 
4-year follow-up period), we used a composite cog-
nitive score (CCS) as an exploratory outcome. The 
CCS was calculated as a mean Z-score of 4 cogni-
tive tests: free and total recall of the Free and Cued 
Selective Reminding Test, the 10 orientation items 
of the Mini-Mental State Examination (MMSE), 
the Digit Symbol Substitution Test score from the 
Wechsler Adult Intelligence Scale-Revised, and the 
Category Naming Test [28]. Lower CCS values, 
indicating worse cognitive function, are a proxy of 
future dementia and more sensitive for early cog-
nitive impairment [30] and are therefore used as 
a main cognitive outcome measure in large rand-
omized controlled trials [28, 31]. The short-term 
decrement of CCS was considered a clinically rele-
vant and informative outcome of AD, as Coley et al. 
[32] had suggested that − 0.3 points of CCS change 
within 1 year was predictive of AD dementia.
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Measurement of demographic variables

Several demographic factors were selected due to 
their potential effects on cognitive outcomes: age, 
sex, educational level (no diploma or primary school 
certificate, secondary education, high school diploma, 
university level), MAPT group allocation (multid-
omain intervention with omega-3 supplementation, 
multidomain intervention with placebo, omega-3 
supplementation alone, and placebo), and body mass 
index (BMI, defined as body weight in kg divided 
by  height2 in  m2, assessed at 12  months). Given 
the effect of apolipoprotein E (APOE) ε4 genotype 
on AD [33], we also measured the APOE ε4 status 
(defined as having one or two ε4 alleles), to evaluate 
its impact on model selection in a sensitivity analysis.

Statistical analysis

Descriptive data were presented as median and inter-
quartile ranges (IQRs), or frequencies and percent-
ages, as appropriate. Due to the non-normal distri-
bution of plasma biomarker data, the correlations 
between each plasma biomarker were analyzed using 
Spearman rank correlation coefficients. The individ-
ual associations between each plasma biomarker and 
cognitive outcomes were evaluated by Cox propor-
tional hazard regression (with incident dementia or 
worsening of CDR status as the outcomes) and linear 
mixed-effect regression (with CCS evolution as the 
outcome). More details of the Cox regression and lin-
ear mixed-effect regression are described below.

For primary outcomes (incident dementia and 
worsening of CDR status), risk prediction models 
were constructed by Cox regression. Time to event 
was defined as the period from the time-point of 
plasma biomarker measures (the 12-month visit) to 
either dementia diagnosis or the first visit detect-
ing worsening of CDR status; participants without 
events were censored at the date of their last visit. 
We first built an “amyloid model” including plasma 
Aβ42/40 as a predictor. Then we expanded the amy-
loid model with other plasma biomarkers (i.e., NfL, 
GDF15, TNFR1, IL6, MCP1) in 31 different com-
binations (referred to as “multi-biomarker models”; 
amyloid model plus other biomarkers). Model per-
formances were assessed using Harrell’s concord-
ant (C) statistic, a higher C index indicated better 

discrimination [34]. The model performances of 
multi-biomarker models were compared with the 
amyloid model, using the “somersd” package in 
STATA [35]. All models adjusted for demographic 
covariates mentioned above; initial CDR score (i.e., 
at 12  months) was also considered when worsen-
ing CDR status as the outcome. We also performed 
sensitivity analyses to test whether adding APOE ε4 
genotype as a covariate reduced the effectiveness of 
multi-biomarker models.

Once the multi-biomarker models with the 
best performance were identified, the cumula-
tive probability of cognitive outcomes was cal-
culated from these established models using the 
STATA “survci” command [36]. We estimated 
specific probabilities for women and men and 
for individuals with an initial CDR score of 0 
or 0.5, under the following conditions: aged 
76.7 years (mean value of the study population), 
BMI as 26.5  kg/m2 (mean value of the study 
population), no diploma or having primary 
school certificate (the lowest educational level), 
and in the placebo group of MAPT Study. We 
selected the lower quartile as normal and the 
upper quartile as abnormal for each plasma bio-
marker; for Aβ, the lower quartile as abnormal 
and the upper quartile as normal. These values 
were selected as an example because the models 
can provide risk estimates for any given value 
of plasma biomarkers and covariates.

In exploratory analyses, we examined asso-
ciations of CCS evolution with different bio-
marker combinations using linear mixed-effect 
regression with random intercepts and random 
slopes. The introduction of random intercepts 
and slopes in the model allows us to improve 
our estimations considering the variability of 
individual responses at baseline and throughout 
the follow-up. In other words, our model’s coef-
ficients for the biomarkers represented the asso-
ciation between biomarkers and CCS at baseline; 
the time coefficient represented the yearly CCS 
change; and the coefficients for biomarker-time 
interaction represented the longitudinal CCS 
change per unit of biomarker increase. Plasma 
biomarkers were used as natural log-transformed, 
and time was measured as the number of years 
after the baseline. All models were adjusted for 
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demographic covariates: age, sex, education, 
MAPT group, and BMI. Among our study popu-
lation, the CCS change presented a quadratic tra-
jectory. Therefore, we considered the quadratic 
terms for time and their interaction terms with 
plasma biomarkers.

We followed the same approach previously 
mentioned to define different multi-biomarker 
combinations. The best-fitting biomarker model 
was selected based on the lowest Akaike infor-
mation criterion (AIC) value, and differences in 
AIC > 10 between the two models were consid-
ered essentially different [37]. Again, a sensi-
tivity analysis with an additional adjustment for 
APOE ε4 genotype was conducted to test whether 
we would select the best-fitting model with the 
same biomarker combination as the main analy-
sis. Once the best-fitting biomarker model was 
determined, the lower and upper quartile of each 
biomarker was applied in this selected model to 
estimate CCS change after 1 and 4 years, respec-
tively. All analyses were performed using SAS 
version 9.4 (SAS Institute, Inc, Cary, NC) and 
STATA version 17 (College Station, TX), with a 
significance level of 0.05.

Results

Characteristics of the study population

Characteristics of the study sample at the 
12-month visit, which constitutes the base-
line visit for the present work, are presented in 
Table  1. Of the 401 participants (median [IQR] 
age, 76 [73 to 80] years), 233 (58.1%) were 
women, and 225 (56.1%) had an initial CDR 
score of 0.5 (Table  1). After 4  years of follow-
up, 28 participants (7.0%) progressed to demen-
tia (mean [standard deviation, SD] time to event, 
1.7 [1.1] years); 137 participants (34.2%) devel-
oped worsening of CDR status (mean [SD] time 
to event, 2.1 [1.1] years), with the majority ini-
tially being cognitively normal (122 [69.3%] 
with initial CDR score 0 vs. 15 [6.7%] with score 
0.5; p < 0.001) (Table 1). There is no significant 
difference in the proportion of cognitive out-
comes between APOE ε4 carriers and non-carri-
ers (Supplementary Table 3).

Correlations between plasma biomarkers

The results of Spearman rank correlation are dis-
played in Supplementary Table  4. There were 
significant positive correlations between bio-
marker pairs of GDF15, TNFR1, IL6, and MCP1 
(all p < 0.001, Spearman rank correlation coef-
ficients ranged from 0.28 to 0.60). On the con-
trary, plasma Aβ42/40 did not show significant 
correlations with other plasma biomarkers (Sup-
plementary Table 4).

Associations between each plasma biomarker 
and cognitive outcomes

We first evaluated the associations between 
each plasma biomarker and the three cogni-
tive outcomes (incident dementia, worsening 
of CDR status, and CCS evolution). Decreased 
plasma Aβ42/40 (inverse HR [95% CI], 19.40 
[1.34–280.13]; p = 0.030), increased NfL (HR 
[95% CI], 2.16 [1.20, 3.88]; p = 0.010), and 
increased GDF15 (HR [95% CI], 3.49 [1.36, 
8.93]; p = 0.009) were associated with incident 
dementia in the separate unadjusted models (Sup-
plementary Table 5). Furthermore, plasma Aβ42/40 
was the only marker associated with worsening 
of CDR status (inverse HR [95% CI], 5.03 [1.27, 
20.01]; p = 0.022), after controlling for demo-
graphic factors (Supplementary Table 5). Regard-
ing CCS outcome, there was a significant posi-
tive association between plasma Aβ42/40 and CCS 
change over time, indicating that participants 
with higher plasma Aβ42/40 (a better plasma Aβ 
profile) had better cognitive function over time 
(Supplementary Table 6).

Model selection and cumulative probabilities 
for incident dementia

With dementia as the outcome, 33 models were 
constructed with demographics, plasma Aβ42/40, 
NfL, GDF15, TNFR1, IL6, and MCP1 as pre-
dictors (Supplementary Table  7). Among all 
biomarker combinations, the model incorporat-
ing Aβ plus TNFR1, IL6, and MCP1 showed the 
highest Harrell’s C index, but it did not reach 
statistically  significant differences compared 
to the amyloid model (p = 0.568, Table  2; HRs 
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of plasma biomarkers and covariates present in 
Fig.  1), indicating that two models performed 
similarly in predicting dementia. Based on the 
model enrolled Aβ, TNFR1, IL6, and MCP1, the 
estimated 4-year progression risks (95% CI) to 
dementia ranged from 2.2 (0.6%, 8.2%) to 6.6% 
(2.1%, 19.8%) in women and from 4.0 (1.0%, 
16.1%) to 12.0% (3.6%, 35.5%) in men (Supple-
mentary Table 8). Subjects with abnormal values 
in Aβ, TNFR1, and IL6 tended to have a higher 

probability of developing dementia compared to 
other biomarker combinations (Supplementary 
Table 8).

Model selection and cumulative probabilities 
for worsening of CDR status

With worsening CDR as the outcome and adjust-
ment for demographic factors, the amyloid 
model and multi-biomarker models showed equal 

Table 1  Characteristics of study population

Values presented in frequency (percentage) for categorical variables or median (IQR) for continuous variables
Aβ, amyloid-beta; APOE, apolipoprotein E; CDR, clinical dementia rating; GDF15, growth differentiation factor 15; IL6, interleu-
kin 6; MAPT, Multidomain Alzheimer Preventive Trial; MCP1, monocyte chemoattractant protein 1; MI, multidomain intervention; 
NfL, neurofilament light chain; TNFR1, tumor necrosis factor receptor type 1
1 p value based on Pearson’s chi-square/Fisher’s exact test for categorical variables and Mann–Whitney U test for continuous vari-
ables
2 Based on the z score of four cognitive tests: free and total recall of the Free and Cued Selective Reminding test, ten MMSE orienta-
tion items, Digit Symbol Substitution Test, and Category Naming Test
3 Defined as changing from CDR score 0 to ≥ 0.5, or from score 0.5 to ≥ 1

Total population (n = 401) Baseline CDR score

CDR = 0 (n = 176) CDR = 0.5 (n = 225) p1

Age (year) 76 (73, 80) 75 (72, 78) 77 (73, 80) 0.002
Female sex 233 (58.1%) 115 (65.3%) 118 (52.4%) 0.009
Education (n = 397)
  No diploma or primary school 101 (25.4%) 34 (19.4%) 67 (30.2%) 0.014
  Secondary education 125 (31.5%) 55 (31.4%) 70 (31.5%)
  High school 55 (13.9%) 22 (12.6%) 33 (14.9%)
  University level 116 (29.2%) 64 (36.6%) 52 (23.4%)

MAPT group
  MI + omega-3 109 (27.2%) 40 (22.7%) 69 (30.7%) 0.270
  Omega-3 91 (22.7%) 41 (23.3%) 50 (22.2%)
  MI 97 (24.2%) 43 (24.4%) 54 (24.0%)
  Placebo 104 (25.9%) 52 (29.6%) 52 (23.1%)

Body mass index (kg/m2) (n = 399) 26.2 (23.7, 28.8) 26.3 (23.6, 29.4) 26.0 (23.7, 28.3) 0.344
Composite cognitive  score2 (n = 398) 0.13 (-0.28, 0.55) 0.39 (0.03, 0.74) -0.06 (-0.63, 0.44)  < 0.001
APOE ε4 carrier (n = 364) 96 (26.4%) 41 (25.5%) 55 (27.1%) 0.726
Plasma biomarker
  Aβ42/40 0.113 (0.104, 0.122) 0.115 (0.105, 0.124) 0.111 (0.103, 0.120) 0.018
  NfL (pg/mL) 73.9 (56.7, 94.2) 73.2 (56.3, 91.0) 74.1 (56.7, 96.5) 0.495
  GDF15 (pg/mL) 1144.0 (926.0, 1479.0) 1087.5 (869.0, 1319.5) 1197.0 (964.0, 1582.0)  < 0.001
  TNFR1 (pg/mL) 1298 (1075, 1575) 1276 (1051, 1498) 1347 (1099, 1617) 0.049
  IL6 (pg/mL) 2.9 (2.1, 4.2) 2.8 (2.1, 4.0) 3.0 (2.2, 4.3) 0.404
  MCP1 (pg/mL) 224 (185, 270) 222 (183, 266) 225 (189, 276) 0.285

Outcome
  Incident dementia 28 (7.0%) 2 (1.1%) 26 (11.6%)  < 0.001
  Worsening of CDR  status3 137 (34.2%) 122 (69.3%) 15 (6.7%)  < 0.001
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discriminative powers (all p > 0.05; Table  2 
and  Supplementary Table  9). Multi-biomarker 
models composed of Aβ, GDF15, TNFR1, and 
IL6 or composed of Aβ, NfL, GDF15, TNFR1, 
and IL6 showed the highest Harrell’s C index 
(Table  2). Plasma Aβ significantly increased 

the hazard ratio of worsening CDR by five-
fold (multi-biomarker model with Aβ, GDF15, 
TNFR1, and IL6: inverse HR, 5.62 [1.37, 23.12]; 
model with Aβ, NfL, GDF15, TNFR1, and IL6: 
inverse HR, 5.58 [1.35, 23.06]; Fig. 2). Estimated 
1-year and 4-year progression risks according to 

Table 2  Comparing model performance for clinically meaningful cognitive outcomes by addition of plasma amyloid-beta and other 
biomarkers to model with demographic factors (Cox proportional hazard regression)

Aβ, amyloid-beta; BMI, body mass index; CDR, clinical dementia rating; GDF15, growth differentiation factor 15; IL6, interleukin 
6; MAPT, Multidomain Alzheimer Preventive Trial; MCP1, monocyte chemoattractant protein 1; NfL, neurofilament light chain; 
TNFR1, tumor necrosis factor receptor type 1
1 The multi-biomarker combination which showed the highest Harrell’s C index compared to other biomarker models; Harrell’s C 
indices of models with other biomarker combinations are provided in the supplementary materials

Harrell’s C index p

Incident dementia
  Demographic factors: age, sex, education, MAPT group, BMI 0.8019 Ref
  Plus Aβ42/40 0.8075 0.684 Ref
  Plus Aβ42/40, TNFR1, IL6,  MCP11 0.8163 0.508 0.568

Worsening of CDR status
  Demographic factors: age, sex, education, MAPT group, BMI, initial 

CDR score
0.8155 Ref

  Plus Aβ42/40 0.8169 0.726 Ref
  Plus Aβ42/40, GDF15, TNFR1,  IL61 0.8197 0.416 0.338
  Plus Aβ42/40, NfL, GDF15, TNFR1,  IL61 0.8197 0.420 0.342

Fig. 1  Hazard ratios of incident dementia according to the 
amyloid model (A) and the multi-biomarker model with the 
highest Harrell’s C index (B). The inverse of the HR point esti-

mate and the 95% confidence interval are presented for plasma 
Aβ42/40 (HR per unit decrease in the nature log of Aβ42/40 ratio)
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these two models are provided in Supplementary 
Table 10.

Model selection and estimated evolution for CCS

Supplementary Table 11 displays the results of linear 
mixed-effect models for CCS evolution with 33 dif-
ferent biomarker combinations. The multi-biomarker 
model, which included Aβ, GDF15, MCP1, and 
demographic covariates, had a significantly higher 
goodness-of-fit compared to the amyloid model 
(ΔAIC =  − 17.8; Table  3). It is worth noting that 
plasma GDF15 and MCP1 are only significantly asso-
ciated with baseline CCS but not with the change of 
CCS over time (i.e., insignificant plasma biomarker-
time interaction terms) (Table 4). On the other hand, 
plasma Aβ42/40 showed significant association with 
CCS evolution but not with initial CCS (Table  4). 
The estimated change of CCS over time according 
to the best-fitting model that included Aβ, GDF15, 
and MCP1 was displayed in Fig.  3. Having abnor-
mal Aβ, either combined with other abnormal plasma 
markers or not, presented a higher decrease in CCS 
over 4 years compared to the group with normal bio-
marker values (adjusted between-groups differences: 
β [95% CI], − 0.14 [− 0.22 to − 0.05], p = 0.002 with 
Aβ + /GDF15-/ MCP1-; − 0.20 [− 0.33 to − 0.07], 
p = 0.002 with Aβ + /GDF15 + / MCP1-; − 0.14 
[− 0.27 to − 0.02], p = 0.026 with Aβ + /GDF15-/ 
MCP1 + ; − 0.21 [− 0.35 to − 0.06], p = 0.005 with 
Aβ + /GDF15 + / MCP1 + ; Fig. 3).

Sensitivity analysis: effect of APOE ε4 genotype

After including APOE ε4 status as a covariate, 
Cox models incorporating multiple biomarkers still 
demonstrated higher Harrell’s C index but no sta-
tistically significant differences compared to the 
models including plasma Aβ alone, with demen-
tia and worsening of CDR status as the outcomes 
(Supplementary Table  12). Mixed-effect mod-
els evaluating CCS evolution with adjustment for 

Fig. 2  Hazard ratios of worsening CDR according to the 
amyloid model (A) and the multi-biomarker models with the 
highest Harrell’s C indices (B and C). The inverse of the HR 
point estimate and the 95% confidence interval are presented 
for plasma Aβ42/40 (HR per unit decrease in the nature log of 
Aβ42/40 ratio)

▸
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APOE ε4 genotype showed similar results as the 
main analysis; the multi-biomarker model includ-
ing Aβ, GDF15, and MCP1 remained with a bet-
ter goodness-of-fit compared to the amyloid model 
(ΔAIC =  − 11.6; Supplementary Table 12).

Discussion

This study evaluated the combined effects of multiple 
blood-based biomarkers of or potentially involved in 
AD on determining longitudinal cognitive changes. 
We observed the limited added values of multi-bio-
markers beyond the basic Aβ model for predicting 
future dementia onset and CDR progression. Nev-
ertheless, in our exploratory analysis, extending 
the amyloid model with plasma GDF15 and MCP1 
improved the model performance on the change of 
CCS, suggesting the potential values of combined 
assessment of inflammatory and cellular stress status 
with the core AD pathology for evaluating cognitive 
performance.

Multi-biomarker approaches have been suggested 
and applied to predict chronic diseases driven by sev-
eral biological processes, such as heart failure and 
AD [25, 38, 39]. Compared to focusing on a single 
marker, combining the assessment of multiple bio-
markers covers diverse underlying mechanisms of 
disease and the potential interaction between different 
pathophysiological pathways. Furthermore, prognos-
tic models constructed by multiple biomarkers allow 
risk-stratification of patients [38]. In line with this 
concept, a multi-biomarker approach including clas-
sical pathophysiological markers (e.g., Aβ for AD) 
and markers derived from the hallmarks of aging [40] 

Table 3  Comparing the goodness-of-fit between linear mixed-
effect models for composite cognitive  score1 by addition of 
plasma amyloid-beta and other biomarkers to model with 
demographic factors

Aβ, amyloid-beta; BMI, body mass index; GDF15, growth dif-
ferentiation factor 15; MAPT, Multidomain Alzheimer Preven-
tive Trial; MCP1, monocyte chemoattractant protein 1
1 Based on the z score of four cognitive tests: free and total 
recall of the Free and Cued Selective Reminding test, ten 
MMSE orientation items, Digit Symbol Substitution Test, and 
Category Naming Test
2 The multi-biomarker combination of the best-fitting linear 
mixed-effect model; the goodness-of-fit of the models with 
other biomarker combinations are provided in the supplemen-
tary materials

 Model AIC ΔAIC

  Demographic factors: age, sex, 
education, MAPT group, BMI

2602.2 Ref

  Plus Aβ42/40 2592.9 -9.3 Ref
  Plus Aβ42/40, GDF15,  MCP12 2575.1 -27.1 -17.8

Table 4  Coefficients of plasma biomarker variables in linear mixed-effect models examining the change of composite cognitive 
 score1 over time

Aβ, amyloid-beta; GDF15, growth differentiation factor 15; MCP1, monocyte chemoattractant protein 1
1 Based on the z score of four cognitive tests: free and total recall of the Free and Cued Selective Reminding test, ten MMSE orienta-
tion items, Digit Symbol Substitution Test, and Category Naming Test
2 All values of plasma biomarkers were natural log-transformed
3 Adjusted for demographic covariates (age, sex, education, Multidomain Alzheimer Preventive Trial (MAPT) group and body mass 
index (BMI))
4 The best-fitting multi-biomarker model among all biomarker combinations; the model was adjusted for demographic covariates 
(age, sex, education, MAPT group, and BMI). Coefficients of biomarker variables in other multi-biomarker models with different 
biomarker combinations are provided in supplementary materials

Biomarker2 Biomarker2 × time Biomarker2 × time × time

Coef. (95% CI) p Coef. (95% CI) p Coef. (95% CI) p

Amyloid  model3

  Aβ42/40  − 0.15 (− 0.66, 0.35) 0.546 0.60 (0.24, 0.96) 0.001  − 0.10 (− 0.18, − 0.01) 0.026
Multi-biomarker  model4

  Aβ42/40  − 0.11 (− 0.59, 0.38) 0.671 0.60 (0.24, 0.96) 0.001  − 0.10 (− 0.18, − 0.01) 0.028
  GDF15  − 0.53 (− 0.74, − 0.32)  < 0.001  − 0.07 (− 0.21, 0.07) 0.325 0.01 (− 0.02, 0.04) 0.583
  MCP1 0.33 (0.11, 0.55) 0.003 0.04 (− 0.11, 0.20) 0.606  − 0.01 (− 0.05, 0.03) 0.540
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Fig. 3  Estimated change of 
CCS over 1 year (repre-
sented by the gray bar) 
and 4 years (by the orange 
bar) according to the best-
fitting model that included 
plasma Aβ42/40, GDF15 and 
MCP1. The lower quartile 
was selected as normal (−) 
and the upper quartile as 
abnormal (+) for GDF15 
and MCP1; for Aβ, the 
upper quartile was selected 
as normal (−) and the 
lower quartile as abnormal 
(+). *p-value < 0.05. (A) 
Estimated mean change of 
CCS over time according 
to the indicated normal (−) 
/ abnormal (+) biomarker 
values. (B) Unadjusted 
difference in CCS change 
compared to the refer-
ence group (Aβ-, GDF15-, 
MCP1-). (C) Difference in 
CCS change compared to 
the reference group with 
adjustment for age, sex, 
education, MAPT group, 
and body mass index
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could lead to a better understanding of the importance 
of biological aging in the development of a large vari-
ety of chronic age-related diseases; in turn, this would 
permit the development of more precise treatments 
according to disease severity and the mechanisms of 
biological aging involved in the onset/progression of 
the condition. Indeed, recent studies have suggested 
that models combined with multiple neuropathologi-
cal biomarkers improved prediction on AD [25, 41, 
42] and longitudinal cognitive decline [25], even 
though the added marker was not individually asso-
ciated with cognitive outcomes [25]. Furthermore, 
the pilot work of Iulita MF et  al. emphasized the 
importance of combining amyloid and inflammatory 
factors to identify AD dementia [11]. However, their 
finding was restricted to the cross-sectional level, 
since individuals’ plasma biomarkers were measured 
at the same visit of the final AD diagnosis [11]. Our 
study provides further evidence on this topic by using 
a 4-year longitudinal design, relatively large sample 
size, and well-characterized cohort without dementia 
at baseline and including biomarkers involved in the 
aging process into the prognostic models, providing 
a comprehensive measurement of individual factors 
that potentially influenced the associations between 
the neuropathological features of AD and the clinical 
expression of cognitive decline [43].

However, in the present study, we observed limited 
added value of multiple plasma biomarkers in pre-
dicting dementia and CDR worsening. These findings 
could be explained by our small number of dementia 
cases and the relatively short follow-up period, con-
sidering that progression of MCI to dementia in older 
adults could take decades [44]. It is worth noting that 
amyloid biomarkers can be detected as abnormal 
from 5 to 10 years before dementia onset [45, 46] and 
become less changed in the later stages of the disease 
process [3, 47], which might explain the associations 
of plasma Aβ42/40 per se with the evolution of cog-
nitive performance but not with incident dementia in 
our results. In addition, our results should be inter-
preted cautiously since our study population was com-
posed of both cognitively normal individuals (43.9%) 
and subjects with MCI (56.1%), who had been sug-
gested to present different biomarker profiles[2]. As 
a result, more large-sample studies applied similar 
multi-biomarker approaches and focused on cogni-
tively normal, and MCI subjects, respectively, could 
provide more evidence on this topic.

Our exploratory analysis on changes of CCS 
revealed an improvement in model fit when extending 
the amyloid model with plasma GDF15 and MCP1, 
indicating that both plasma MCP1 and GDF15 might 
be important variables for evaluating cognitive per-
formance in addition to plasma Aβ and demographic 
covariates. This result should be interpreted cau-
tiously since both biomarkers were not individually 
associated with changes of CCS in the model. Plasma 
Aβ levels remained the main driver of CCS decline. 
Our findings may support the important role of MCP1 
in neuroinflammation in the brain compared to other 
chemokines and cytokines, including IL6 [48]. How-
ever, it is worth mentioning that we measured MCP1 
levels in the blood, which we could not completely 
exclude the influence of MCP1 secreted by peripheral 
tissues. Elevated levels of GDF15 in blood had been 
associated with various pathological conditions (e.g., 
sepsis [49], cardiovascular disease [50], cancer [51], 
and obesity [51]), serving as an integrative marker 
of disease severity [52] and recovery after acute ill-
ness [53]. GDF15 is induced in inflammation and 
mitochondrial stress [20], in which higher circulat-
ing levels had shown detrimental effects on cognitive 
performance and brain structure [54]. Our findings 
were in line with the literature which showed nega-
tive effects of GDF15 on cognition, implying a role of 
impaired mitochondrial function in cognitive decline 
during aging. Nevertheless, GDF15 has been reported 
as a neurotrophic factor in some animal models [55]. 
These conflicting findings reflect the diverse roles of 
GDF15 depending on the state of cells or their envi-
ronment [52], and its relationship with neurodegen-
erative disorders remains to be determined. Given 
the exploratory portion of this analysis and the single 
measurement of plasma GDF15 and MCP1, future 
research with a larger sample size, longitudinal, and 
multiple time-point of biomarker collection is encour-
aged to explore the relationship between brain amy-
loidosis and the underlying pathways of MCP1 and 
GDF15 at the early phase of cognitive impairment.

As one of the studies to apply multi-biomarker 
approaches in determining AD-associated cognitive 
outcomes, we highlight the use of several blood bio-
markers, and the assessment of plasma Aβ by a recent 
and improved measurement technique in a sample 
of older adults followed longitudinally and well-
characterized regarding cognitive-related outcomes 
and measures. Nevertheless, some limitations should 
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be mentioned. First of all, the main objective of this 
study was to explore whether combining measures of 
multiple critical biomarkers of AD played a role in 
predicting clinically cognitive outcomes rather than 
proposing new prognostic models on AD dementia. It 
is worth highlighting that all the models constructed 
in this study would need calibration and validation 
(both internal and external) before being used in other 
study cohorts. Second, we selected the biomarkers of 
interest based on data availability in the MAPT Study 
and only measured in a subset of MAPT participants. 
It is worth mentioning that participants enrolled in 
the current study had slightly different characteris-
tics compared to the rest of the MAPT population. 
Finally, three out of four subjects in the current study 
had received interventions over the first 3  years of 
follow-up. Although the interventions were not able 
to prevent or slow cognitive decline [28], they might 
affect the levels of the biomarkers, which were meas-
ured one year after enrollment. In order to minimize 
this bias, MAPT group allocation was added as a 
covariate in our analyses.

To conclude, the results of this study do not sup-
port the combined effects of multiple biomarkers on 
predicting dementia onset and CDR evolution. How-
ever, promising findings were obtained regarding 
GDF15 and MCP1 in our exploratory analysis using 
the CCS, an outcome more sensitive to change. Fur-
ther investigations on the utility of multi-biomarker 
approaches in amyloid-associated cognitive decline, 
particularly enrolling the assessment of inflammatory 
and cellular stress status, are needed.
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