Table 3.
Predictive performance of the three models.
| Model | Training set (N = 133) | Validation set (N = 57) | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Accuracy | Sensitivity | Specificity | PPV | NPV | AUC (95% CI) | Accuracy | Sensitivity | Specificity | PPV | NPV | AUC (95% CI) | |
| Radiomics model | 75.18 | 80.36 | 71.43 | 67.16 | 83.33 | 0.85 (0.79–0.91) | 71.93 | 87.50 | 60.61 | 61.76 | 86.96 | 0.84 (0.73–0.95) |
| Clinical–radiological model | 75.19 | 81.08 | 72.92 | 53.57 | 90.91 | 0.77 (0.69–0.85) | 66.67 | 63.16 | 68.42 | 50.00 | 78.79 | 0.76 (0.64–0.88) |
| Combined model | 81.20 | 71.83 | 91.94 | 91.07 | 74.03 | 0.90 (0.85–0.95) | 84.21 | 85.71 | 83.33 | 75.00 | 90.91 | 0.88 (0.80–0.97) |
PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve.