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Summary.

Exponential-family Random Graph models (ERGM) are widely used in social network analysis 

when modelling data on the relations between actors. ERGMs are typically interpreted as a 

snapshot of a network at a given point in time or in a final state. The recently proposed Latent 

Order Logistic model (LOLOG) directly allows for a latent network formation process. We 

assess the real-world performance of these models when applied to typical networks modelled 

by researchers. Specifically, we model data from an ensemble of articles in the journal Social 
Networks with published ERGM fits, and compare the ERGM fit to a comparable LOLOG fit. 

We demonstrate that the LOLOG models are, in general, in qualitative agreement with the ERGM 

models, and provide at least as good a model fit. In addition they are typically faster and easier 

to fit to data, without the tendency for degeneracy that plagues ERGMs. Our results support the 

general use of LOLOG models in circumstances where ERGMs are considered.
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1. Introduction

Social network analysis has become increasingly important in recent decades, with 

particular need in the social sciences to elucidate relational structure (Goldenberg et al., 

2010). However developing generative models for social networks has proven challenging 

(Chatterjee and Diaconis, 2013). Here we consider a social network a collection of fixed 

nodes, each with fixed covariates and with edges stochastically present or absent between 

every pair of nodes. The chief problems for modelling such data are the vast space of 

possible networks and the likely highly complex dependence structures of the network 

edges.

duncanclark@ucla.edu . 

HHS Public Access
Author manuscript
J R Stat Soc Ser A Stat Soc. Author manuscript; available in PMC 2022 October 01.

Published in final edited form as:
J R Stat Soc Ser A Stat Soc. 2022 April ; 185(2): 566–587. doi:10.1111/rssa.12788.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The Exponential-family Random Graph Model (ERGM) framework is widely used to 

represent the stochastic process underlying social networks (Frank and Strauss, 1986; 

Hunter and Handcock, 2006). ERGMs allow researchers to quantitatively evaluate the 

impact of local social processes and nodal attributes on the probability of edges between 

nodes forming. However these models are prone to near-degeneracy (Handcock, 2003) and 

can not naively be applied to large networks (Schweinberger, 2011; Chatterjee and Diaconis, 

2013). Model degeneracy is the application specific tendency of the model to concentrate 

probability mass on a small subset of graphs, especially those which are not similar to 

realistic networks for that application.

Much progress has been made on managing model degeneracy by introducing local 

neighbourhood structures (Schweinberger and Handcock, 2015) or tapering (Fellows and 

Handcock, 2017). The presence of degeneracy in many fitted ERGMs motivates the search 

for alternative model classes with similar or complementary modelling capacity that are less 

susceptible to these challenges.

While ERGMs are descriptive, they are often embedded as the equilibrium distribution of 

a social process. The Latent Order Logistic model (LOLOG) (Fellows, 2018b) is a related 

model that uses an edge formation process to develop a general probability model over 

the space of graphs. It is motivated by using the so-called change statistics, the change in 

the specified graph statistics resulting from toggling an edge on or off, as predictors in a 

sequential logistic regression for each possible edge. Noting that an ERGM specified with 

independent tie variables, reduces to a sequential logistic regression on its change statistics, 

ERGM and LOLOG are equivalent in the independent dyad case (Fellows, 2018b). LOLOG 

models also allow non-independent dyads, and graph statistics that depend on the order of 

edge formation, which result in different models than ERGM.

LOLOG models have the advantage that they are straightforward to sample from, and 

can be used with simpler model terms, that would for an ERGM almost certainly result 

in near-degeneracy. This allows for a fast and user friendly fitting procedure, with easily 

interpretable model terms.

How can we assess and compare differing model classes? Both ERGM and LOLOG are 

fully general and able to represent arbitrary distributions over the set of graphs (Fellows, 

2018b, Theorem 1). As ERGMs are the equilibrium distribution of a relatively general 

Markov chain Monte Carlo (MCMC) process, there are many mechanisms that can lead 

to them, as there are for LOLOG. Hence both model classes have strong theoretical 

and modelling motivations, although the ERGM class to this point has been much more 

extensively explored (Schweinberger and Stewart, 2020; Schweinberger et al., 2020). In this 

paper, we provide a separate and novel contribution to the assessment on the model classes. 

Our objective is to compare the models by a pairwise assessment on the population of 

networks that the research community would choose to fit them on. The idea here is to move 

the perspective from that of the model viewpoint (i.e., given we have a model, what can we 

fit with it?) to a data-centric view point (i.e., given that this is the data we have, what are the 

best modelling approaches?). The latter is the question facing the real-world users of these 
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models, while the “inverse problem” addressed by the former is commonly taken as it does 

not require the population of networks to be specified.

However, to take the data-centric viewpoint, we need to specify the population. We 

operationalised this in this paper by taking a population of networks that ERGM models 

have been applied to in the premier journal for publishing social network analyses, Social 
Networks (Everett and Valente, 2020). Social Networks is an interdisciplinary journal for 

those with “interest in the study of the empirical structure of social relations and associations 

that may be expressed in network form”. While the sub-population of networks in Social 
Networks for which ERGMs have been fit is a sample of the population of interest, we 

believe that it is a salient and (non-statistical) representative sub-population of the broader 

population.

Our selection of ERGM papers was at first a census of papers in the journal Social 
Networks using the ERGM framework, published from the journal’s founding in 1979 

up to and including the January 2016 issue. Note that we have chosen a population of 

networks that are biased toward ERGM. These networks have successfully completed the 

peer-review process of Social Networks. In particular, the ERGM fit and analyses have 

passed peer-review and are deemed of sufficient scientific interest to appear in this premier 

journal. Clearly this is not sufficient to ensure the fit and models are appropriate for the 

data, although they represent a strong selectiveness relative to the population of networks 

that researchers would consider for analysis (without regard to a model class choice). Hence 

a comparable or competitive fit for LOLOG models to this sub-population presents stronger 

evidence for the value of LOLOG models than a comparison to the broader population. 

In particular it seems likely that in papers published that fit an ERGM model, ERGM 

performs well on this data set, thus we expect a publication bias towards networks that suit 

ERGM well, which may not necessarily suit LOLOG well. We therefore suggest that good 

performance on data published with ERGM fits is a conservative indicator that LOLOG is a 

useful model for analysing social networks.

Identifying, assembling and fitting ERGMs and LOLOGs to an ensemble of networks, 

analysing their goodness of fit (GOF) and interpreting the results, is a significant 

undertaking. For brevity we give the fit of networks from a case-study (Sailer and 

McCulloch, 2012) in detail and provide summaries for the remaining networks in the 

supplement.

The structure of this paper is as follows. In Section 2 we briefly introduce ERGMs and 

LOLOG models, reviewing work in Fellows (2018b) as well as discussing the theoretical 

similarities and differences. Section 3 gives a description of the ensemble of networks and 

discusses the motivation for selecting such an ensemble. Section 4 shows both the LOLOG 

and ERGM fit of office layout networks with the data from Sailer and McCulloch (2012). 

Section 5 presents a summary of all the LOLOG and ERGM fits to each of the networks 

in the ensemble. Section 6 discusses the results of the fitting, as well as its implications 

regarding the utility of the LOLOG model.
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2. ERGM and LOLOG Model Classes

Let Y be a random graph whose realisation is 

y ∈ Y = {a ∈ ℝn × n ∣ ∀i, j yi, i = 0 yi, j ∈ {0, 1}}. We regard the number of nodes and any 

nodal covariates as fixed and known. For undirected networks the additional restriction that 

yi,j = yj,i ∀i,j can be added. Let ∣y∣ = n(n − 1) denote the number of possible edges in y (∣y∣ = 

n(n − 1)/2 for undirected graphs). A dyad in a graph is a sub-graph of two nodes and any ties 

between them.

2.1. Model Specification

LOLOG and ERGM are alternative specifications of the distribution of Y. An ERGM for the 

network can be expressed as

pE(y ∣ θ) = exp(θ ⋅ g(y))
c(θ) y ∈ Y (1)

where g(y) is a d–vector valued function defining a set of sufficient statistics; θ ∈ ℝd is a 

vector of parameters; and c(θ) the normalising constant. Each ERGM family is defined by 

the choice of sufficient statistics. These are chosen by the researcher, depending on domain 

knowledge, to specify the generating social processes. They can be any statistical summary 

of network properties and are typically motivated by social theory (Goodreau et al., 2009) 

or symmetry arguments (Strauss, 1986). In this way, ERGMs constitute a family of models 

across different choices of the sufficient statistics.

Typically graph statistics are the density and degree counts, as well as nodal or edge 

covariate terms such as sociability and homophily (Morris et al., 2008). Geometrically 

weighed edgewise shared partner (GWESP) and geometrically weighted degree (GWDEG) 

terms are often included (Snijders et al., 2006) as they capture complex structure while 

reducing the effects of near degeneracy (Handcock, 2003). A very large number of terms 

are used by researchers in applications. Explicit definitions of almost all terms used in this 

paper can be found in Morris et al. (2008) or the documentation of Handcock et al. (2018). 

Regardless of which sufficient statistics are used, the ERGM will have the maximal entropy 

of any distribution satisfying the d-dimensional mean constraints placed on g(y), E[g(y)] = 

μ.

LOLOG models posit the existence of a latent discrete temporal dimension, t = 1, … , ∣y∣ so 

that the edges form in a sequence. Fellows (2018b) defines the latent random variables Yt, t 
= 1,…, ∣y∣ representing the sequential formation of Y. Yt has exactly t edges and is formed 

from Yt−1 by the addition of an edge. A LOLOG model is specified by two components, The 

first is the probability of observing a graph given a specified order of edge formation, s:

p(y ∣ s, θ) = ∏
t = 1

∣ y ∣ 1
Zt(s)exp (θ ⋅ Cs, t) (2)

where s = {s1, s2, …, s ∣ y ∣ } ∈ ℐ ∣ y ∣  is the set of possible edge formation orders with ∣y∣ 

dyads, and
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Cs, t = g(yt, s ≤ t) − g(yt − 1, s ≤ t − 1) (3)

where s≤t denotes the first t elements of s ∈ ℐ ∣ y ∣ . The Cs,t are the difference in the graph 

statistics from the yt−1 network to the yt network and are informally called the “change 

statistics” of the formation process. The Zt(s) sequentially specify the normalising constants. 

Let yt+ be the graph yt−1 with the edge st added, then

Zt(s) = exp (g(yt+, s ≤ t) − g(yt − 1, s ≤ t − 1)) + 1 (4)

The second component is the model for the edge order permutations, p(s). The LOLOG 

distribution for Y is:

pL(y ∣ θ) = ∑
s

p(y ∣ s, θ)p(s)

= ∑
s

p(s) ∏
t = 1

∣ y ∣ 1
Zt(s)exp (θ ⋅ Cs, t)

(5)

2.2. Model Interpretation

For the LOLOG model, conditioning on an edge permutation s, at each step t, we have 

logit (p(yt+ ∣ s ≤ t, yt − 1, θ)) = θ ⋅ Cs, t. Thus at each time t, conditional on the network already 

formed by that point, each dyad is a logistic regression on the change statistics associated 

with the edge. For ERGMs, equation (1) yields the auto-logistic interpretation of the θ 

parameter log
p(yi, j

+ ∣ yi, jc , θ)

p(yi, j− ∣ yi, jc , θ)
= θ ⋅ (g(yi, j

+ ) − g(yi, j− )), where yi, jc  is y ∖ yi, j, yi, j
+ = yi, jc ∪ {yi, j = 1}

and yi, j− = yi, jc ∪ {yi, j = 0}. Thus, conditional on the rest of the graph, each dyad can 

be thought of as an (auto)-logistic regression on change statistics. This gives a helpful 

interpretation for the parameters, but does not help interpret the probability distribution of 

each edge unconditional of the rest of the graph.

2.3. Model Estimation

Due to the intractability of summing over all possible edge permutations in the 

LOLOG model, the likelihood or likelihood ratio, cannot be evaluated and the maximum 

likelihood estimate (MLE) is intractable. Fellows (2018b) proposed a method of moments 

(MOM) approach to estimate model parameters. The idea is to seek θMOM such that 

g(y) − EθMOM[g(y)] = 0. Fellows (2018b) developed a Newton-Raphson approach as it is 

possible to differentiate the EθMOM[g(y)] with respect to θ and approximate its value by 

sampling from the LOLOG model. Along with introducing LOLOG models in Fellows 

(2018b), the lolog R package (Fellows, 2018a) provides a sophisticated, fast and user 

friendly method to fit LOLOG models to data.
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ERGM parameters are typically estimated using an MCMC procedure to estimate the MLE 

(Snijders, 2002; Hunter and Handcock, 2006). This is computationally demanding and there 

are sophisticated R packages available to perform this estimation (Handcock et al., 2018).

For both LOLOG and ERGM models we approximate standard errors derived from MCMC 

estimated inverse Fisher information matrices.

2.4. Model Discussion

A key advantage of the LOLOG model is the ease of simulation from the model. To 

simulate a network we simply draw s from p(s) and perform a sequential logistic regression 

simulation on the change statistics (Fellows, 2018a). The ERGM by comparison requires a 

full MCMC procedure to simulate networks (Handcock et al., 2018).

For LOLOG models we are required to model p(s) the probability mass function (PMF) on 

the space of possible edge permutations. In the absence of strong substantive reason for a 

particular partial ordering of the edges, a uniform PMF can be used. However many natural 

reasons exist to constrain the edge ordering. For example, in schools that welcome a new 

cohort each year, edges in upper years could reasonably be constrained to have been formed 

before edges in lower years.

For ERGMs the interpretation is conditional on the entire rest of the network, whilst for 

LOLOG models with a specified edge ordering, the interpretation is conditional only on the 

network formed up until that point. We emphasise that the network formed up until that 

point will depend on the particular edge permutation. We note that in the case where the tie 

variables are independent, the edge ordering s does not matter (as the dyads do not depend 

on each another) and LOLOG reduces to logistic regression on change statistics, as does 

ERGM and to the same model.

We may also compare dyad-dependent ERGM and LOLOG models through their simulation 

algorithms A network from an ERGM is simulated through an MCMC procedure where 

dyads are considered conditional on the rest of the network. Often many thousands of 

steps are required to converge to the stationary distribution. As noted above, the log odds 

is equal to the inner product of the parameter and the change statistics of that dyad. The 

LOLOG model is formed by first sampling a dyad ordering, then starting with an empty 

network, adding an edge based on the log odds (being the inner product of the parameter 

and the change statistic). Each dyad is considered for edge formation and then the process is 

terminated leaving the simulated graph.

LOLOG considers each dyad exactly once, whereas the ERGM process can consider dyads 

multiple times for both edge formation and dissolution. We suggest a reason that LOLOG 

models do not suffer from the same degeneracy is that, in the simulation, each dyad is 

considered exactly once. This limits the scope for the explosive edge formation or deletion 

that often occurs when simulating from ERGM models.

More broadly we argue that the LOLOG, motivated as a model with an easy simulation 

method with parameters that remain interpretable, is more desirable than ERGM. Whilst 
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ERGMs are straightforward to write down, they require MCMC procedures to simulate 

from.

2.5. Assessing Goodness of Fit

For the interpretation of model parameters to be valid, we must show that the model is a 

plausible generating process for the observed network. In Section 4 we follow the goodness 

of fit procedure as in Hunter et al. (2008). That is, we graphically compare the simulated 

distribution of chosen graph statistics to the observed values of those graph statistics. 

Whilst our models are highly parsimonious representations of complex social processes, 

the goodness of fit method highlights, that at a minimum, we should expect the observed 

statistics to be plausible realisations from a well fitting model.

3. Description of the Ensemble

We considered papers in the journal Social networks where ERGMs were fit to data. We 

included papers up to and including the January 2016 issue. There were 45 such papers, 

of which we selected 18 papers as follows. First, we excluded bipartite ERGMs (5), we 

then included all networks with publicly available data (7) and selected a further 11 papers 

out of the remaining 33 based on their, subjectively assessed, novelty as well as the likely 

availability and ability to share data. We contacted the authors of the 11 papers and received 

the data for 7 of the papers. This gave an ensemble of 137 networks in 14 peer reviewed 

published papers, as many papers contained multiple networks. We note that 102 of these 

networks were from a single paper (Lubbers and Snijders, 2007), which were omitted from 

our analyses, leaving 35 networks. Table 1 shows a brief summary for each of the networks.

Our selection of ERGM papers was at first a census of papers in the journal Social Networks 
using the ERGM framework. The conclusions drawn from this study should be considered 

stronger than if the networks selected were sampled at random or through convenience. We 

do note that we did take a selective sample as described above as a first wave of networks to 

request data for, though this was also chosen based on our thoughts on which networks the 

authors would be able and willing to share.

We considered papers that used ERGMs for their statistical analyses as the ERGM class 

of models is arguable the most widely used descriptive statistical model for network 

analyses (Amati et al., 2018). Both LOLOG models and ERGMs are typically used to model 

global network structure using local network structure, thus comparing the two models is 

appealing. While both LOLOG and ERGM can represent any given PMF over the space 

of networks (Fellows, 2018b), specifying interpretable models that fit the data is often the 

practical challenge. There is no obvious reason to suspect similar performance in terms of 

fit and interpretability, when fit with similar network statistics, on the same network. In 

particular it seems likely that in papers published that fit an ERGM, ERGM should perform 

well thus we expect a publication bias towards networks that suit ERGM well compared to 

LOLOG. We therefore suggest that good performance on data published with ERGM fits, is 

a conservative indicator that LOLOG is a useful model for analysing social networks.
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We also note that the LOLOG model allows for the consideration of information on the 

order of the edge formation within a network the researcher may have. This is currently 

implemented by allowing edge orderings to be constrained to those orderings compatible 

with the sequential adding of nodes to the network, followed by the consideration of all 

possible new edges. This is not possible in ERGM and few of the available networks had 

plausible ordering mechanisms. However this may not be entirely due to the lack thereof: 

without the ability to model such an ordering process with ERGM, it seems likely that even 

if there is a compelling sequential node adding process the data would not be reported or 

even collected.

4. Case Study of LOLOG and ERGM fits: Complex networks where ERGM 

is insufficient

In this section we consider a case study from a single published paper where the networks 

in question are sufficiently complex to demonstrate that ERGM can be insufficient and 

LOLOG can help in modelling social network data.

We consider four networks of daily social interactions between workers within four different 

office spaces. An ERGM based analysis was originally carried out in Sailer and McCulloch 

(2012). Ties are present between person i and person j if person i reported daily social 

interaction with person j. Two of the networks are of a British university faculty before 

and after an office refurbishment, the remaining two are a German research institute and 

a corporate publishing company. The networks are directed and have 69, 63, 109 and 120 

people/nodes, respectively.

The research question of interest in Sailer and McCulloch (2012) was the effect of spatial 

distance in the formation of social interactions within an office environment. The authors 

specified an ERGM with terms to represent the potential complex structure. These are 

listed in the first column of Table 2 and detailed here. The edges term models the overall 

propensity for social interactions, it has a similar role to an intercept term in regression. 

The reciprocity term measures the propensity for both people in a dyad to report social 

interaction with the other. The GWESP term, with decay parameter 0.5, is an integrated 

measure of the transitivity of social interactions (See Snijders et al., 2006, for a detailed 

explanation). The usefulness term is an edge-covariate term, with value equal to the sum 

over edges of the usefulness measure: for dyad (i, j) being person i’s self reported perception 

of the usefulness of person j. It measures the direct dependence of the propensity to have 

a social interaction on the usefulness of the person nominated. The team match term is the 

number of ties between people from the same team. It measures the propensity of teams 

to influence the density of social interaction. floor match is similar to team match, except 

it measures the importance of being on the same floor for social interaction. The metric 

distance term is the sum of the shortest walking distance in meters between the socially 

interacting peoples normal place of work. Similarly, the topo distance is the sum of measures 

of how far the desks could be perceived to be apart given the topography of the office (See 

Sailer and McCulloch, 2012, for precise definitions). The coefficients of the metric and topo 

distances measure the increase in log-odds of a social interaction given the distance they are 
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apart. These coefficients are generally negative, indicating that social interactions become 

less common as the distance increases.

The best fitting model was then selected using the Akaike Information Criterion (AIC) and 

then a variety of different distance metrics were added individually as edge-covariates. The 

best model in terms of AIC was once again selected and analysed. Notably no analysis of the 

goodness of fit for the models was provided.

4.1. Model Fits

We were able to recreate the selected ERGM fit for all four networks, shown in Table 

2. The reciprocity coefficient is positive in two of the networks, indicating that the 

conditional log-odds of a social interaction is positive if the social interaction is mutual. The 

GWESP coefficient is positive for all four networks, indicating that the log-odds of a social 

interaction existing is positive if the social interaction increases this measure of transitivity. 

The usefulness coefficient is positive for all four networks, indicating that the log-odds of 

a social interaction existing is positively related to the usefulness of the nominated person. 

The team match coefficient is positive for all four networks, indicating that the log-odds of 

a social interaction existing is positive if the social interaction is within the same team (as 

distinct from between people in different teams). Floor match coefficients are also positive, 

indicating that the log-odds of a social interaction existing is positive if the social interaction 

is within the same floor (as distinct from between people in different floors). The metric 

and topo coefficients are generally negative, indicating that social interactions become less 

common as the distance increases.

Overall, the Sailer and McCulloch (2012) concluded that daily social interactions of people 

in offices exhibit a tendency for mutuality and social closure. Interactions are also more 

likely to occur where there is a high level of usefulness of the receiver to the sender as well 

as within teams. While being on the same floor plays a role in some cases, the distance apart 

plays a role in all cases, with social interactions more likely for people closer together.

We were able to obtain LOLOG fits with the same covariates, as the ERGM fits for all 

networks, we summarise the fits in Table 3. In addition we show the LOLOG fit using 

GWESP, 2- and 3- in- and out-stars, together with all covariate matches and metric distance 

in Table 4. For k = 1, 2,…, a k-in-star centred on a node i and a set of k different nodes 

{i1,…,ik} such that the tie from i to ij exists for j = 1,…, k. The k-in-star statistic is 

the number of distinct k-in-stars in the network (i.e., summing over the centring nodes). 

The k-out-star statistic is the same except the ties from ij to i must exist for j = 1,…,k 
(rather than the in-ties to i). As noted in Section 2.2, the qualitative interpretation of the 

LOLOG coefficients is similar to ERGM with the primary difference being the log-odds 

is conditional on the network at the point the edge is added. We directly compare the 

qualitative fits in Section 4.3.

We were also able to fit LOLOG models to each of the networks when the GWESP term 

is replaced with a triangle term. This is not possible with ERGM due to near-degeneracy. 

We summarise this in Table 5. The estimated standard errors for the Publisher network are 

very high, suggesting there is great uncertainty in the data generating process. The estimated 

Clark and Handcock Page 9

J R Stat Soc Ser A Stat Soc. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



standard errors for the mutual and triangle terms for the University in 2005 and 2008 are 

also high though not as severe and they fall out of significance for these model fits. As the 

triangle term increases the estimated standard errors and does not improve the GOF (see 

next section), we suggest using the GWESP term.

We also fitted the LOLOG model where the people are added in the order of their average 

usefulness, as reported by the other people. As we suspect more useful people may have 

been in the office longer or should be the first point of contact for new employees we 

suggest this as a plausible ordering mechanism. The fit was comparable to the fit without the 

ordering, and the GOF was not improved, so we do not consider it further.

We tried to fit an ERGM model with the in- and out- geometrically weighted degree 

(GWDEG) terms but this was degenerate for the University 2005 and 2008 networks. The 

in-GWDEG term adds one network statistic to the model equal to a weighted sum of the 

in-degree counts with weights decreasing geometrically. The out-GWDEG is similar with 

the out-degree counts (See Hunter, 2007, for a detailed explanation). For the Research 

institute and Publisher out-GWDEG was negative and significant, in line with the LOLOG 

model positive 2-star and negative 3-star parameters. However, the fit was still poor and 

inferior to the LOLOG model. We do not comment further on this, though it is reassuring 

that the ERGM with GWDEG gives similar interpretations to LOLOG with star terms. The 

GWDEG terms were not discussed in Sailer and McCulloch (2012).

We note the computation time difference in the LOLOG and ERGM parameter estimation. 

We ran each with a single core with Intel(R) Xeon(R) Platinum 8160 CPU @ 2.10GHz 

processor. The recreated ERGM took around 35 seconds, and the LOLOG took around 8 

seconds. For larger networks, we found parallelisation in the network simulation step of the 

fit to be extremely helpful for both the LOLOG and ERGM models. From our experience 

for larger networks the performance differential between LOLOG and ERGM can be much 

greater, in particular when the ERGM MCMC simulation is computationally expensive.

4.2. Goodness of Fit

Firstly we consider the goodness of fit for the published ERGM model, and the LOLOG 

model with the same terms. Figures 1 show the comparison of simulated distribution of the 

in-degree with the observed network statistics. Figures 3 and 4 contained in Appendix A 

show the same comparison for edgewise shared partners (ESP) and out-degree.

Table 4.2 shows comments on the goodness of fit for each network, using the recreated 

published ERGM and the LOLOG model with published ERGM terms. Where no comment 

is made for any of the goodness of fit terms or any model, the model fits well on that 

statistic.

All models for all networks have a least one of the in-degree, out-degree or ESP statistic of 

the observed network not being a typical value for the fitted models. As a result the models 

do poorly on recreating networks similar to the observed, and thus inference based on the 

parameter estimates and standard errors should be treated with caution. In particular we note 
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that the LOLOG model with identical terms to the published ERGM does not seem to help 

improve the fit for any of the networks in question here.

We also show the GOF for in-degree the LOLOG model with GWESP and 2- and 3- in- 

and out-stars for each model in Figure 2. Figures 5 and 6 contained in Appendix A show 

the plots for out-degree and ESP. We note here that all models fit the in-degree distribution 

well, all models except for the Publisher network fit the out-degree distribution well and the 

University 2005 and 2008 models fit well on the ESP distribution. This is an improvement in 

all cases versus the ERGM models published in Sailer and McCulloch (2012).

4.3. Model Comparison

These networks are of particular interest as they represents a real world cases of applied 

researchers seeking a statistical tool to represent and test their social hypotheses and analyse 

their collected data. Good performance in such settings for the LOLOG model suggests the 

model could be of real use to the applied social network research community. Using these 

four complex networks as an example, helps us to present the the utility of the LOLOG 

model. The ERGM and LOLOG models with the terms as in Sailer and McCulloch (2012) 

produced the same qualitative interpretation.

However it is important to note that neither the specific LOLOG or the ERGM fitted the data 

well in terms of all in-degree, out-degree and ESP distributions. Therefore the models are 

not capturing basic aspects of the observed network data and the above interpretation should 

be treated with caution. In particular the Publisher network proved especially hard to fit.

Using the triangle term in the LOLOG model in place of the GWESP term did not improve 

the fit. Including 2- and 3- in- and out-star terms yields models that fit much better on the 

in- and out-degree distribution as well and the ESP distribution. We therefore have a stronger 

belief that inferences from these models are valid. They show similar conclusions to the 

published ERGM, though in addition we observe a significant positive out-2-star coefficient 

and a significant negative out-3-star coefficient, suggesting that there is a tendency for some 

people to have social interactions with many more people that others. This tendency for 

super-daily interactors was not captured in the published ERGM fit. We also note that the 

lack of a significant in-2-star parameter suggests that there is not a corresponding tendency 

for some people to attract more interactions, when their usefulness had already been 

accounted for. We can infer that perhaps there is a surplus of unwanted daily interaction 

due to people with a tendency for high out-degree. Thus the LOLOG model allowed for a 

better fit, as well as a deeper interpretation of the social interaction process.

5. Summary of Results for the Ensemble

The comparison of the value of models rarely will come down to a quantitative measure on 

a single dimension. The social processes that produce network data are typically complex 

and our choice of which data to analyse tends to favour complex structures. The models 

typically only approximate that structure and some features of the data are not represented in 

the models. Scientists that model social network data typically have multiple objectives with 

some models more suited to some of those objectives rather than others. Having said this, 
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we constructed a rubric of criteria to assess the models, both relatively and absolutely. We 

follow each criterion with a brief justification for why it was included.

a. Are we able to recreate the published ERGM qualitatively?

We asked this to screen out network data where our usage differs qualitatively 

from the original, for whatever reason. This is to help ensure we were using the 

data correctly, so that our comparison is valid.

b. Do the recreations of the published ERGM fit the network well?

This is to assess the validity of the published ERGM results, and to assess if 

ERGM is a good model for the published case study.

c. Are we able to fit the LOLOG with the published ERGM terms?

This is to assess the LOLOG on terms likely favourable to the ERGM. Typically, 

published ERGM will have undergone model selection criteria to choose terms 

that had good fit compared to other possible ERGM. This criteria assesses the 

flexibility of the LOLOG model class.

d. Does the LOLOG model with the published ERGM terms fit well?

This is an absolute measure of the LOLOG goodness-of-fit with the ERGM 

terms.

e. Are we able to fit the LOLOG model with ERGM Markov terms (that are often 

degenerate in ERGM)?

Markov terms, such as k-stars and triangles, often lead to near-degenerate models 

despite their conceptual appeal (Frank and Strauss, 1986). This criteria assesses 

if the LOLOG can aid in interpretability by using simpler terms that are not 

possible in ERGM.

f. Is a better fit achieved with LOLOG than the published ERGM?

This is a direct comparison to judge if the LOLOG is a better model for the 

observed data than the published ERGM.

g. Do the published ERGM and best-fitting LOLOG models have consistent 

interpretations?

This assesses if qualitative substantive conclusions draw from each model 

are consistent with the other. If affirmative, this gives some confidence that 

qualitative conclusions are not simply an artifact of the chosen modelling 

approach.

h. Which model do we believe to be more useful?

This is a subjective judgement criterion. A major component is the goodness-

of-fit criteria (Section 2.5). These criteria measure the degree that important 

statistical characteristics of the network data are reproduced by the model. These 

focus on characteristics not explicitly in the model. A second component is the 
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substantive interpretability of the terms (i.e., are they socially salient). A third is 

the complexity of the model terms (i.e., the value of simplicity).

Table 7 provides a summary of the ERGM and LOLOG model fits for the networks in our 

ensemble, the columns are binary answers (1=Yes, 0 = No), to the above criteria. The fits 

were carried out in R using the ergm package (Handcock et al., 2018), and the lolog package 

(Fellows, 2018a). For the GWESP, GWDSP and GWDEG terms decay parameters were 

used as stated. If they where not available, α = 0.5 was used.

Finally, we make some general comments regarding the significant amount of information 

on the hundreds of models fitted to the data that we gathered, more detailed summaries for 

each individual network are contained the supplement. More detailed overall comments on 

the study are in the discussion in Section 6.

Overall we see that in many cases, we were not able to recreate the published ERGM (Table 

7 column a), and often when we could, the model did not fit the data well using the GOF 

methodology of Hunter et al. (2008) (Table 7 column b). We were sometimes able to use the 

same terms as the published ERGM to fit a LOLOG model, however there were also some 

networks where we could not fit the LOLOG model with ERGM terms.

Where a LOLOG model with ERGM terms was able to be fit it usually did not fit the 

data well (Table 7 column c). However in almost all cases we were able to fit the LOLOG 

model, with terms that usually result in degenerate ERGMs e.g. triangles and stars (Table 7 

column e), and usually could achieve at least as good a fit as the published ERGM (Table 

7 column f). Where is was possible to fit both a LOLOG and ERGM model the qualitative 

interpretations were equivalent on all parameters for half of the networks (Table 7 column 

g).

In general our experience in fitting the LOLOG model was that it was easier and faster to 

fit that ERGM (Table 7 column h), with the MOM estimation typically requiring little to 

no tuning, in contrast to ERGM models. In addition the triangles and star terms that can be 

readily fit with LOLOG models provide a simple and intuitive interpretation for users of the 

model.

6. Discussion

We have shown that the LOLOG model can be fit to most members of an ensemble of 

network data sets that have published ERGM fits in the journal Social Networks. We report a 

case-study of a complex data set and show that the LOLOG model is at least the equal of the 

ERGM, in terms of goodness of fit and interpretability. We carried out fits to 35 networks 

in total and gave a summary of each of the networks’ fits. We regard this as strong evidence 

that the LOLOG model is a useful model for modelling real social network data, as journal 

articles with published ERGM fits likely have a selection bias towards data sets that are well 

suited to ERGMs.

In carrying out this study we have gained a great deal of practical experience in the types of 

tasks for which ERGMs are used, as well as practical problems in fitting them, in particular 
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code run time and degeneracy issues. We have found the LOLOG model to be in general 

more user friendly and faster to fit, leading to easier identification of poor models, and 

a much faster data analysis procedure. The benefits of this should not be overlooked, in 

particular when social network analyses are often of interest to applied researchers whose 

expertise is not statistical modelling. As a result LOLOG models seem particularly better 

suited to feasibly analysing larger networks, which whilst possible to fit with ERGMs 

(Stivala et al., 2020), often require significant tuning and computational resources.

LOLOG models can usually be fit with terms that are almost always degenerate for ERGMs 

on even small networks. Using this greater flexibility of specification, we were often able to 

achieve a better fit. In addition the need to use complex geometrically weighted statistics is 

reduced, aiding interpretability of the LOLOG model. In practice we also believe LOLOG 

models could facilitate more robust model selection procedures. The degeneracy issues of 

ERGM as well as the time taken to fit the model, can result in researchers omitting terms 

based on their degeneracy, as well as considering fewer models than they would want. The 

fast fit and robust to degeneracy properties of the LOLOG model should help alleviate these 

practical issues. This should increase the scope of terms that researchers use, as they can 

focus on their representation of the underlying social processes rather than being restricted 

by computational and class specific representation issues.

We have also seen that qualitative interpretations of analyses carried out with both ERGMs 

and LOLOG models are generally in agreement. We do note, however, from our experiences 

that the LOLOG model applied to small networks can result in parameter estimates with 

high variance, where the ERGM model parameters have lower variances, more amenable to 

interpretation.

Goodness of fit of LOLOG models also compares favourably with the ERGMs, with little 

drop in quality, for the same terms. In particular with the ability to use simpler terms for the 

LOLOG model we were often able to achieve improved fit over the published ERGMs in the 

ensemble of networks that we fit.

The LOLOG model has the advantage of being able to account for edge orderings. We 

believe that this may be helpful for analysing network data, although we have not seen 

clear benefits in the ensemble of network data in this study. It is worth noting that there 

are many settings where the ability to model the edge ordering process is a great advantage 

of the LOLOG model. A clear case is citation networks where the temporal directional is 

fundamental (McLevey et al., 2018). Another case is where preferential attachment type 

processes are thought to be strong. A third is where the edge ordering is known exactly, or 

thought to be strongly influenced by a covariate or contingency. The further consideration 

of edge ordering processes is beyond the scope of this paper. However, we hope that 

the availability of a latent ordering network model like LOLOG available will spur the 

development of edge ordering processes models. We also note that the LOLOG model is a 

fully general model in the sense that it can represent any PMF over the space of networks. 

Therefore even if it is hard to justify such an edge formation procedure, the LOLOG model 

may still be a useful approach to understanding the social processes producing network data.
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All analysis was done in the R environment (R Core Team, 2020) primarily with the lolog 

(Fellows, 2018a) and ergm packages (Handcock et al., 2018). The code and available data 

to reconstruct the analyses of this paper are available at https://github.com/duncan-clark/

lolog_catalog_paper/tree/main/example_fit.

Acknowledgements

The project described was supported by grant number 1R21HD075714-02 from NICHD, and grant numbers 
SES-1230081 and IIS-1546300 from the NSF.

We would like to acknowledge and thank all of the authors that provided data that made this study possible. We 
would like to thank the following, for taking the time to correspond with us and for providing their data: Greetje 
Van Der Werf, Lotte Vermeij, Miranda Lubbers, Mikko Kivelä, Riitta Toivonen, Jari Sarimäki, Jukka-Pekka Onnela, 
Robert Ackland, Birgit Pauksztat, Kerstin Sailer, Dean Lusher, André Gygax, Roger Guimera, and Manuel Fischer. 
We note that there is uncertain personal benefit as well as some risk in doing so. We greatly appreciate their time 
and effort in preserving their data and providing it when we requested. They have made significant contributions to 
reproducibility of research in its many forms.

Appendices

A. Additional Goodness of Fit Figures

Fig. 3. 
Out-degree goodness of fit comparison plot for Sailer’s office layout networks. The 

comparison is between ERGM and LOLOG fits both using the published ERGM terms
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Fig. 4. 
ESP goodness of fit comparison plot for Sailer’s office layout networks. The comparison is 

between ERGM and LOLOG fits both using the published ERGM terms

Fig. 5. 
Out-degree goodness of fit comparison plot for Sailer’s office layout networks. The 

comparison is between the published ERGM and LOLOG fits with GWESP and stars terms 

included.
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Fig. 6. 
ESP goodness of fit comparison plot for Sailer’s office layout networks. The comparison is 

between the published ERGM and LOLOG fits with GWESP and stars terms included.

B. Links to publically available data

Table 8 provides hyperlinks to the publicly available datasets used in our ensemble.

Table 8:

Links to publicly available datasets

Network Links

Add Health addhealth.cpc.unc.edu/

Elementary School moreno.ss.uci.edu/data.html#children

Florentine Families sites.google.com/site/ucinetsoftware/datasets/padgettflorentinefamilies

Kapferer’s Tailors sites.google.com/site/ucinetsoftware/datasets/kapferertailorshop

Natural Disasters vlado.fmf.uni-lj.si/pub/networks/data/GBM/kansas.htm

German Schoolboys github.com/gephi/gephi/wiki/Datasets

Company Boards corp.boardex.com

References

Ackland R and O’Neil M (2011). Online collective identity: The case of the environmental movement. 
Social Networks 33(3), 177 – 190.

Amati V, Lomi A, and Mira A (2018). Social network modeling. Annual Review of Statistics and Its 
Application 5(1), 343–369.

Anderson CJ, Wasserman S, and Crouch B (1999). A p* primer: logit models for social networks. Soc. 
Networks 21, 37–66.

Chatterjee S and Diaconis P (2013, 10). Estimating and understanding exponential random graph 
models. Ann. Statist 41(5), 2428–2461.

Doreian P and Conti N (2012). Social context, spatial structure and social network structure. Social 
Networks 34, 32–46.

Clark and Handcock Page 17

J R Stat Soc Ser A Stat Soc. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://addhealth.cpc.unc.edu/
http://moreno.ss.uci.edu/data.html#children
http://sites.google.com/site/ucinetsoftware/datasets/padgettflorentinefamilies
http://sites.google.com/site/ucinetsoftware/datasets/kapferertailorshop
http://vlado.fmf.uni-lj.si/pub/networks/data/GBM/kansas.htm
http://github.com/gephi/gephi/wiki/Datasets
http://corp.boardex.com


Everett M and Valente T (2020). Social Networks: An International Journal of Structural Analysis. 
Elsevier.

Fellows I (2018a). Latent order logistic (lolog) graph models. https://github.com/statnet/lolog.

Fellows I and Handcock M (2017, 20–22 Apr). Removing Phase Transitions from Gibbs Measures. 
Volume 54 of Proceedings of Machine Learning Research, Fort Lauderdale, FL, USA, pp. 289–297. 
PMLR.

Fellows IE (2018b). A new generative statistical model for graphs: The latent order logistic (lolog) 
model.

Fischer M and Sciarini P (2015). Unpacking reputational power: Intended and unintended determinants 
of theassessment of actors’ power. Social Networks 42, 60–71.

Frank O and Strauss D (1986). Markov graphs. Journal of the American Statistical Association 
81(395), 832–842.

Goldenberg A, Zheng AX, Fienberg SE, and Airoldi EM (2010). A survey of statistical network 
models. Foundations and Trends® in Machine Learning 2(2), 129–233.

Goodreau SM, Kitts J, and Morris M (2009). Birds of a feather, or friend of a friend? Using statistical 
network analysis to investigate adolescent social networks. Demography 46, 103–125. [PubMed: 
19348111] 

Handcock MS (2003). Assessing degeneracy in statistical models of social networks. Working paper.

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Krivitsky PN, and Morris M (2018). ergm: 
Fit, Simulate and Diagnose Exponential-Family Models for Networks. The Statnet Project (http://
www.statnet.org). R package version 3.9.4.

Harris K, Halpern C, Smolen A, and Haberstick B (2007, 01). The national longitudinal study of 
adolescent health (add health) twin data. Twin research and human genetics : the official journal of 
the International Society for Twin Studies 9, 988–97.

Heidler R, Gampner M, Herz A, and Esser F (2014). Relationship patterns in the 19th century: The 
friendship network in a german boys’ school class from 1880 to 1881 revisited. Social Networks 
37, 1–13.

Hunter DR (2007). Curved exponential family models for social networks. Social Networks 29, 216–
230. [PubMed: 18311321] 

Hunter DR, Goodreau SM, and Handcock MS (2008). Goodness of fit of social network models. 
Journal of the American Statistical Association 103(481), 248–258.

Hunter DR and Handcock MS (2006). Inference in curved exponential family models for networks. 
Journal of Computational and Graphical Statistics 15(3), 565–583.

Lubbers MJ and Snijders TA (2007). A comparison of various approaches to the exponential random 
graph model: A reanalysis of 102 student networks in school classes. Social Networks 29(4), 489 – 
507.

McLevey J, Graham AV, McIlroy-Young R, Browne P, and Plaisance KS (2018). Interdisciplinarity 
and insularity in the diffusion of knowledge: an analysis of disciplinary boundaries between 
philosophy of science and the sciences. Scientometrics 117(1), 331–349.

Morris M, Handcock MS, and Hunter DR (2008). Specification of exponential-family random graph 
models: Terms and computational aspects. Journal of Statistical Software 24(4).

Pauksztat B, Steglich C, and Wittek R (2011). Who speaks up to whom? a relational approach to 
employee voice. Social Networks 33 (4), 303–316.

R Core Team (2020). R: A Language and Environment for Statistical Computing. Vienna, Austria: R 
Foundation for Statistical Computing.

Robins G, Snijders T, Wang P, Handcock M, and Pattison P (2007). Recent developments in 
exponential random graph (p) models for social networks. Social Networks 29(2), 192–215.

Sailer K and McCulloch I (2012). Social networks and spatial configuration—how office layouts drive 
social interaction. Social Networks 34, 47–58.

Schweinberger M (2011). Instability, sensitivity, and degeneracy of discrete exponential families. 
Journal of the American Statistical Association 106(496), 1361–1370. [PubMed: 22844170] 

Clark and Handcock Page 18

J R Stat Soc Ser A Stat Soc. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/statnet/lolog
http://www.statnet.org
http://www.statnet.org


Schweinberger M and Handcock MS (2015). Local dependence in random graph models: 
characterization, properties and statistical inference. Journal of the Royal Statistical Society: Series 
B (Statistical Methodology) 77(3), 647–676.

Schweinberger M, Krivitsky PN, Butts C, and Stewart J (2020). Exponential-family models of random 
graphs: Inference in finite-, super-, and infinite population scenarios. Statistical Science.

Schweinberger M and Stewart J (2020, 02). Concentration and consistency results for canonical and 
curved exponential-family models of random graphs. Ann. Statist 48(1), 374–396.

Snijders T (2002, 06). Markov chain monte carlo estimation of exponential random graph models. 
Journal of Social Structure 3.

Snijders TAB, Pattison PE, Robins GL, and Handcock MS (2006). New specifications for exponential 
random graph models. Sociological Methodology 36(1), 99–153.

Stivala A, Robins G, and Lomi A (2020, 01). Exponential random graph model parameter estimation 
for very large directed networks. PLOS ONE 15(1), 1–21.

Strauss D (1986). On a general class of models for interaction. SIAM Review 28, 513–527.

Toivonen R, Kovanen L, Kivelä M, Onnela J-P, Saramäki J, and Kaski K (2009). A comparative study 
of social network models: Network evolution models and nodal attribute models. Social Networks 
31 (4), 240 – 254.

Wonga LHH, Gygax A, and Wang P (2015). Board interlocking network and the design of executive 
compensation packages. Social Networks 41, 85–100.

Clark and Handcock Page 19

J R Stat Soc Ser A Stat Soc. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
In-degree goodness of fit comparison plot for Sailer’s office layout networks. The 

comparison is between ERGM and LOLOG fits both using the published ERGM terms
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Fig. 2. 
In-degree goodness of fit comparison plot for Sailer’s office layout networks. The 

comparison is between the published ERGM and LOLOG fits with GWESP and stars terms 

included.
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Table 1.

Properties of each network contained in the ensemble. The ensemble includes directed and undirected 

networks from various applications ranging in size from 16 nodes to 1681 nodes

Description Network Nodes Edges Directed Citation

Add Health 1681 1236 Undirected Harris et al. (2007)

School Friends Various Varies Directed Lubbers and Snijders (2007)

Kapferer’s Tailors 39 267 Undirected Robins et al. (2007)

Florentine Families 16 15 Undirected Robins et al. (2007)

German Schoolboys 53 53 Directed Heidler et al. (2014)

Employee Voice 1 27 104 Directed Pauksztat et al. (2011)

Employee Voice 2 24 53 Directed Pauksztat et al. (2011)

Employee Voice 3 30 126 Directed Pauksztat et al. (2011)

Employee Voice 4 31 139 Directed Pauksztat et al. (2011)

Employee Voice 5 37 149 Directed Pauksztat et al. (2011)

Employee Voice 6 39 155 Directed Pauksztat et al. (2011)

Office Layout University 67 211 Directed Sailer and McCulloch (2012)

Office Layout University 69 203 Directed Sailer and McCulloch (2012)

Office Layout Research 109 458 Directed Sailer and McCulloch (2012)

Office Layout Publisher 119 872 Directed Sailer and McCulloch (2012)

Disaster Response 20 148 Directed Doreian and Conti (2012)

Company Boards 2007 808 1997 Undirected Wonga et al. (2015)

Company Boards 2008 808 1740 Undirected Wonga et al. (2015)

Company Boards 2009 808 1682 Undirected Wonga et al. (2015)

Company Boards 2010 808 1622 Undirected Wonga et al. (2015)

Swiss Decisions Nuclear 24 282 Directed Fischer and Sciarini (2015)

Swiss Decisions Pensions 23 294 Directed Fischer and Sciarini (2015)

Swiss Decisions Foreigners 20 169 Directed Fischer and Sciarini (2015)

Swiss Decisions Budget 25 224 Directed Fischer and Sciarini (2015)

Swiss Decisions Equality 24 248 Directed Fischer and Sciarini (2015)

Swiss Decisions Education 20 227 Directed Fischer and Sciarini (2015)

Swiss Decisions Telecoms 22 256 Directed Fischer and Sciarini (2015)

Swiss Decisions Savings 19 138 Directed Fischer and Sciarini (2015)

Swiss Decisions Persons 26 280 Directed Fischer and Sciarini (2015)

Swiss Decisions Schengen 26 316 Directed Fischer and Sciarini (2015)

University Emails 1133 10903 Undirected Toivonen et al. (2009)

School Friends grade 3 22 177 Directed Anderson et al. (1999)

School Friends grade 4 24 161 Directed Anderson et al. (1999)

School Friends grade 5 22 103 Directed Anderson et al. (1999)

Online Links Hyperlinks 158 1444 Directed Ackland and O’Neil (2011)

Online Links Framing 150 1382 Undirected Ackland and O’Neil (2011)
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Table 2.

Sailer’s office layout ERGM fits as per the published results. In all cases the selected measure of distance is 

negative and significant suggesting that close office workers, are more likely to interact, even after allowing 

for team, floor, usefulness as well as social structure in the form of reciprocity and transitivity.

University 2005 University 2008 Research Institute Publisher

Edges −3.4 (0.37)*** −4.41 (0.2)*** −4.1 (0.12)*** −5.07 (0.15)***

Reciprocity 0.38 (0.45) 0.62 (0.31)*** 2.39 (0.2)*** −1.26 (0.19)***

GWESP(0.5) 1.36 (0.14)*** 1.24 (0.11)*** 0.92 (0.07)*** 2.09 (0.09)***

Usefulness 0.7 (0.15)*** 0.54 (0.11)*** 0.81 (0.04)*** 1.31 (0.05)***

Team Match 0.78 (0.18)*** 0.56 (0.1)*** NA NA

Floor Match 0.15 (0.26) 0.58 (0.14)*** NA NA

Metric Distance −0.04 (0.01)*** −0.01 (0)*** −0.01 (0)*** NA

Topo Distance NA NA NA −0.06 (0)***

***
p-value < 0.001

**
p-value < 0.01

*
p-value < 0.05
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Table 3.

Sailers office layout networks LOLOG fits with same terms as published ERGM. Shows broad quantitative 

agreement with the published results using ERGM in Table 2

University 2005 University 2008 Research Institute Publisher

Edges −1.69 (0.38)*** −3.67 (0.36)*** −3.18 (0.13)*** −1.63 (0.09)***

Reciprocity 1.99 (0.34)*** 1.96 (0.31)*** 3.9 (0.25)*** 0.64 (0.2)***

GWESP(0.5) 0.55 (0.12)*** 0.87 (0.13)*** 0.73 (0.09)*** −0.22 (0.06)***

Usefulness 1.02 (0.15)*** 0.81 (0.14)*** 1.21 (0.05)*** 1.89 (0.06)***

Team Match 1.29 (0.19)*** 0.72 (0.19)*** NA NA

Floor Match −0.28 (0.3) 1.08 (0.29)*** NA NA

Metric Distance −0.07 (0.01)*** −0.02 (0.01)*** −0.02 (0)*** NA

Topo Distance NA NA NA −0.1 (0)***

***
p-value < 0.001

**
p-value < 0.01

*
p-value < 0.05
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Table 4.

Sailer’s office layout networks LOLOG fit with GWESP and 2- and 3- in- and out-stars. Significant out-star 

terms may suggest there is social structure unaccounted for with just the published ERGM terms. Despite 

additional significant structural terms, the LOLOG models still show broad quantitative agreement with the 

published results using ERGM

University 2005 University 2008 Research Institute Publisher

Edges −3.2 (0.67)*** −5.04 (0.59)*** −4.04 (0.22)*** −4.87 (1.19)***

Reciprocity 2.03 (0.77)*** 1.11 (0.45)*** 4.7 (0.52)*** 3.16 (1.27)***

GWESP(0.5) 0.33 (0.2) 0.49 (0.16)*** 0.77 (0.11)*** 0.01 (0.26)

Out-2-Star 1.39 (0.26)*** 0.65 (0.16)*** 0.41 (0.07)*** 0.69 (0.15)***

Out-3-Star −0.28 (0.07)*** −0.07 (0.03)*** −0.04 (0.01)*** −0.02 (0)***

In-2-Star 0.26 (0.22) 0.25 (0.15) 0.21 (0.12) 0.73 (0.54)

In-3-Star −0.04 (0.05) −0.03 (0.02) −0.09 (0.03)*** −0.18 (0.1)

Usefulness 1.07 (0.2)*** 0.75 (0.16)*** 1.28 (0.07)*** 2.98 (0.61)***

Team Match 1.93 (0.31)*** 1.14 (0.25)*** NA NA

Floor Match −0.24 (0.47) 1.35 (0.43)*** NA NA

Metric Distance −0.09 (0.01)*** −0.02 (0.01)*** −0.02 (0)*** NA

Topo Distance NA NA NA −0.24 (0.06)***

***
p-value < 0.001

**
p-value < 0.01

*
p-value < 0.05
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Table 5.

Office Layout LOLOG fit with triangles instead of gwesp term, hows broad quantitative agreement with the 

published results on nodal covariates, however suggests little tendency for reciprocity and transitivity in the 

university networks.

University 2005 University 2008 Research Institute Publisher

Edges −2.05 (0.82)*** −3.9 (0.67)*** −3.36 (0.15)*** −5.4 (49.3)

Reciprocity −2.96 (5.83) −0.08 (1.6) 3.34 (0.36)*** −24.8 (367.3)

Triangles 2.69 (2.95) 1.2 (0.73) 0.61 (0.13)*** 3.71 (50.63)

Usefulness 1.35 (0.53)*** 0.83 (0.16)*** 1.21 (0.06)*** 6.57 (88.39)

Team Match 1.8 (0.85)*** 0.9 (0.35)*** NA NA

Floor Match −0.29 (0.88) 1.07 (0.46)*** NA NA

Metric Distance −0.1 (0.05)*** −0.02 (0.01)*** −0.02 (0)*** NA

Topo Distance NA NA NA −0.39 (5.82)

***
p-value < 0.001

**
p-value < 0.01

*
p-value < 0.05
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Table 6.

Summary of GOF for ERGM and LOLOG with published terms for Sailer’s office layout networks. For all 

networks neither the LOLOG model or ERGM provide satisfactory fit.

Network ERGM LOLOG

2005 University
Fits poorly on out-degree Fits poorly on in-degree

Fits poorly on ESP Fits poorly on ESP but much better than ERGM

2008 University
Fits poorly on out-degree ERGM convex, LOLOG concave on in-degree

Fits poorly on ESP Fits poorly on out-degree

Fits poorly on ESP

Research Institute
Fits poorly on out-degree Fits poorly on in-degree

Fits poorly on ESP Fits poorly on out-degree

Fits poorly on ESP

Publisher

Fits poorly on in-degree Fits poorly on in-degree

Fits poorly on out-degree Fits poorly on out-degree

Fits poorly on ESP Fits poorly on ESP
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Table 7.

Summary table for LOLOG and ERGM Fits

Description Network Nodes a b c d e f g h

Add Health 1618 1 0 1 0 1 1 1 LOLOG

School Friends Various

Kapferer’s Tailors 39 1 0 1 0 1 1 0 LOLOG

Florentine Families 16 1 1 1 1 1 1 0 ERGM

German Schoolboys 53 1 1 0 NA 1 1 1 Both

Employee Voice 1 27 0 NA 1 1 1 1 NA LOLOG

Employee Voice 2 24 1 1 0 NA 0 0 NA ERGM

Employee Voice 3 30 0 NA 1 1 1 1 NA LOLOG

Employee Voice 4 31 0 NA 1 1 1 1 NA LOLOG

Employee Voice 5 37 0 NA 1 1 1 1 NA LOLOG

Employee Voice 6 39 0 NA 1 1 1 1 NA LOLOG

Office Layout University 67 1 0 1 0 1 1 1 LOLOG

Office Layout University 69 1 1 1 0 1 1 1 LOLOG

Office Layout Research 109 1 1 1 0 1 1 1 LOLOG

Office Layout Publisher 119 1 0 1 0 1 1 1 LOLOG

Disaster Response 20 0 0 0 0 1 1 0 LOLOG

Company Boards 2007 808 0 0 0 0 1 1 NA LOLOG

Company Boards 2008 808 0 0 0 0 1 1 NA LOLOG

Company Boards 2009 808 0 0 0 0 1 1 NA LOLOG

Company Boards 2010 808 0 0 0 0 1 1 NA LOLOG

Swiss Decisions Nuclear 24 0 1 0 NA 1 1 1 ERGM

Swiss Decisions Pensions 23 0 1 1 0 1 0 0 ERGM

Swiss Decisions Foreigners 20 0 1 0 NA 1 0 0 ERGM

Swiss Decisions Budget 25 0 1 0 NA 1 1 0 ERGM

Swiss Decisions Equality 24 0 0 0 NA 1 1 0 LOLOG

Swiss Decisions Education 20 0 0 1 0 1 1 NA LOLOG

Swiss Decisions Telecoms 22 0 0 0 NA 1 1 NA LOLOG

Swiss Decisions Savings 19 1 1 0 NA 1 1 0 ERGM

Swiss Decisions Persons 26 0 1 0 NA 1 1 0 ERGM

Swiss Decisions Schengen 26 0 0 0 0 1 1 NA LOLOG

University Emails 1133 0 0 0 0 0 0 NA Neither

School Friends grade 3 22 1 0 0 0 1 1 NA LOLOG

School Friends grade 4 24 1 0 0 0 1 1 NA ERGM

School Friends grade 5 22 1 0 0 0 1 1 NA ERGM

Online Links Hyperlinks 158 1 0 1 0 1 1 1 LOLOG

Online Links Framing 150 1 0 1 0 1 0 1 LOLOG

Column Proportion NA NA 0.43 0.37 0.46 0.23 0.94 0.86 0.5 NA
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